
Applying Temporal Blocking with a Directive-based Approach

Shota Kuroda*

Tokyo Institute of Technology
Toshio Endo

Tokyo Institute of Technology
endo@is.titech.ac.jp

Satoshi Matsuoka
Tokyo Institute of Technology

matsu@acm.org

ABSTRACT

Stencil kernels are important, iterative computation patterns
heavily used in scientific simulations and other operations
such as image processing. The performance of stencil ker-
nels is usually bound by memory bandwidth, and the com-
mon method of overcoming this is to apply Temporal Block-
ing (TB) as a form of bandwidth reducing algorithm. How-
ever, applying TB to existing code incurs high programming
cost due to real-life codes embodying complex loop struc-
tures, and moreover, multitudes of parameters and block-
ing schemes involved in TB complicating the tuning pro-
cess. We propose an automated, directive-based compiler
approach for TB by extending the polyhedral compilation
in the Polly/LLVM framework, significantly reducing pro-
gramming cost as well as being easily subject to auto-tuning.
Evaluation of the performance of our generated stencil codes
on Core i7 and Xeon Phi show that the auto-generated sten-
cil kernels achieve performance that is close to and often on
par with hand TB-converted and optimized codes.

CCS CONCEPTS

� Software and its engineering � Compilers;

KEYWORDS

Temporal blocking, Stencils, Polyhedral compilers, Compiler
directives, LLVM, Manycore, Cache optimization

ACM Reference format:
Shota Kuroda, Toshio Endo, and Satoshi Matsuoka. 2017. Ap-

plying Temporal Blocking with a Directive-based Approach. In

Proceedings of LLVM-HPC’17: Fourth Workshop on the LLVM
Compiler Infrastructure in HPC, Denver, CO, USA, November

12–17, 2017 (LLVM-HPC’17), 11 pages.
DOI: 10.1145/3148173.3148190

1 INTRODUCTION

Stencil computations are important kernels heavily used for
scientific simulations including fluid dynamics and struc-
tural analysis. In such kernels, computation and memory

** Currently Sony

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

LLVM-HPC’17, Denver, CO, USA

© 2017 ACM. 978-1-4503-5565-0/17/11. . . $15.00
DOI: 10.1145/3148173.3148190

access have the same order of complexity, thus they tend to
be memory-intensive. Since typical stencil implementations
scan the entire target array for each iteration, they have low
cache locality and impose high load to main memory.

Generally, blocking techniques have been used in order
to reduce main memory load for performance improvement,
since they improve data reuse to harness memory hierar-
chy efficiently. For stencil computations, while spatial block-
ing has been well known, temporal blocking (TB) have been
proposed[1–4] as a technique to improve locality beyond spa-
tial blocking. With TB, when the computation of an array
part begins, we compute the part for several temporal steps
locally at once. TB has been used not only for reduction of
main memory access, but for the reduction of communica-
tion between GPUs and CPUs[5, 6] and SSD access costs[7].

In spite of those results, TB imposes high programming
costs, as it introduces complex loop structures to application
codes. Unlike blocking in dense matrix computations, TB in-
troduces ”skewed” block shapes, in order to preserve data de-
pendency between adjacent points, which significantly com-
plicates programming. To resolve this issue, some researchers
have taken an approach with DSLs integrated with TB[8–
10]. However, this approach requires applications already
written in specific DSLs. Contrastingly, our approach is compiler-
based, and focuses on applications written in general pur-
pose languages, such as C/C++. We use polyhedral compiler
technology, such as Pluto compiler[11] and Polly/LLVM[12,
13], in order to execute loop transformations.

Even when the loop transformation is achieved, users still
need fine tuning according to the characteristics of appli-
cations and underlying architecture. The optimal temporal
block size, the spatial block sizes are difficult to predict.
Additionally, several block shapes have been proposed, in-
cluding wavefront, overlapped, trapezoid and diamond; an
appropriate shape should be selected among them.

This paper describes our compiling tool chain based on di-
rectives that enables users to tune TB parameters including
block sizes and shapes, while specifying code fragments to be
transformed for TB. It is also expected to make auto-tuning
easier. Our tool chain is implemented as extensions to the
LLVM compiler framework. The extensions mainly consist
of:

(1) Directive-based parameter tuning mechanism as an
extension to the Clang frontend[14],

(2) Loop transformation mechanism as an extension to
the Polly polyhedral optimizer. As a byproduct us-
ing Polly, the resultant tool executes automatic OpenMP
parallelization, in addition to introducing TB.

Even with this tool, we have found that some program-
ming idioms that frequently appear in stencil computations,

LLVM-HPC’17, November 12–17, 2017, Denver, CO, USA Shota Kuroda, Toshio Endo, and Satoshi Matsuoka

including double buffering, work adversarily and prohibits
loop transformation when they are described in a straight-
forward fashion. We also demonstrate several case study and
our current solutions.

We demonstrate the performance results of stencil codes
optimized by our tool chain. The benchmark programs in-
clude simple one-dimension and two-dimension stencils, and
platforms include a Core i7 (Sandy Bridge) server and a
Xeon Phi (Knights Landing) server. The results show that
generated code exhibits up to 1.8 times speedup on Xeon and
up to 3.6 times speedup on Xeon Phi, which are comparable
to hand TB-converted and optimized codes.

2 STENCIL COMPUTATIONS AND
OPTIMIZATIONS

2.1 Stencil Computations

Stencil computations are iterative kernels that scan the en-
tire target arrays to compute new arrays. Each value of new
arrays are computed using the corresponding and adjacent
values of old arrays. The following formula shows the com-
putation of a single value in the simplest stencil form, called
one-dimensional three-point (1D3P) stencil:

ft+1,x = a−1ft,x−1 + a0ft,x + a1ft,x+1

The largest distance used for computation of each value is
called stencil radius, which is 1 in the above kernel.

When stencil computations are implemented in a naive
fashion, each iteration requires O(N) data to compute O(N)
array elements, where N is the spatial array size. Thus mem-
ory channel becomes the bottleneck, prohibiting harness-
ing of computation power of modern processors with low
Bytes/Flops ratio, especially in multi/many-core cases.

To alleviate the issue, spatial blocking has been proposed
for multi-dimensional stencils. Here the spatial array is di-
vided into smaller blocks to improve data reuse. However,
the reuse is still limited inside a single iteration. For more
aggressive data reuse, loop transformation over multiple it-
erations are necessary.

2.2 Temporal Blocking

Temporal blocking introduces blocks divided both in spa-
tial and temporal dimensions. When we start computation
of a spatial block, we continue computation of that block
for several steps locally at once, before moving to other spa-
tial blocks. This improves access locality significantly over
spatial blocking. However, we have to be careful to preserve
data dependency enclosed in the original computation, which
significantly complicates the programming.

In the example in Section 2.1, the computation of ft+1,x

depends not only on ft,x but on ft,x−1, ft,x+1. Thus the spa-
tial size that can be computed locally shrinks by the stencil
radius for each iteration shown as red blocks in Figure 1.
This figure shows the one-dimensional case; here the block-
ing shape is called ”trapezoid” and the temporal block size
is 3, and the spatial block size is 9. After computations of

Figure 1: An example of temporal blocking. The
block shape is ”trapezoid”.

��������	
�

�

	��
��	
�

�

��������
�

�

��������	
�

�

Figure 2: Examples of block shapes.

red blocks in time steps 1 to 3, we can compute blue blocks
in the same time steps. Then we can go to next time steps.

The intention of TB is to reduce main memory access.
When k is the temporal block size and the spatial block size
is enough small to be accommodated in cache, main memory
access is expected to be reduced to 1/k.

The block shape that preserves data dependency is not
unique; Figure 2 shows several examples of such shapes, with
varying tradeoffs: overlapped blocking introduces redundant
computations, while the programming costs are lower than
others. Among the other three, while wavefront blocking
does not have limitation on temporal block size k, the spa-
tial blocks must be computed sequentially (left to right in
the Figure). Trapezoid and diamond blocking enables paral-
lel block computation, while temporal block size is limited
by spatial block size. In this paper, our tool omits support
of overlapped blocking; we consider this is not a large flaw
since its importance is low due to inefficiencies of redundant
computations.

Through the above discussions, we observe TB incurs sig-
nificant load to users in programming and tuning, resulting
in low adoptions in real codes despite the advantages. Since
TB introduces ”skewed” blocks, TB requires complex loop
structures, especially for multiple dimensional cases. Also
the appropriate block shape and temporal/spatial block sizes
may depend on characteristics of kernels and underlying ar-
chitecture. Thus a tool chain that performs loop transfor-
mation for TB on existing codes enabling easy tuning are
required for practical use.

Applying Temporal Blocking with a Directive-based Approach LLVM-HPC’17, November 12–17, 2017, Denver, CO, USA

3 LLVM

3.1 LLVM Overview

In order to construct a tool chain for loop transformation
and directive-based tuning mechanisms, we use the LLVM
compiler infrastructure[13] as our basis. LLVM is a collection
of compiler modules that are designed to be reusable. Among
the many available modules, we mainly extend the Clang
frontend [14] for directive-based tuning mechanisms, and the
Polly optimizer [12] for loop transformation.

The key feature of LLVM, which supports various lan-
guages and architectures, is a common intermediate lan-
guage, called LLVM-IR (IR, hereafter). The compilation flow
of source programs consists of three steps:

(1) Front-end takes a source program as input and trans-
lates it to IR. Clang is a front-end module for C/C++
language.

(2) Middle-end consists of various optimization mod-
ules. Each module, called a pass, takes an IR code
as input and generates an optimized IR code. Polly
is included in the middle-end modules.

(3) Back-end translates IR to the target machine code,
such as x86 code.

While the front-end module translates source code to IR,
it can handle information given by directives, which are ex-
pressed by #pragma in C/C++. The front-end can add such
information to IR as additional metadata. Middle-end and
back-end modules can use the metadata for their optimiza-
tion or analysis. In our tool chain, information about block
sizes and shapes are passed as metadata from the front-end
to the loop optimizer based on Polly.

3.2 Polly

Our transformation module for temporal blocking is imple-
mented as an extension to Polly, which is a loop transforma-
tion tool for LLVM-IR based on the polyhedral model. Polly
mainly consists of the following middle-end passes, which are
tightly coupled with each other (while the actual implemen-
tation has more complex structure, the following descriptions
are simplified).

(1) SCoP detection pass takes IR code as input, and
detects code regions that Polly can transform. Such
regions are called Static Control Part of program
(SCoP), which typically corresponds to a (nested)
loop.

(2) Polyhedral model construction pass generates a poly-
hedral expression described below for each SCoP.
The polyhedral expression for a SCoP is stored into
a .jscop file.

(3) Loop transform passmodifies polyhedral expressions,
which corresponds to loop transformation.

(4) Code generation pass takes modified polyhedral ex-
pressions and the original IR code as input. It ver-
ifies validity of the modified expression, and if it is
valid, transformed IR code is generated. It also in-
serts OpenMP parallelization code if appropriate.

While Polly has a strong capability for loop transforma-
tion and analysis, code region that can be transformed (SCoP)
must satisfy several conditions. SCoP detection pass finds
such code regions. The followings are conditions related to
our context.

• The code region has an entry point and an exit
point.

• Control statements:
– Allowable control statements are for and if.
– Each for loop has a single induction variable

(IV). IV is incremented by a constant value for
each iteration.

– The lower bound and upper bound of a for

loop is expressed as affine expressions of pa-
rameters (constants and variables that are not
modified during execution of the region) and
IVs of outer loops.

– Condition of each if statement is a comparison
of two affine expressions.

• Non-control statements:
– Statements are equivalent to an assignment of

a value to an element of an array. The value
is the computed result of an expression that
includes operators or functions without side ef-
fects whose operands are array elements, pa-
rameters or IVs.

– Array indices are affine expressions of parame-
ters and IVs.

For each detected SCoP, polyhedral model construction
pass generates a polyhedral expression. Here, an n-level nested
loop is mapped to a domain in n-dimensional integer space
Zn, and a single iteration corresponds to a point in the space.
An iteration domain must be a convex set for loop transfor-
mation, optimization and dependency analysis.

A polyhedral expression of a SCoP consists of the follow-
ing elements.

• name: name of the SCoP
• context: constraints on parameters given to the SCoP
• statement[] : a set of statements in the SCoP

– name: name of the statement
– domain: a n-dimensional integer set that con-

sists of possible value for n loop induction vari-
ables (IV)

– schedule: an integer map that assigns to a IV
vector a multi-dimensional point in time in or-
der to define execution order of statements

– accesses[] : a set of memory accesses in the
statement

∗ kind : kind of memory access. read, may
write or write

∗ relation : an integer map, which maps
from the domain of the statement to mem-
ory spaces to be accessed

Figure 3 shows a simple example that includes a single
loop (LOOP1) treated as a SCoP. Figure 4 shows the (sim-
plified) polyhedral expression of LOOP1. In this example, a

LLVM-HPC’17, November 12–17, 2017, Denver, CO, USA Shota Kuroda, Toshio Endo, and Satoshi Matsuoka

void calc(float *d,float *s,const int nx){
const float alpha = 1.0f / 3.0f;
for(int x=0 ; x<nx ; ++x){ // LOOP1

d[x] = alpha * (s[x-1] + s[x] + s[x+1]); // S1
}

}

Figure 3: An code example that can be transformed
by Polly.

"name": "LOOP1",
"context" : "[nx]",
"statements" : [{

"name" : "S1",
"domain" : "[nx] -> {S1[x] : 0 <= x < nx}",
"schedule" : "[nx] -> {S1[x] -> [x]}"
"accesses" : [{

"kind" : "read",
"relation" : "[nx] -> {S1[x] -> s[-1 + x]}"

},{
"kind" : "read",
"relation" : "[nx] -> {S1[x] -> s[x]}"

},{
"kind" : "read",
"relation" : "[nx] -> {S1[x] -> s[1 + x]}"

},{
"kind" : "write",
"relation" : "[nx] -> {S1[x] -> d[x]}"

}],
}]

Figure 4: The polyhedral expression of the loop in
Figure 3 in Polly

parameter nx is defined outside of the SCoP, and described
in the context. This SCoP includes a single statement, S1.
The domain of S1 corresponds to the set of possible value
for IV vector. In this example, there is a single IV x and the
domain is given by ”0 <= x < nx”.

The schedule maps the IV vector to a vector that expresses
execution order. Each statement is executed according to
lexicographical order of the resultant vector. In the exam-
ple, the vector is [x], thus iterations are simply executed
in ascending order of x. ”Accesses” show a set of memory
accesses in the statement in each iteration. In the example,
each iteration executes three reads and one write. The rela-
tion shows the memory locations to be accessed.

In the loop transform pass, the polyhedral expression, es-
pecially ”schedule” clause, is modified to change the exe-
cution order of the iterations. Finally code generation pass
reconstructs new IR code by using modified SCoP and the
original IR code.

While Polly has been successful for blocking of dense ma-
trix kernels or spatial blocking of stencils, the current loop
transform pass does not support temporal blocking with
skewed blocks. Thus we propose and implement an exten-
sion to support temporal blocking as shown in Section 4.

Also we have found that the conditions for SCoP detection
prevent users from writing stencil codes in a simple fashion.
For example, swapping two pointers for double buffering is
not allowed. We will discuss this issue in Section 5.

4 PROPOSED TOOL CHAIN

4.1 Overview

Figure 5 shows overview of our tool chain based on LLVM.
Our new modules, indicated by the red area, are extensions
to the Clang front-end and loop transform pass in the Polly
optimizer.

The extended Clang front-end takes a source program,
parsing our directives proposed for temporal blocking. The
parameters specified in the directives are embedded into IR
code as metadata.

The extended loop transform pass, hereafter called TB-
Pass, takes those parameters as input, and modifies ”sched-
ule” information of the polyhedral expression so that tem-
poral blocking is applied. The remaining SCoP detection,
polyhedral model construction and code generation are done
by original passes in Polly.

4.2 Design of Directives

Our motivation of introducing new directives is to enable
flexible tuning of temporal blocking parameters, including
block sizes and block shapes for both manual and auto tun-
ing. We assume that our directive is inserted before the out-
ermost loop of the target nested loop, since typically the
outermost loops corresponds to a temporal loop.

A directive line starts with prefix #pragma tb, which is
followed by several clauses for configuring parameters as fol-
lows:

• tile size(bt, b1, b2 ,...): Block sizes
• radius(r1, r2, ...): Stencil radii
• scheme(s1, s2, ...): Block shapes

Each clause generally takes multiple parameters to sup-
port multiple dimensional stencil computations. The tile size

takes parameters for block sizes; the first one is for temporal
(outermost) loop, which is denoted as bt above. The follow-
ing parameters are block sizes for spatial loops.

The radius clause is to specify stencil radii for spatial di-
mensions. The scheme clause is used to specify block shapes
for spatial dimensions. Each si is one of the following key-
words:

• none: Blocking is not applied to the dimension
• trapezoid: Trapezoid blocking is applied
• wavefront: Wavefront blocking is applied

Figure 6 shows an example stencil code with our directives
1. The code includes a triply nested loop, which consists of
temporal loop, y-dimensional loop and x-dimensional loop.
Three directive lines are attached just before the outermost
temporal loop. The tile size clause indicates that temporal
block size is 16 and spatial block sizes are 64 along Y-axis
and 128 along the X-axis. The radius clause indicates that
the stencil radii are 1 along the Y-axis and 2 along the X-
axis. The scheme clause indicates that trapezoid TB should
be applied only along the Y-axis.

1Actually, this sample cannot be transformed as is, though it is used
for explanation of directives. This issue is discussed in Section 5

Applying Temporal Blocking with a Directive-based Approach LLVM-HPC’17, November 12–17, 2017, Denver, CO, USA

Figure 5: Overview of our tool chain as an extension to LLVM

#define IDX(x,y) ((y) * stride + (x))
float *f[2];
const float alpha;

f[0] = malloc(...);
f[1] = malloc(...);

#pragma tb tile_size (16 ,64 ,128)
#pragma tb radius (1,2)
#pragma tb scheme(trapezoid ,none)
for (int t=0; t<nt ; ++t){

int src = t%2;
int dst = (t+1)%2;
for (int y=0; y<ny ; ++y)

for (int x=0; x<nx ; ++x)
f[dst][IDX(x,y)] =

alpha * (f[src][IDX(x ,y-1)]
+ f[src][IDX(x-2,y)]
+ f[src][IDX(x-1,y)]
+ f[src][IDX(x ,y)]
+ f[src][IDX(x+1,y)]
+ f[src][IDX(x+2,y)]
+ f[src][IDX(x ,y+1)]);

}

Figure 6: An example stencil code with our direc-
tives for temporal blocking

4.3 Extended Clang Front-end

We have extended the Clang front-end to accept directive
syntax describes above. The role of the extended Clang is to
pass parameters specified with the directives to the resultant
LLVM-IR code as metadata.

In LLVM, an IR instruction can have some metadata, each
of which is expressed as a tuple of strings, integers, and refer-
ences to other metadata. The extended Clang attaches meta-
data related to temporal blocking to an branch instruction
corresponding to the backedge of the outermost loop. For
example, the directives in Figure 6 are transformed into:

• !{!"temporalblocking.tilesizes", i32 16, i32

64, i32 128}
• !{!"temporalblocking.radiuses", i32 1, i32 2}
• !{!"temporalblocking.schemes", !"trapezoid",

!"none"}

[param_1 , ... , param_p] -> {
Stmt[iv_1 , ... , iv_n] ->

[ts_1_1 , ... , ts_1_t] : condition_1 ;

... ;

Stmt[iv_1 , ... , iv_n] ->
[ts_m_1 , ... , ts_m_t] : condition_m

}
// param: parameters specified in the context
// iv_*: loop induction variables
// ts_*: elements in timestamp vector
// condition_* : a condition which makes

the schedule applicable

Figure 7: Format of a schedule string

4.4 TB-Pass

Our TB-Pass module, an extension to Polly loop transform
pass, has a role to apply temporal blocking to the code re-
gion. This pass takes a polyhedral expression generated by
the preceding SCoP detection and the polyhedral model con-
struction passes. It also uses temporal blocking parameters if
they are found as metadata in IR code of the corresponding
SCoP.

Among the polyhedral expressions in Polly, as exemplified
in Figure 4, TB-Pass focuses on the ”schedule” string. TB-
Pass transforms the schedule so that temporal blocking is
applied2.

More generally, a schedule string is expressed as in Fig-
ure 7. The main components of a schedule are maps between
a vector of induction variables [iv 1, ... , iv n] embed-
ded in the domain space and a timestamp vector [ts j 1

, ... , ts j t]. As described in Section 3.2, a timestamp
vector denotes the execution order of the iterations.

A schedule may have multiple (m in this case) maps, each
of which has a condition that shows when the correspond-
ing map is valid. We use this mechanism with condition to
express blocks with different shapes, such as red blocks and
blue blocks in Figure 1.

Hereafter we take one-dimension three-point (1D3P) sten-
cil as an example, and explain how TB-Pass transforms the

2Polly internally represents polyhedral expressions as data structures
defined in the integer set library (ISL)[15], such as isl map. However,
we implement schedule modification as string operation

LLVM-HPC’17, November 12–17, 2017, Denver, CO, USA Shota Kuroda, Toshio Endo, and Satoshi Matsuoka

// Schedule before transformation
[nt, nx] -> { S1[t, x] -> [t, x] }

// Schedule after transformation
[nt, nx] -> {

S1[t, x] -> [TBID , 0, SBID , t, x] : // Red blocks
(TBID = floor(t / 3) and // (RC1)

SBID = floor((x + 1 * ((3 -1) - (t-3*T))) / 14) and // (RC2)
floor((x + 1 * ((3 -1) - (t-3*T))) / 14)

= floor((x - 9 + 1 * ((3 -1) + (t-3*T)) + 14) / 14)) ; // (RC3)
S1[t, x] -> [TBID , 1, SBID , t, x] : // Blue blocks

(TBID = floor(t / 3) and // (BC1)
SBID = floor((x + 1 * ((3 -1) - (t-3*T))) / 14) and // (BC2)
floor((x + 1 * ((3 -1) - (t-3*T))) / 14)

!= floor ((x - 9 + 1 * ((3-1) + (t-3*T)) + 14) / 14)) } // (BC3)

Figure 8: An example of transformation of a schedule string in one-dimensional stencil. The block shape is
”trapezoid”, temporal block size is 3, spatial block size (longer base of a trapezoid) is 9, and stencil radius is
1.

Figure 9: Scheduling of blocks with trapezoid shapes
shown in Figure 1. For each block, the first (TBID),
second (red-or-blue) and the third (SBID) elements
of the five-dimensional timevectors are illustrated.

schedule string. We assume that the target code region is
a doubly nested loop, which consists of an outer temporal
(t-dimension) loop and an inner spatial (x-dimension) loop.
We also assume that the directive syntax specifies the block
shape, temporal block size, spatial block size (longer basis
of a trapezoid) and stencil radius as ”trapezoid”, 3, 9 and 1,
respectively as in Figure 1.

For such a code region, TB-Pass obtains the original sched-
ule as shown in upper part in Figure 8. In this schedule, an
IV vector [t,x] is simply mapped to an timestamp vector
[t,x]. In TB-Pass, we transform the timestamp as in the
lower part of the figure, whose concept is illustrated in Fig-
ure 9.

First, we introduce temporal block ID TBID, which is cal-
culated by ⌊t/temporal block size⌋ and shown in (RC1),

(BC1) lines (both are the same conditions). Since all iter-
ations should be calculated in ascending order of TBID, the
first element of the new timestamp vector is TBID.

Next, we need to classify the iterations with the same
TBID into two groups, red ones and blue ones in Figure 1.
We use the second dimension of the timestamp for this pur-
pose. As the borderlines are skewed, the conditions are rather
complicated as shown in (RC3) for red, and (BC3) for blue.
Here the denominator of 14 in the formulae comes from the
summation of longer basis and shorter basis sizes, which is

9 + (9 − (3 − 1) × 2). Since the red iterations should have
earlier timestamps than the blue ones, we make a distinction
in the second dimension of the timestamp; we assign 0 to red
ones and 1 to blue ones.

The third dimension of the timestamp is spatial block ID
SBID, calculated in (RC2), (BC2). The fourth and fifth di-
mensions give execution order inside a block. Since all the
iterations are scheduled according to the lexicographical or-
der of the new timestamp vector, we achieve the desired
scheduling with TB.

For the above one-dimensional example, we use two block
types; in n-dimensional cases, we introduce 2n block types.

The schedule string transformed by TB-Pass is passed
to the following passes to generate IR code with tempo-
ral blocking. If a wrong directive parameter that may break
data dependencies is given, a validation error is output by
the code generation pass. An example of such cases would be
specifying stencil radius as being 1, while the actual state-
ment refers wider area of arrays.

5 FUTHER CODE
TRANSFORMATIONS

The previous section has described the proposed tool chain
to transform loop structure of stencil code for temporal block-
ing. While it is desirable to work with a wide variety of sten-
cil codes, we have found some code patterns, such as dou-
ble buffering that frequently appear, become obstacles for
optimization when written in natural ways. Some patterns
mitigate performance improvements, while others event pro-
hibit loop transformations completely. This section discusses
three such patterns and shows that systematic rewriting of
user code recovers the ability for optimization.

5.1 Double Buffering

Double buffering is a standard and well known technique to
reduce memory consumption of stencils significantly. Instead
of holding spatial arrays for every time step, it is sufficient
to hold arrays only for the latest two time steps. Code in
Figure 6 shows a simple implementation of double buffering,

Applying Temporal Blocking with a Directive-based Approach LLVM-HPC’17, November 12–17, 2017, Denver, CO, USA

where two arrays f[0] and f[1] are updated alternately. To
simplify the code, a variable src indicates 0 or 1, and dst

indicates its counterpart, in order to express which is being
written and read.

However, this implementation introduces indirect refer-
ences to f, which breaks conditions described in Section 3.2,
and thus the SCoP detection pass fails to recognize the code
region as a SCoP. Thus we cannot transform this code for
temporal blocking as is.

We have found that SCoP detection works well if the code
is rewritten to remove indirect accesses. An example of resul-
tant code is in Figure 10. Here odd iterations and even iter-
ations are separated statically, although this rewrite makes
the code longer. As a result, every memory reference has
only constant base address, f[0] or f[1], thus the enclosing
loop can be treated as a SCoP.

Although temporal blocking is successfully introduced to
the abovementioned modified code, we have noticed its ex-
ecution performance is lower than expected. Through in-
spection of the result IR code and binary, we have observed
that the innermost loop includes more memory access in-
structions than manually blocked code, for references to the
array f, although f[0], f[1] are constant during the loop.

Figure 11 shows an example where references to the array
f are removed from the loop. In this case, it is the program-
mers’ responsibility to assure that memory regions f[0],

f[1] do not have aliases, and the compiler knows f0, f1

are constant during the loop execution. The performance
improvement by this modification will be demonstrated in
Section 11.

5.2 Multiple Spatial Loops

In real applications, it is normal that there are multiple spa-
tial loops are included in the outer temporal loop. In an
example of Figure 12, each of the three spatial loops may
update different arrays, which makes SCoP detection fail.
Figure 13 is a modified version to solve the issue. Here a
new induction variable t3 instead of original t is introduced
so that t= ⌊t3/# of loops⌋ holds. Spatial loops to be exe-
cuted is switched according to (t3 %# of loops).

5.3 Discussion

The code modifications shown in this section have been ap-
plied manually in the experiments in next section, which
increases programming costs. Of course, it is desirable that
they are applied automatically and we are currently working
to do so. We expect it is straightforward to provide middle-
end passes for these code transformations. It would be more
challenging to automatically detect which code region should
be transformed, and what transformation should be applied;
we expect that our directive-based approach will work well
such for decision making.

f[0] = malloc(...);
f[1] = malloc(...);

#pragma tb tile_size (16 ,64 ,128)
#pragma tb radius (1,2)
#pragma tb scheme(trapezoid ,none)
for (int t=0 ; t < nt ; ++t) {

if (t % 2 == 0)
for (int y=0 ; y<ny ; ++y)

for (int x=0 ; x<nx ; ++x)
f[1][IDX(x,y)] =

alpha * (f[0][IDX(x ,y-1)]
+ f[0][IDX(x-2,y)]
+ f[0][IDX(x-1,y)]
+ f[0][IDX(x ,y)]
+ f[0][IDX(x+1,y)]
+ f[0][IDX(x+2,y)]
+ f[0][IDX(x ,y+1)]);

else
for (int y=0 ; y<ny ; ++y)

for (int x=0 ; x<nx ; ++x)
f[0][IDX(x,y)] =

alpha * (f[1][IDX(x ,y-1)]
+ f[1][IDX(x-2,y)]
+ f[1][IDX(x-1,y)]
+ f[1][IDX(x ,y)]
+ f[1][IDX(x+1,y)]
+ f[1][IDX(x+2,y)]
+ f[1][IDX(x ,y+1)]);

}

Figure 10: A modified version of Figure 6, which
SCoP detection pass works with (TB-auto)

void new_func(float * restrict f0,
float * restrict f1 , ...)

{
#pragma tb tile_size (16 ,64 ,128)
#pragma tb radius (1,2)
#pragma tb scheme(trapezoid ,none)
for (int t=0 ; t < nt ; ++t) {

if (t % 2 == 0)
for (int y=0 ; y<ny ; ++y)

for (int x=0 ; x<nx ; ++x)
f1[IDX(x,y)] =

alpha * (f0[IDX(x ,y-1)]
+ ...);

else
for (int y=0 ; y<ny ; ++y)

for (int x=0 ; x<nx ; ++x)
f0[IDX(x,y)] =

alpha * (f1[IDX(x ,y-1)]
+ ...);

}
}

:
f[0] = malloc(...);
f[1] = malloc(...);
new_func(f[0], f[1], ...);

:

Figure 11: A further modified version of Figure 10
where references to f is removed from inner loop
(TB-auto-2)

LLVM-HPC’17, November 12–17, 2017, Denver, CO, USA Shota Kuroda, Toshio Endo, and Satoshi Matsuoka

for (t = 0; t < nt; t++){
for (x = 1; x < nx - 1; x++)

for (y = 1; y < ny - 1; y++)
B[x][y] = 0.2 * (A[x][y-1] + A[x][y+1]

+ A[x-1][y] + A[x+1][y] + A[x][y]);
for (i = 1; i < nx - 1; i++)

for (j = 1; j < ny - 1; j++)
C[x][y] = 0.2 * (B[x][y-1] + B[x][y+1]

+ B[x-1][y] + B[x+1][y] + B[x][y]);
for (i = 1; i < nx - 1; i++)

for (j = 1; j < ny - 1; j++)
A[x][y] = 0.2 * (C[x][y-1] + C[x][y+1]

+ C[x-1][y] + C[x+1][y] + C[x][y]);
}

Figure 12: An example with multiple spatial loops

for (t3 = 0; t3 < nt*3; t3++){
if (t3 % 3 == 0)

for (x = 1; x < nx - 1; x++)
for (y = 1; y < ny - 1; y++)

B[x][y] = 0.2 * (A[x][y-1] + A[x][y+1]
+ A[x-1][y] + A[x+1][y] + A[x][y]);

else if (t3 % 3 == 1)
for (i = 1; i < nx - 1; i++)

for (j = 1; j < ny - 1; j++)
C[x][y] = 0.2 * (B[x][y-1] + B[x][y+1]

+ B[x-1][y] + B[x+1][y] + B[x][y]);
else

for (i = 1; i < nx - 1; i++)
for (j = 1; j < ny - 1; j++)

A[x][y] = 0.2 * (C[x][y-1] + C[x][y+1]
+ C[x-1][y] + C[x+1][y] + C[x][y]);

}

Figure 13: A modified version to Figure 12

6 PERFORMANCE EVALUATION

6.1 Evaluation Conditions

We evaluate performance of stencil benchmark codes with
temporal blocking applied by our tool chain. We use two
servers described in Table 1. One is a Core i7 processor of
Sandy Bridge generation, and the other is Xeon Phi Knights
Landing (KNL) processor with 64 cores. The current imple-
mentation of our tool chain is based on LLVM 4.0. When
stencil codes are compiled, compile options related to base
optimizations include -O3 -march=native.

The benchmark codes include a one-dimensional three-
point (1D3P) stencil and a two-dimensional five-point (2D5P)
stencil3. Double buffering technique is used, and the datatype
of array elements is float. For each stencil type, performances
of the following implementations are compared.

• Original: the original code without blocking
• SB-manual (only for 2D5P): spatial blocking is man-

ually applied
• TB-manual: temporal blocking is manually applied
• TB-auto: temporal blocking is applied automatically

by our tool chain. Double buffering is implemented
in a fashion of Figure 10.

3Additionally, evaluations with three-dimensional code based on
finite-difference time-domain method are ongoing.

Table 1: Evaluation Environments

SandyBridge KNL

CPU Core i7-3930K Xeon Phi 7210
CPU Clock 3.2GHz 1.3GHz
of cores 6 64
of HW threads 12 256
L1D cache size 32kB 32kB
Last level cache size 12MB 32MB
Memory bandwidth 51.2GB/s 102GB/s

Table 2: The numbers of threads used in evaluation

1D3P
SandyBridge KNL

Original 6 64
TB-manual 12 64
TB-auto 12 64
TB-auto-2 12 128

2D5P
SandyBridge KNL

Original 6 128
SB-manual 6 64
TB-manual 6 64
TB-auto 6 64
TB-auto-2 6 64

• TB-auto-2: improvement of TB-auto, as shown in
Figure 11.

The performance evaluation is done for multi-threaded
cases parallelized with OpenMP. For the origial case and
manual cases, we have used #pragma openmp parallel di-
rectives compiled by the Clang front-end. On the other hand,
for the TB-auto case, we have relied on Polly’s OpenMP
auto-parallelization mechanism. The reason for this differ-
ence is that threaded IR codes generated by Clang does not
pass the SCoP detection pass. The numbers of threads in the
evaluation have been determined through preliminary mea-
surements, which are done by varying the number of threads
per core. The determined numbers of threads are shown in
Table 2.

In all the cases, we used -fno-vectorize compile option
to disable vectorization optimization. This is due to that we
have observed vectorization does not currently work with
our tool chain, but this only would underestimate the effec-
tiveness of TB and our tool chain, as Bytes/Flops demand
will only increase due to the amplified computational density
with vectorization, i.e. with vectorization TB results would
be better when vectorization would work in the future.

6.2 1D3P Stencil

For one-dimensional three-point stencil, we let spatial size
be 16,777,216 and the number of time steps be 2048. In

Applying Temporal Blocking with a Directive-based Approach LLVM-HPC’17, November 12–17, 2017, Denver, CO, USA

TB-manual, TB-auto and TB-auto-2 cases, trapezoid block
shapes are applied.

Figures 14 and 15 shows the impacts of temporal/spatial
block sizes onto performance of TB-manual and TB-auto-2,
respectively.

According to the graphs, optimal spatial block sizes are
around 2048. This is explained by the fact that a spatial
block size considering double buffering, 4B(float)×2×2, 048 =
16kB fits in the L1D cache. When comparing SandyBridge
and KNL, temporal block size (TB) tends to have larger im-
pact on KNL. While TB ≥ 4 achieves almost optimal per-
formance on SandyBridge, TB = 8 improves performance
more than TB = 4 on KNL. This is likely due to the fact
that since KNL has more cores, hiding memory access costs
requires more aggressive blocking.

Figure 16 compares the performances of different imple-
mentations. The Y axis denotes the execution time and X
axis denotes the temporal block size. For each case, the spa-
tial block size has been configured for optimal values. In all
cases with temporal blocking, performances are better than
the original case, while we see differences between the imple-
mentations. On SandyBridge, TB-auto-2 achieves 1.9 times
speedup compared with original, while TB-manual shows 2.1
times speedup. On KNL we observe a larger gap; TB-auto-
2 and TB-manual achieve 2.3 times and 3.7 times, respec-
tively. We are currently investigating its reason in detail. We
suspect that we have not totally eliminated redundant mem-
ory access or that we are suffering from cache conflict misses
more on KNL than SandyBridge. Compared with TB-auto-2
and TB-manual, TB-auto is less effective, which shows im-
portance of eliminating redundant memory accesses during
loop execution.

6.3 2D5P Stencil

For two-dimensional five-point stencil, we let spatial size be
4096×4096 and number of time steps be 2048. When we use
temporal blocking, trapezoid block shapes are applied.

Figure 17 compares performance of different implementa-
tions. Spatial block sizes have been configured to optimal
ones. We observe TB-auto, which includes redundant mem-
ory accesses, shows the worst performance, worse than Orig-
inal on SandyBridge. On SandyBridge, both TB-auto-2 and
TB-manual achieve around 10% speedup than Original. On
KNL, the temporal blocking has more impact; TB-auto-2
and TB-manual achieve 40% and 80% speedup, respectively.

Generally, in multi-dimensional stencils, avoiding block-
ing along the innermost loop may improve performance, for
larger loop size. The SandyBridge graph includes such a case
denoted by ”TB-manual-Y”, which shows 21% speedup com-
pared to the Original 4.

7 RELATED WORK

Temporal blocking has been proposed as a technique to im-
prove locality of stencil computations[1–4]. While there are

4We will evaluate these cases for TB-auto-2 soon, by applying none
keyword in ”tb scheme” directive

SandyBridge

KNL

Figure 14: Impacts of block sizes to 1D3P TB-
manual performance (nx=16777216,nt=2048)

reports for its application for improvement of cache usage,
some researchers have used temporal blocking for reduction
of PCI-Express communication between GPUs and CPUs[5,
6] and SSD access costs[7].

Malas et al. proposed a temporal blocking method called
multi-threaded wavefront diamond blocking (MWD) to achieve
higher performance for three-dimensional stencils[4]. It adopts
wavefront shape for Z-axis, while diamond shape is used for
Y-axis. One of motivations of our approach is to express such
a complex blocking method as directives.

To alleviate issues regarding programming costs, some re-
searchers have taken an approach with DSLs integrated with
TB[8–10]. On top of them, the main task of programmers is
to write operations for update of a single point. Blocked and
parallelized code is generated by the DSL compiler. This
approach requires applications already written in specific
DSLs. Contrarily, our approach focuses on applications writ-
ten in general purpose languages.

While our tool chain is implemented as an extension to
LLVM, it is closer to Pluto[11], a source-to-source polyhedral
translator. With Pluto, code regions enclosed by directives
are transformed for blocking, including temporal blocking.
Our tool chain has more flexibility in tuning, since it al-
lows to configure different parameters for code regions. The

LLVM-HPC’17, November 12–17, 2017, Denver, CO, USA Shota Kuroda, Toshio Endo, and Satoshi Matsuoka

SandyBridge

KNL

Figure 15: Impacts of block sizes to 1D3P TB-auto-2
performance (nx=16777216,nt=2048)

reason we have not used Pluto as basis is that we observed
difficulty in transform of pseudo multiple dimensional arrays
as in Figure 6.

8 CONCLUSION

We proposed a compiler tool chain that automatically ap-
plies temporal blocking to existing stencil codes written in
C/C++. By providing directive based syntaxes, it allows
flexible (auto) tuning of blocking sizes and shapes, on ex-
isting codes, not proprietary DSLs. The tool chain is im-
plemented as an extension to the LLVM compiler frame-
work. Through performance evaluation of generated codes,
we demonstrated that they achieve comparable performance
with manually optimized codes on a Sandy Bridge machine
and a Knights Landing machine. We have also observed
that programming fashions that frequently appear in sten-
cil programming prohibit loop transformation, and we have
discussed further transformation methodologies to rewrite
codes to enable TB transformation automatically.

As future work, we are going to support the abovemen-
tioned code modifications, by providing middle-end passes
for those modifications. More important direction is to ap-
ply our approach to real-world stencil applications. They

SandyBridge

KNL

Figure 16: Performance comparison of 1D3P imple-
mentations (nx=16,777,216,nt=2048)

may include complex loop structures spanning across multi-
ple functions or source files, complex data structures, where
arrays to be updated are embedded in deep structures, and
so on. We will improve and demonstrate the applicability of
the tool chain by investigating code patterns in such applica-
tions that prohibits transformation by polyhedral compilers.

ACKNOWLEDGMENTS

This research is supported by JST-CREST, ”Software Tech-
nology that Deals with Deeper Memory Hierarchy in Post-
petascale Era” and JST-CREST, ”EBD: Extreme Big Data
- Convergence of Big Data and HPC for Yottabyte Process-
ing”.

REFERENCES
[1] M. E. Wolf and M. S. Lam: A Data Locality Optimizing Algo-

rithm. ACM PLDI 91, pp. 30–44 (1991).
[2] M. Wittmann, G. Hager, and G. Wellein: Multicore-aware par-

allel temporal blocking of stencil codes for shared and dis-
tributed memory. Workshop on Large-Scale Parallel Processing
(LSPP10), in conjunction with IEEE IPDPS2010, 7pages (2010).

[3] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey: 3.5-D
blocking optimization for stencil computations on modern CPUs
and GPUs. IEEE/ACM SC’10, 13 pages (2010).

[4] T. Malas, G. Hager, H. Ltaief, H. Stengel, G. Wellein, and D.
Keyes: Multicore-optimized wavefront diamond blocking for op-
timizing stencil updates, SIAM Journal on Scientific Computing,
37 (4), C439-C464 (2015).

[5] L. Mattes, S. Kofuji: Overcoming the GPU memory limitation
on FDTD through the use of overlapping subgrids. Interna-
tional Conference on Microwave and Millimeter Wave Technology
(ICMMT), pp.1536–1539 (2010).

[6] G. Jin, T. Endo, S. Matsuoka: A Parallel Optimization Method
for Stencil Computation on the Domain that is Bigger than

Applying Temporal Blocking with a Directive-based Approach LLVM-HPC’17, November 12–17, 2017, Denver, CO, USA

SandyBridge

KNL

Figure 17: Performance comparison of 2D5P imple-
mentations (nx=4096, ny=4096, nt=2048)

Memory Capacity of GPUs. IEEE Cluster Computing (CLUS-
TER2013), 8 pages (2013).

[7] Hiroko Midorikawa, Hideyuki Tan: Evaluation of Flash-based
Out-of-core Stencil Computation Algorithms for SSD-Equipped
Clusters, The 22nd IEEE International Conference on Parallel
and Distributed Systems (ICPADS2016), pp.1031-1040 (2016).

[8] T. Tang, R. Chowdhury, B. C. Kuszmaul, C. Luk, C. E. Leis-
erson: The pochoir stencil compiler, Proceedings of the twenty-
third annual ACM symposium on Parallelism in algorithms and
architectures, pp.117-128 (2011).

[9] N. Maruyama, T. Nomura, K. Sato, S. Matsuoka: Physis: an im-
plicitly parallel programming model for stencil computations on
large-scale GPU-accelerated supercomputers, IEEE/ACM SC’11,
12pages (2011).

[10] T. Muranushi, H. Hotta, J. Makino, S. Nishizawa, H. Tomita,
K. Nitadori, M. Iwasawa, N. Hosono, Y. Maruyama, H. Inoue,
H. Yashiro, Y. Nakamura: Simulations of Below-Ground Dynam-
ics of Fungi: 1.184 Pflops Attained by Automated Generation
and Autotuning of Temporal Blocking Codes, IEEE/ACM SC’16,
11pages (2016).

[11] U. Bondhugula, A. Hartono, J. Ramanujam, P. Sadayappan:
PLuTo: A practical and fully automatic polyhedral program op-
timization system, Proceedings of the ACM SIGPLAN 2008 Con-
ference on Programming Language Design and Implementation
(PLDI 08), pp.101-113 (2008).

[12] T. Grosser, A. Groesslinger, C. Lengauer: Polly - Performing
polyhedral optimizations on a low-level intermediate represen-
tation, Parallel Processing Letters, 22 (04), (2012).

[13] C. Lattner and V. Adve: LLVM: A compilation framework for
lifelong program analysis and transformation. IEEE/ACM Inter-
national Symposium on Code Generation and Optimization, p.75
(2004).

[14] C. Lattner: LLVM and Clang: Next generation compiler technol-
ogy, The BSD Conference (2008).

[15] S. Verdoolaege: isl: An Integer Set Library for the Polyhedral
Model, In Mathematical Software - ICMS 2010, LNCS Vol. 6327,
pp.299-302 (2010).

