A Scalable Mark-Sweep Garbage Collector
on Large-Scale Shared-Memory Machines

Toshio Endo Kenjiro Taura Akinori Yonezawa
{endo,tau,yonezawa}@is.s.u-tokyo.ac. jp
Department of Information Science, Faculty of Science
The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan

Abstract

This work describes implementation of a mark-sweep garbage collector (GC)
for shared-memory machines and reports its performance. It is a simple “parallel”
collector in which all processors cooperatively traverse objects in the global shared
heap. The collector stops the application program during a collection and assumes a
uniform access cost to all locations in the shared heap. Implementation is based on
the Boehm-Demers-Weiser conservative GC (Boehm GC). Experiments have been
done on Ultra Enterprise 10000 (Ultra Sparc processor 250 MHz, 64 processors).
We wrote two applications, BH (an N-body problem solver) and CKY (a context
free grammar parser) in a parallel extension to C++.

Through the experiments, We observe that load balancing is the key to achieving
scalability. A naive collector without load redistribution hardly exhibit speed-up (at
most fourfold speed-up on 64 processors). Performance can be improved by dynamic
load balancing, which exchanges objects to be scanned between processors, but
we still observe that straightforward implementation severely limits performance.
First, large objects become a source of significant load imbalance, because the
unit of load redistribution is a single object. Performance is improved by splitting
a large object into small pieces before pushing it onto the mark stack. Next,
processors spend a significant amount of time uselessly because of serializing method
for termination detection using a shared counter. This problem suddenly appear on
more than 32 processors. By implementing non-serializing method for termination
detection, the idle time is eliminated and performance is improved. With all these
careful implementation, we achieved average speed-up of 28.0 in BH and 28.6 in
CKY on 64 processors.

Keywords: garbage collection, parallel algorithm, shared-memory machine, scala-
bility, dynamic load balancing

1 Introduction

Shared-memory architecture is attractive platform for implementation of general-purpose
parallel programming languages that support irregular, pointer-based data structures
[4, 19]. The recent progress in scalable shared-memory technologies is also making these
architectures attractive for high-performance, massively parallel computing.

One of the important issues not yet addressed in the implementation of general-
purpose parallel programming languages is scalable garbage collection (GC) technique for
shared-heaps. Most previous work on GC for shared-memory machines is concurrent GC
[6, 10, 16], by which we mean that the collector on a dedicated processor runs concurrently
with application programs, but does not perform collection itself in parallel. The focus
has been on shortening pause time of applications by overlapping the collection and
the applications on different processors. Having a large number of processors, however,
such collectors may not be able to catch up allocation speed of applications. To achieve
scalability, we should parallelize collection itself.

This paper describes the implementation of a parallel mark-sweep GC on a large-scale
(up to 64 processors), multiprogrammed shared-memory multiprocessor and presents the
results of empirical studies of its performance. The algorithm is, at least conceptually,
very simple; when an allocation requests a collection, the application program is stopped
and all the processors are dedicated to collection. Despite its simplicity, achieving scala-
bility turned out to be a very challenging task. In the empirical study, we found a number
of factors that severely limit the scalability, some of which appear only when the number
of processors becomes large. We show how to eliminate these factors and demonstrate
the speed-up of the collection. At present, we achieved approximately 28-fold speed-up
on 64 processors.

We implemented the collector by extending the Boehm-Demers-Weiser conservative
garbage collection library (Boehm GC [2, 3]) on a 64-processor Ultra Enterprise 10000
system. The heart of the extension is dynamic task redistribution through exchanging
contents of the mark stack (i.e., data that are live but yet to be examined by the collector).

The rest of the paper is organized as follows. Section 2 compares our approach with
previous work. Section 3 briefly summarizes Boehm GC, on which our collector is based.
Section 4 describes our parallel marking algorithm and solutions for performance limiting
factors. Section 5 shows experimental results, and we conclude in Section 6.

2 Previous Work

Most previous published work on GCs for shared-memory machines has dealt with con-
current GC [6, 10, 16], in which only one processor performs a collection at a time.
The focus of such work is not on the scalability on large-scale or medium-scale shared-
memory machines but on shortening pause time by overlapping GC and the application
by utilizing multiprocessors. When GC itself is not parallelized, the collector may fail to
finish a single collection cycle before the application exhausts the heap (Figure 1). This
will occur on large-scale machines, where the amount of live data will be large and the
(cumulative) speed of allocation will be correspondingly high.

We are therefore much more interested in “parallel” garbage collectors, in which a
single collection is performed cooperatively by all the processors. Several systems use this
type of collectors [7, 15] and we believe there are many unpublished work too, but there
are relatively few published performance results. To the authors’ knowledge, the present
paper is the first published work that examines the scalability of parallel collectors on real,
large-scale, and multiprogrammed shared-memory machines. Previous publications have
reported only preliminary measurements or have examined scalability only by simulation.

Ichiyoshi and Morita proposed a parallel copying GC for a shared heap [11]. It

Concurrent GC Our approach

Timg T

m

PEs

L E
“1aannia

]
0

%

/

The time when memory B Application
region can be reused GC

Figure 1: Difference between concurrent GC and our approach. If only one dedicated
processor performs GC, a collection cycle becomes longer in proportion to the number of
processors.

assumes that the heap is divided into several local heaps and a single shared heap. Data
move from a local heap to the shared heap, maintaining the invariant that there are no
pointers from the shared heap to a local heap. Each processor collects its local heap
individually. Collection on the shared-heap is done cooperatively but asynchronously.
During a collection, live data in the shared-heap (called ‘from-space’ of the collection)
are copied to another space called ‘to-space’. Each processor, on its own initiative, copies
data that is reachable from its local heap to to-space. Once a processor has copied data
reachable from its local heap, it can resume application on that processor, which moves
data in its local heap to the new shared-heap (i.e., to-space). Consult [11] for how to
deal with potential overflow in the to-space.

Our collector is much simpler than Ichiyoshi and Morita’s collector; it simply syn-
chronizes all the processors at a collection and all the processors are dedicated to the
collection until all reachable objects are marked. Although they have not mentioned
explicitly, we believe that a potential advantage of their method over ours is its lower
susceptibility to load imbalance of a collection. That is, the idle time that would appear
in our collector is effectively filled by the application. The performance measurement
in Section b shows a good speed-up up to our maximum configuration, 64 processors,
and indicates that there is no urgent need to consider using the application to fill the
idle time. We prefer our method because it does not interfere with SPMD-style applica-
tions, in which global synchronizations are frequent.! Their method may interact badly

LA global synchronization occurs even if the programming language does not provide explicit barrier
synchronization primitives. It implicitly occurs in many places, such as reduction and termination
detection.

with such applications because it exhibits a very long marking cycle, during which the
applications cannot utilize all the processors. We also reached a similar conclusion on
distributed-memory machines [20].

Our collector algorithm is most similar to Imai and Tick’s parallel copying collector
[12]. In their study, all processors perform copying tasks cooperatively and any memory
object in one shared heap can be copied by any processor. Dynamic load balancing is
achieved by exchanging memory pages to be scanned in the to-space among processors.
Speed-up is calculated by a simulation that assumes processors become idle only because
of load imbalance—the simulation overlooks other sources of performance degrading fac-
tors such as spin-time for lock acquisition. As we will show in Section 5, such factors
become quite significant, especially in large-scale and multiprogrammed environments.

3 Boehm-Demers-Weiser Conservative GC Library

The Boehm-Demers-Weiser conservative GC library (Boehm GC) is a mark-sweep GC
library for C and C++. The interface to applications is very simple; it simply replaces
calls to malloc with calls to GC_MALLOC. The collector automatically reclaims memory
no longer used by the application. Because of the lack of precise knowledge about types
of words in memory, a conservative GC is necessarily a mark-sweep collector, which
does not move data. Boehm GC supports parallel programs using Solaris threads. The
current focus seems to support parallel programs with minimum implementation efforts;
it serializes all allocation requests and GC is not parallelized. Below we describe aspects
of Boehm GC that are relevant to subsequent sections.

3.1 Heap Blocks and Mark Bitmaps

Boehm GC manages a heap in units of 4-KB blocks, called heap blocks. Objects in a
single heap block must have the same size. For each block separate header record (heap
block header) is allocated that contains information about the block, such as the size of
the objects in it. Also kept in the header is a mark bitmap for the objects in the block.
A single bit is allocated for each word (32 bits in our experimental environments). Put
differently, each word in a mark bitmap describes the states of 32 consecutive words in
the corresponding heap block, which may contain multiple small objects. Therefore, in
parallel GC algorithms, visiting and marking an object must explicitly be done atomically.
Otherwise, if two processors simultaneously mark objects that share a common word in
a mark bitmap, either of them may not be marked properly.

3.2 Mark Stack

Boehm GC maintains marking tasks to be performed with a vector called mark stack.
It keeps track of objects that have been marked but may directly point to an unmarked
object. Each entry is represented by two words:

e the beginning address of an object, and

e the size of the object.

push all roots (registers, stack, global variables) onto mark stack.
while (mark stack is not empty) {
o = pop(mark stack)
for (i = 0; i < size of 0; i++) {
if (o[i] is not a pointer) do nothing

else if (mark bit of o[i] == ‘marked’) do nothing
else {

push(o[i], mark stack)

mark bit of o[i] = ‘marked’
}

Figure 2: The marking process with a mark stack.

Figure 2 shows the marking process in pseudo code; each iteration pops an entry from
the mark stack and scans the specified object,? possibly pushing new entries onto the
mark stack. A mark phase finishes when the mark stack becomes empty.

3.3 Sweep

In the sweep phase, Boehm GC examines the mark bitmaps of all heap blocks in the
heap. A heap block that contains any marked object is linked to a list called reclaim
list, to prepare for future allocation requests. Heap blocks that are found empty are
linked to a list called heap block free list, in which heap blocks are sorted by their
addresses, and adjacent ones are coalesced to form a large contiguous block. Heap block
free list is examined when an allocation cannot be served from a reclaim list.

4 Parallel GC Algorithm

Our collector supports parallel programs that consist of several UNIX processes. We
assume that all processes are forked at the initialization of a program and are not added
to the application dynamically. Interface to the application program is the same as that
of the original Boehm GC; it provides GC_MALLOC, which now returns a pointer to shared
memory (acquired by a mmap system call).

We could alternatively support Solaris threads. The choice is arbitrary and some-
what historical; we simply thought having private global variables makes implementation
simpler. We do not claim one is better than the other.

4.1 Basic Algorithm

In the parallel marking algorithm, each processor has its own local mark stack. When
GC is invoked, all application processes are suspended by sending signals to them. When

ZMore precisely, when the specified object is very large (> 4 KB), the collector scans only the first 4
KB and keeps the rest in the stack.

PE1's root PE?2’s root

heap

. Objects marked by PE1
|:| Objects marked by PE2

Figure 3: In the simple algorithm, all nodes of a shared tree are marked by one processor.

all the signals have been delivered, every processor starts marking from its local root,
pushing objects onto its local mark stack. When an object is marked, the corresponding
word in a mark bitmap is locked before the mark bit is read. The purpose of the lock
is twofold. One is to ensure that a live object is marked exactly once, and the other is
to atomically set the appropriate mark bit of the word. When all reachable objects are
marked, the mark phase is finished.

This naive parallel marking hardly results in any recognizable speed-up because of the
imbalance of marking tasks among processors. Load imbalance is significant when a large
data structure is shared among processors through a small number of externally visible
objects. For example, a significant imbalance is observed when a large tree is shared
among processors only through a root object. In this case, once the root node of the tree
is marked by one processor, so are all the internal nodes (Figure 3). To improve marking
performance, our collector performs dynamic load balancing by exchanging entries stored
in mark stacks.

Besides a local mark stack, each processor maintains an additional data structure
named stealable mark queue, through which “tasks” (entries in mark stacks) are
exchanged (Figure 4). During marking, each processor periodically checks its stealable
mark queue. If it is empty, the processor moves all the entries in the local mark stack
(except entries that point to the local root, which can be processed only by the local
processor) to the stealable mark queue. When a processor becomes idle (i.e., when its
mark stack becomes empty), it tries to obtain tasks from stealable mark queues. The
processor examines its own stealable mark queue first, and then those of other processors,
until it finds a non-empty queue. Once it finds one, it steals half of the entries® in the

3If the queue has n entries and n is an odd number, (n + 1)/2 entries are stolen.

Stealable
mark queue

|:| Tasks

Figure 4: Dynamic load balancing method: tasks are exchanged through stealable mark
queues.

Mark stack Lock

queue and stores them into its mark stack. Because several processors may become idle
simultaneously, this test-and-steal operation must acquire a lock on a queue. The mark
phase is terminated when all the mark stacks and stealable mark queues become empty.
The termination is detected by using a global counter to maintain the number of empty
stacks and empty queues. The counter is updated whenever a processor becomes idle or
obtains tasks.

In the parallel algorithm, all processors share a single heap block free list, while each
processor maintains a local reclaim list. In the sweep phase, each processor examines a
part of heap blocks and links empty ones to the heap block free list and non-empty ones
to its local reclaim list. Since each processor has a local reclaim list, inserting blocks to
a reclaim list is straightforward. Inserting blocks to the heap block free list is, however,
far more difficult, because the heap block free list is shared, blocks must sorted by their
addresses, and adjacent blocks must be coalesced. To reduce the contention and the
overhead on the shared list, we make the unit of work distribution in the sweep phase
larger than a single heap block and perform tasks as locally as possible; each processor
acquires a large number of (64 in the current implementation) contiguous heap blocks at
a time and processes them locally. Empty blocks are locally sorted and coalesced within
the blocks acquired at a time and accumulated in a local list called partial heap block
free list. Each processor repeats this process until all the blocks have been examined.
Finally, the lists of empty blocks accumulated in partial heap block free lists are chained
together to form the global heap block free list, possibly coalescing blocks at joints. When
this sweep phase is finished, we restart the application.

4.2 Performance Limiting Factors and Solutions

The basic marking algorithm described above exhibits acceptable speed-up on small-
scale systems (e.g., approximately fourfold speed-up on eight processors). As we will see
in Section 5, however, several factors severely limit speed-up and this basic form never
yields more than a 12-fold speed-up. Below we list these factors and describe how did we
address them in turn.

Load imbalance by large objects: We often found that a large object became a source
of significant load imbalance. Recall that the smallest unit of task distribution is
a single entry in a stealable mark queue, which represents a single object in mem-
ory. This is still too large! We often found that only some processors were busy
scanning large objects, while other processors were idle. This behavior was most
prominent when applications used many stacks or large arrays. In one of our par-
allel applications, the input data, which is a single 400-KB array caused significant
load imbalance. In the basic algorithm, it was not unusual for some processors to
be idle during the entire second half of a mark phase.

We address this problem by splitting large objects (objects larger than 512 bytes)
into small (512-byte) pieces before it is pushed onto the mark stack. In the experi-
ments described later, we refer to this optimization as SLO (Split Large Object).

Delay in searching tasks: In the basic algorithm, processors sometimes spent a sig-
nificant amount of time acquiring locks on stealable mark queues. This was par-
ticularly the case when many processors compete for trying to obtain tasks. When
a processor fails to acquire a lock, it should examine the next queue immediately.
We therefore replaced a simple lock-then-steal sequence with a try-lock-then-steal
sequence. When a lock acquisition fails, the processor simply gives up acquiring
the lock and examines the next queue immediately. We refer to this optimization
as SLQ (Skip Locked Queues).

Serialization in termination detection: When the number of processors becomes
large, we found that the GC speed suddenly dropped. It revealed that proces-
sors spent a significant amount of time to acquire a lock on the global counter that
maintains the number of empty mark stacks and empty stealable mark queues. We
updated this counter each time a stack (queue) became empty or tasks were thrown
into an empty stack (queue). This serialized update operation on the counter in-
troduced a long critical path in the collector.

We implemented another termination detection method in which two flags are main-
tained by each processor; one tells whether the mark stack of the processor is cur-
rently empty and the other tells whether the stealable mark queue of the processor
is currently empty. Since each processor maintains its own flags on locations differ-
ent from those of the flags of other processors, setting flags and clearing flags are
done without locking.

Termination is detected by scanning through all the flags in turn. To guarantee the
atomicity of the detecting process, we maintain an additional global flag detection-
interrupted, which is set when a collector recovers from its idle state. A detecting
processor clears the detection-interrupted flag, scans through all the flags until it

finds any non-empty queue, and finally checks the detection-interrupted flag again if
all queues are empty. It retries if the process has been interrupted by any processor.
We must take care of the order of updating flags lest termination be detected by
mistake. For example, when processor A steals all tasks of processor B, we need
to change flags in the following order: (1) stack-empty flag of A is cleared, (2)
detection-interrupted flag is set, and (3) queue-empty flag of B is set. We refer to
this optimization as NSB (Non-Serializing Barrier).

Delay in testing mark bitmap: We observed cases where processors consumed a sig-
nificant amount of time acquiring locks on mark bits. A simple way to guarantee
that a single object is marked only once is to lock the corresponding mark bit
(more precisely, the word that contains the mark bit) before reading it. However,
this may unnecessarily delay processors that read the mark bit of an object to just
know the object is already marked. To improve the sequence, we replaced this
“lock-and-test” sequence with a “test-and-compare&swap” sequence; we first read
the mark bit without lock and quit if the bit is already set. Otherwise, we calculate
the new bitmap for the word and swap the word in the original location and the
new bitmap, if the original location is the same as the originally read bitmap. This
compare&swap is done atomically by one instruction. We retry if the location has
been overwritten by another process. These operations eliminate useless lock ac-
quisitions on mark bits that are already set. We refer to this optimization as TCS
(Test-and-Compare&Swap) in the experiments below.

Another advantage of this algorithm is that it is a non-blocking algorithm [8, 17, 18],
and hence does not suffer from untimely preemption. A major problem with the
basic algorithm is, however, that locking a word in a bitmap every time we check
if an object is marked causes contention (even in the absence of preemption). We
confirmed that a “test-and-lock-and-test” sequence that checks the mark bit before
locking works equally well, though it is a blocking algorithm.

5 Experimental Results

We have implemented the collector on the Ultra Enterprise 10000 (Ultra Sparc processor
250 MHz, 64 processors). The implementation is based on the source code of Boehm
GC version 4.10, and the added code is about 3000 lines in C language. We used two
applications, BH (an N-body problem solver) and CKY (a context free grammar parser)
written in a parallel extension to C++ [14]. This extension allows application program-
mers to create user-level threads dynamically. In the experiment, the stack size of each
thread was 8 KB. The stacks were allocated by GC_MALLOC and became garbage after the
thread was terminated. BH simulates the motion of N (= 5000) particles by using the
Barnes-Hut algorithm [1]. At each time step, BH makes a tree whose leaves correspond
to particles and calculates the acceleration, speed, and location of the particles by us-
ing the tree. CKY takes sentences written in natural language and the syntax rules of
that language as input, and outputs all possible parse trees for each sentence. In the
experiment, each of the given 67 sentences consists of 10 to 40 words.

5.1 Evaluation Framework

Ideally, the speed-up of the collector should be measured by using various numbers of
processors and applying the algorithm to the same snapshot of heap. It is difficult,
however, to reproduce the same snapshot multiple times because of the indeterminacy of
application programs. The amount of data is so large that we cannot simply dump the
entire image of the heap. Even if such dumping were feasible, it would still be difficult
to continue from a dumped image with a different number of processors. Thus the only
feasible approach is to formulate the amount of work needed to finish a collection for a
given heap snapshot and then calculate how fast the work is processed at each occurrence
of a collection.

A generally accepted estimation of the workload of marking for a given heap configu-
ration is the amount of live objects, or equivalently, the number of words that are scanned
by the collector. This, however, ignores the fact that the load on each word differs de-
pending on whether it is a pointer, and the density of pointers in a live data may differ
from one collection to another. Given a word in heap, Boehm GC first performs a simple
test that rules out most non-pointers and then examines the word more elaborately.

To measure the speed-up more accurately, we define the workload W of a collection
as

W = a1T1 + A2X2 + A3T3 + G424 + A5T5

where z; is the number of marked objects, 5 the number of times to scan already marked
objects, x3 the number of times to scan non-pointers, 4 the number of empty heap blocks,
and z5 the number of non-empty blocks. Each x, is totaled over all processors. The GC
speed S is defined as S = W/t, where ¢ is the elapsed time of the collection. And the GC
speed-up on N processors is the ratio of S on N processors to S on a single processor.
When we measure S on a single processor, we eliminate overhead for parallelization.
The constants a,, were determined through a preliminary experiment. To determine as,
for example, we created a 1000-word object that contained only non-pointers and we
measured the time to scan the object. We ran this measurement several times and used
the shortest time. The other constants were determined similarly. In the experiment, the
constants were set at a; = 0.50, a; = 0.16, a3 = 0.020, a4 = 2.0, and a5 = 1.3.

5.2 Speed-up of GC

Table 1 and Figures 5-8 show performance of GC using the two applications. We measured
eight versions of collectors, each of which corresponds to a row of the table. “Sequen-
tial” refers to the original Boehm GC and “Simple” refers to the algorithm in which
each processor simply marks objects that are reachable from the root of that processor
without any further task distribution. “Basic” refers to the basic algorithm described in
Section 4.1, and the following four versions refer to ones that implement all but one of the
optimizations described in Section 4.2. “No-XXX” stands for a version that implements
all the optimizations but XXX. Finally, “Full” is the fully optimized version.

The applications were executed four times in each configuration and invoked collec-
tions more than 40 times. The table shows the average performance of the invocations.
When we used all or almost all the processors on the machine, we occasionally observed
invocations that performed distinguishably worse than the usual ones. They were typi-
cally 10 times worse than the usual ones. The frequency of such unusually bad invocations

10

was about once in every five invocations when we used 64 processors. We have not yet
determined the reason for these invocations. It might be the effect of other processes.
For the purpose of this study, we exclude these cases.

Figure 5 and 6 compare three versions, namely, Simple, Basic, and Full. The graph
shows that Simple does not exhibit any recognizable speed-up in either application. Basic
performs reasonably in CKY until 32 processors. However, it does not scale any more
beyond it. Full achieved a 28.6-fold speed-up in CKY and a 28.0-fold speed-up in BH on
64 processors.

Figure 7 and 8 show how each optimization affects scalability. Removing any par-
ticular optimization yields a sizable degradation in performance, especially when we
have a large number of processors. Without the improved termination detection by the
non-serializing barrier (NSB), neither application achieves more than a 17-fold speed-up.
Sensitivity to optimizations differs between the two applications. Most notably, the lack
of TCS has the most significant impact on BH, whereas it is benign in CKY. The ex-
periment revealed that BH exhibits a much larger value of z5/x;. That is, an object in
BH tends to be visited by the collector much more than an object in CKY is. The value
is approximately five on BH, while close to zero in CKY. The value for CKY is quite
understandable; the reference count for an object is one most of the time, so an object is
rarely visited several times. In BH we found that GC often misidentifies floating-point
numbers, such as the location of particles, as pointers. Furthermore, GC finds the same
floating-point numbers several time and takes them as pointers. So there is a greater
chance that processors will visit the same (misidentified) pointers simultaneously in BH
than there is in CKY, which does not use floating-point numbers. Thus the performance
of the No-TCS version is poor in BH. This result in BH is peculiar to conservative GC.
The performance of No-TCS in BH would be closer to that of Full if GC had information
about types of objects.

6 Conclusion

We constructed a highly scalable parallel mark-sweep garbage collector for shared-memory
machines. This collector performs dynamic load balancing by exchanging objects in mark
stacks. Through the experiments on the shared-memory machine Ultra Enterprise 10000,
we found that a number of factors severely limit the scalability, and we presented the fol-
lowing solutions: (1) Because the unit of load balancing was a single object, a large object
that cannot be divided degraded the utilization of processors. Splitting large objects into
small parts when they are pushed onto the mark stack enabled a better load balancing.
(2) Idle processors were sometimes delayed for lock acquisitions on the stealable mark
queues. They can obtain tasks faster by skipping queues already locked by another pro-
cessor. (3) Especially on 32 or more processors, processors wasted a significant amount of
time because of the serializing operation used in the termination detection with a global
counter. We implemented another method using local flags without locking, and the long
critical path was eliminated. (4) We observed that processors spent a significant time
for lock acquisitions on mark bits in BH. The useless lock acquisitions were eliminated
by using a “test-compare&swap” sequence instead of a “lock-and-test” sequence. When
using all these solutions, we achieved an average speed-up of 28.0 to 28.6 on 64 processors.

11

CKY

1PE | 8PE | 16PE | 32PE | 48PE

64PE

Sequential speed 367.4 - - - -
speed-up | 1.00

Simple speed 323.2 | 388.2 | 399.3 | 392.6 | 397.8
speed-up | 0.880 | 1.06 | 1.09 1.07 | 1.08

395.3
1.08

Basic speed 320.5 | 1659 | 2815 | 4403 | 3642
speed-up | 0.872 | 4.52 7.66 12.0 9.91

2359
6.42

No-SLO speed 329.0 | 2106 | 3667 | 6311 | 7328
speed-up | 0.895 | 5.73 | 9.98 17.2 19.9

7098
19.3

No-SLQ speed | 344.8 | 2254 | 3841 | 6422 | 7910
speed-up | 0.938 | 6.14 | 10.5 | 17.5 | 215

10229
27.8

No-NSB speed 336.5 | 2200 | 3747 | 6178 | 3355
speed-up | 0.915 | 5.99 | 10.2 16.8 | 9.13

1857
5.05

No-TCS speed 314.1 | 1691 | 3124 | 5188 | 6562
speed-up | 0.855 | 4.60 8.50 14.1 17.9

8341
22.7

Full speed | 345.1 | 2271 | 4085 | 6778 | 8201
speed-up | 0.939 | 6.18 | 11.1 | 184 | 22.3

10523
28.6

BH

1PE | 8PE | 16PE | 32PE | 48PE

64PE

Sequential speed 406.2 - - - -
speed-up | 1.00

Simple speed 343.5 | 757.8 | 768.3 | 890.1 | 806.5
speed-up | 0.846 | 1.87 1.89 2.19 1.99

1464
3.60

Basic speed 326.2 | 1511 | 1669 | 1819 | 1438
speed-up | 0.803 | 3.72 4.11 4.48 3.54

1090
2.68

No-SLO speed 3989 | 1744 | 1470 | 3087 | 2315
speed-up | 0.982 | 4.29 | 3.62 7.60 | 5.70

2583
6.36

No-SLQ speed 388.4 | 2477 | 4265 | 6694 | 8065
speed-up | 0.956 | 6.10 | 10.5 16.5 19.9

11044
27.2

No-NSB speed 382.7 | 2534 | 4085 | 3433 | 2358
speed-up | 0.942 | 6.24 10.1 8.45 5.81

1520
3.74

No-TCS speed 345.9 | 2006 | 3237 | 2308 | 1581
speed-up | 0.852 | 4.94 | 7.97 5.68 3.89

1151
2.83

Full speed 381.3 | 2570 | 4364 | 7001 | 8464

11368
28.0

speed-up | 0.939 | 6.33 | 10.7 | 17.2 | 20.8
Sequential Sequential code without overhead for parallelization.
Simple Parallelized but no load balancing is done.
Basic Only load balancing is done.

No-SLO All optimizations but SLO (splitting large objects) are done.
No-SLQ All optimizations but SLQ (skipping locked queue) are done.
No-NSB All optimizations but NSB (non serializing barrier) are done.
No-TCS All optimizations but TCS (test and compare&swap) are done.
Full All optimizations are done.

Table 1: Average speed and speed-up of marking in CKY and BH

. The speed is the

amount of workload executed per 1 millisecond. The speed-up is the ratio of the speed

to that of sequential code on single processor.

12

—e— Full
30 | —a—Basic

0 10 20 30 40 50 60 70
number of processors
Figure 5: Average marking speed-up in CKY.
—o— Full
30 | ™ Basic
0 10 20 30 40 50 60 70

number of processors

Figure 6: Average marking speed-up in BH.

13

——Full

—#—-No-SLO
—— No0-SLQ
—>— No-NSB

——No-TCS,"

Figure 8: Effect of each optimization in BH.

number of processors

14

0 10 30 40 70
number of processors
Figure 7: Effect of each optimization in CKY.
—e— Full
—a—No-SLO
—— No-SLQ
—>—No-NSB
- —*—No-TCS."
0 10 30 40 70

References

1]

2]

[9]

[10]

[11]

[12]

[13]

[14]

Josh Barnes and Piet Hut. A hirarchical O(N log N) force-calculation algorithm.
Nature, 324:446-449, 1986.

Hans-Juergen Boehm. Space efficient conservative garbage collection. In Proceedings
of ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, pages 197-206, 1993.

Hans-Juergen Boehm and Mark Weiser. Garbage collection in an uncooperative
environment. Software Practice and Ezperience, 18(9):807-820, 1988.

A. A. Chien, U. S. Reddy, J. Plevyak, and J. Dolby. ICC++ - a C++ dialect
for high performance parallel computing. In Proceedings of the 2nd International
Symposium on Object Technologies for Advanced Software, volume 1049 of Lecture
Notes in Computer Science, pages 76-95, 1996.

David L. Detlefs. Concurrent garbage collection for C++. In Topics in Advanced
Language Implementation, chapter 5, pages 101-134. The MIT Press, 1991.

Damien Doligez and Xavier Leroy. A concurrent generational garbage collector for a
multithreaded implementation of ML. In Proceedings of ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 113-123, January 1993.

Robert H. Halstead, Jr. Multilisp: A language for concurrent symbolic computation.
ACM Transaction on Programming Languages and Systems, 7(3):501-538, July 1985.

Maurice Herlihy. A methodology for implementing highly concurrent data objects.
ACM Transactions on Programming Languages and Systems, 15(5):745-770, 1993.

Maurice P. Herlithy and J. Eliot B. Moss. Lock-free garbage collection for multipro-
cessors. IEEE Transactions on Parallel and Distributed Systems, 3(3):304-311, May
1992.

Lorenz Huelsbergen and James R. Larus. A concurrent copying garbage collector
for languages that distinguish (Im)mutable data. In Proceedings of ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 73-82, 1993.

Nobuyuki Ichiyoshi and Masao Morita. A shared-memory parallel extension of KLIC
and its garbage collection. In Proceedings of FGCS ’94 Workshop on Parallel Logic
Programming, pages 113-126, 1994.

Akira Imai and Evan Tick. Evaluation of parallel copying garbage collection on
a shared-memory multiprocessor. IEEE Transactions on Parallel and Distributed
Systems, 4(9):1030-1040, September 1993.

Richard Jones and Rafael Lins. Garbage Collection, Algorithms for Automatic Dy-
namic Memory Management. Wiley & Sones, 1996.

Yoshikazu Kamoshida. HOCS: A C++ extension with parallel objects and multi-
threading, February 1997. (senior thesis), The University of Tokyo.

15

[15]

[20]

[21]

James S. Miller and Barbara S. Epstein. Garbage collection in MultiScheme (prelim-
inary version). In T. Ito and R. H. Halstead, Jr., editors, Proceedings of US/Japan
Workshop on Parallel Lisp, volume 441 of Lecture Notes in Computer Science, pages
138-160, Sendai, Japan, June 1989. Springer-Verlag.

James O’Toole and Scott Nettles. Concurrent replicating garbage collection. In
Proceedings of 1994 ACM Conference on LISP and Functional Programming, pages
34-42, 1994.

Joseph P. Skudlarek. Remarks on a methodology for implementing highly concurrent
data objects. ACM SIGPLAN Notices, 29(12):87-93, 1994.

Joseph P. Skudlarek. Notes on “a methodology for implementing highly concur-
rent data objects”. ACM Transactions on Programming Languages and Systems,
17(1):45-46, 1995.

Kenjiro Taura, Satoshi Matsuoka, and Akinori Yonezawa. ABCL/f: A future-based
polymorphic typed concurrent object-oriented language - its design and implemen-
tation -. In number 18 in Dimacs Series in Discrete Mathematics and Theoretical
Computer Science, pages 275-292. the DIMACS work shop on Specification of Al-
gorithms, 1994.

Kenjiro Taura and Akinori Yonezawa. An effective garbage collection strategy for
parallel programming languages on large scale distributed-memory machines. In
Proceedings of ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 264-275, June 1997.

Paul R. Wilson. Uniprocessor garbage collection techniques. In Proceedings of the
1992 SIGPLAN International Workshop on Memory Management, pages 1-42, 1992.

16

