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ABSTRACT

This thesis describes implementation of a memory management module on shared
memory multiprocessors. The focus is to achieve scalability; for this purpose, both
garbage collector (GC) and memory allocator are parallelized. Scalability of mem-
ory management module is important, especially for programs that aggressively
allocate memory objects. This thesis presents optimization techniques that make
memory management scalable, and evaluates their e�ects through experimenta-
tion. Performance evaluation is done on Sun Ultra Enterprise 10000 (symmetric
multiprocessor) and Origin 2000 (distributed shared memory machine). To ob-
tain scalability, eliminating mutual exclusion alone is insu�cient; module should
be aware of memory architecture of each machine. The goal is to obtain optimal
performance on each machine, by using techniques that are suitable for each archi-
tecture. This thesis evaluates the e�ects of optimizations through experiments on
real machines. Moreover, it evaluates them on a performance prediction model of
parallel GC that this thesis presents. As for memory allocator, this thesis discuss
proposed optimizations of allocator from several viewpoints: the speed of allocator
itself, memory utilization, and e�ects on performance of user programs.

Memory allocator should consider both time e�ciency and space e�ciency,
however, there is a trade-o� between them. If only allocation speed is the issue,
a simple allocation strategy that divides the heap and gives a sub-heap for each
processor would work. This strategy requires no mutual exclusion in allocation,
while it makes space e�ciency worse. This thesis discusses the strategies that ful�ll
both parallelism of allocation and memory utilization. Not only the performance of
allocator itself, allocation strategy has impact on the performance of user programs.
For example, an allocation strategy that achieves good space e�ciency may degrade
locality and increase false sharing of user programs and degrade their performance.
It is important to take performance of user programs into account when the trade-
o� is discussed. Memory allocator that achieves good space and time e�ciency is
implemented and its performance is evaluated through experimentation.

Implemented GC is a parallel mark sweep GC, on which all threads coopera-
tively performs GC task. One of optimizations is the fair placement of mark bit
among memory nodes. On DSM, memory access congestion from several proces-
sors to a memory node heavily raises access cost. This optimization is proposed in
order to alleviate access contention cost, and it is con�rmed to be e�ective through
experiments on DSM machines. However, even if an optimization is e�ective on
some machines, it may be ine�ective on other machines, which have di�erent mem-
ory latency and occupancy time. To discuss performance portability, it is required
to understand quantitatively the relation between the performance of parallel GC
and memory architecture. This thesis presents a performance prediction model
of parallel GC. This model takes the heap snapshot and architecture parameters
as input, and shows predicted GC time. the model obtains the amount of live
objects, critical path length of object graph, and the predicted number of cache
misses. On the other hand, architecture parameters that the model utilizes include
not only memory latency, memory node occupancy time of access requests to take
access contention into account. This thesis evaluates the validity of the model by
comparing the predicted performance and the real performance obtained through
experiments on parallel machines. It turned out that without taking contention
costs into account, the model can never give a reasonable prediction. By using the
presented model, this thesis estimates e�ects of optimizations on various architec-
tures. Moreover, it will enable automatic adaption of parallelism and task steal
strategy that use results of the model.



論文要旨

本論文は共有メモリ並列計算機のためのメモリ管理モジュールの実装について述べる。
このモジュールはメモリ確保ルーチンとガーベージコレクタ (GC)のそれぞれを並列化
したものであり、スケーラビリティに焦点をおく。メモリ管理モジュールのスケーラビ
リティは、特にメモリ確保を頻繁に行なうプログラムにおいて重要である。本論文はメ
モリ管理モジュールをスケーラブルにする技法を提案し、実験により効果を評価する。
実験には対象型共有メモリ並列計算機 (SMP) Sun Ultra Enterprise 10000と、分散共
有メモリ並列計算機 (DSM) SGI Origin 2000を用いる。スケーラビリティを達成する
ためには、排他制御によるボトルネックを削減するだけでなく、計算機のメモリアーキ
テクチャの差異を考慮することが必要不可欠である。アーキテクチャに適応した技法を
採用することにより、それぞれのマシン上で最適な性能を得ることを目的とする。GC
の最適化技法の効果を実験により評価するだけでなく、並列GCの性能予測モデルを提
案し、そのモデルを通した議論も行なう。メモリ確保ルーチンの最適化技法の効果につ
いて、確保ルーチン自身の速度、メモリ利用効率、ユーザプログラム性能への影響の観
点から議論する。
メモリ確保ルーチンの効率には時間的効率と空間的効率があり、これらはトレードオ

フになりやすい。メモリ確保の高速化のみを追求するのであれば、プロセッサ毎にヒー
プを分離させるのが良い。この場合確保時の排他制御は必要なく、完全に並列にメモ
リ確保することができる一方、メモリ使用量が増大してしまう。メモリ確保時の並列性
と、メモリ利用効率の両方を満たす方式を提案する。また、メモリ確保ルーチンの設計
はそれ自身だけでなくユーザプログラムの性能にも大きく影響する。例えば空間的効率
を追求した結果としてユーザプログラムの局所性が低下したり、 false sharingが増大し
てしまう場合が考えられる。このため、ユーザプログラムの性能も考慮に入れ、トレー
ドオフについて議論する。両方の効率が良好なメモリ確保ルーチンを実装し、実験によ
り性能評価を行なう。
実装したGCは並列マークスイープGCであり、全スレッドが協調して処理を行な

う。この並列GCの最適化の一つとして、DSM上のマークビットのメモリノード間平
均化を提案した。 DSMにおいては多数のプロセッサから特定メモリノードへアクセス
が集中するとアクセスコストが非常に高くなる。アクセス集中を低減するためにこの最
適化を提案し、実計算機上の実験により効果があることを確認した。しかし、提案した
最適化が特定の計算機で効果があったとしても、レイテンシやメモリ占有時間の異なる
別の計算機で効果があることは保証されない。この問題を解決するには、並列GCの性
能とメモリアーキテクチャの関係を定量的に理解することが必要である。このために、
GC性能の予測モデルを構築した。このモデルはヒープ状態とアーキテクチャパラメー
タを入力とし、予測GC時間を出力する。ヒープ状態から、生きたオブジェクトの総
量、オブジェクトグラフの並列度、キャッシュミス数を得る。一方、アーキテクチャの
性質を捉えるために、メモリアクセスのレイテンシだけでなくアクセス要求の衝突も考
慮する。本モデルの正当性を、予測結果と並列計算機上の実験による実測結果を比較す
ることにより示す。衝突コストを入れないモデルによる結果との比較により、正確な予
測を行なうには衝突コストを考慮することが必須であることが分かった。この手法の応
用には、GCの並列度の調整や仕事移動アルゴリズムの変更などの適応的アルゴリズム
が考えられる。
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Chapter 1

Introduction

Shared memory architecture is attractive platform for implementation of

general-purpose parallel programming languages that support irregular, pointer-

based data structures [15, 48, 6]. The recent progress in scalable network

technologies has realized large scale shared memory multiprocessors. As

machines get larger, it becomes more di�cult for programmers to obtain

su�cient performance of parallel application programs, especially, irregu-

larly structured programs. Those application programs are divided into two

groups:

scienti�c applications First, most of symbolic computation programs

such as language processing application and searching algorithm heav-

ily use irregular data structure to solve irregular problems. Besides,

some numerical application such as simulation programs have irregu-

lar structures. For example, those programs may use tree data struc-

ture or sparse matrix structure as results of optimization to reduce

redundant computation. Since recent parallel computers have com-

plex memory hierarchy, processor architecture, and network structure,

predicting application behavior has been more di�cult. Thus even for

programs that have regular problem structures, their performance may

be degraded without dynamic task stealing or dynamic data structure

creation, because processors are not always well-behaved.

network server applications Recent the world-wide expansion of In-

ternet has made network server applications more important. Espe-

cially, HTTP servers, which may be accessed by a great number of peo-
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ple are responsible to create dynamic contents fast. Therefore many

contents providers have adopted parallel machines, such as shared

memory multiprocessors and workstation/SMP clusters. Those ap-

plications heavily use dynamic data objects on memory, in addition

to hard disks and network. For example, HTTP servers perform mas-

sive calculation of string objects to create HTML contents. To achieve

high throughput, creating contents must be done in highly scalable

method.

In many application programs with irregular structures, we cannot tell

the memory usage beforehand, and programs need to extend their working

set dynamically. Thus one of the key factors that determines the perfor-

mance of irregular application programs is dynamic memory management.

When the application program requires a memory object, it requests desir-

able size to dynamic memory management module. The memory manage-

ment module allocates a memory region of requested size from the pool of

free memory regions, originally obtained from OS.

The dynamic memory management module a�ects application perfor-

mance by two reasons. (1) The speed of memory management itself: The

frequency of allocation requests is sometimes very high; each application

thread may request an object every 10�s user computation [37]. In such

cases, allocation speed should be enough fast. Especially, if allocation task

is serialized, like standard libc malloc, application performance would be

heavily degraded. Not only allocation, an automatic memory reclamation

module, called garbage collection (GC) [16, 40, 52] also consumes a sub-

stantial time during application execution. For some programs, GC time

occupies more than 10% of overall execution time. (2) Memory locality of

application: As memory hierarchy of computer architecture becomes deep,

we cannot achieve good performance without accounting for memory local-

ity. Since memory management module determines the address of memory

objects that application programs access, the allocation policy a�ects ap-

plication performance. Especially, this is important on distributed shared

memory (DSM) machines, where memory access costs di�er with regard to

memory location among physical memory nodes.

This thesis describes the design and implementation of a scalable dy-

namic memory management module for large scale shared memory multi-

10



processors. The goal of this thesis is to improve application performance

by construction of high performance memory management module. The

module consists of two submodules:

� The scalable parallel allocator allows user threads to allocate objects in

parallel. Our allocator achieves scalability of allocation, good locality

of application, and high memory utilization. There is a tradeo� be-

tween locality and memory utilization. Our allocator struggles against

the tradeo� by using thread local heap and dynamic region stealing.

� The scalable parallel garbage collector automatically reclaims memory

objects unused by application. We have constructed two versions of

parallel collector: One is stop parallel garbage collector. When the al-

locator notices memory shortage, our garbage collector module stops

all threads and starts garbage collection (GC). To shorten applica-

tion pause time, several threads cooperatively performs GC task. The

key to achieve scalability is dynamic task stealing of GC. The other

is concurrent parallel garbage collector, where collector threads and

application threads run in parallel, and collection itself is done by

multiple threads.

This thesis describes how we achieve scalability on large scale machines

and machines with di�erent architectures, such as symmetric multiproces-

sors (SMP) and distributed shared memory (DSM) machines. The speci�c

contributions of this thesis is as follows:

� It proposes scalable allocation and garbage collection algorithm. It

speci�es bottlenecks that did not appear on smaller scale machines,

and proposes optimization to eliminate them. It also empirically eval-

uates e�ects of the optimization through experimentation on large

scale share memory machines and irregularly structured application

programs.

� It proposes and evaluates optimization techniques specialized to mem-

ory architecture of each parallel machine. For DSM, on which remote

memory access cost is large, our allocator gives local memory region

to the requester if possible.

11



� It proposes and evaluates new allocation algorithm that enables users

to control tradeo� between locality and memory utilization. Our mod-

ule gives a chance to users to customize memory management behavior.

� It describes and justi�es a performance prediction model of the parallel

garbage collector. The model takes a heap snapshot as input, and

outputs the predicted GC running time with any memory architectures

and any number of processors. Understanding GC's behavior enables

us to construct adaptive GC algorithm that customizes itself with

regard to heap snapshot and architecture. This thesis shows the results

of preliminary experimentation.

Our memory management module is independent from speci�c program-

ming language and does not require any support of compilers. Garbage col-

lection technique without compiler support has been proposed by Boehm et

al. [11] before. Our implementation is based on their implementation, and

adopts BIBOP allocator and mark-sweep collector as theirs does. We have

not integrated yet our technique into other settings, such as copying collec-

tor, because garbage collectors that move memory objects after allocation

require tight support from compilers. We believe, however, the technique

that this thesis proposes is applicable to those environments.

1.1 Evaluation Settings

This thesis evaluates our memory management module on shared memory

multiprocessors Sun Ultra Enterprise 10000 [12] and SGI Origin 2000 [38].

Ultra Enterprise 10000 Ultra Enterprise 10000 is a symmetric mul-

tiprocessor (SMP) with sixty-four 250 MHz Ultra SPARC processors.

All processors and memories are connected through a crossbar inter-

connect whose total bandwidth is 10.7 GB/s. The system has sixteen

memory modules, and latency between any processor and any memory

module is uniform; the latency of read access is about 560 ns. Mem-

ory regions are automatically located fairly among all memory modules

in round-robin fashion. Thus impact of memory access contention is

much smaller than Origin 2000.
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Origin 2000 Origin 2000 is a distributed shared memory machine

(DSM). The machine we used in the experiment has eighty 195 MHz

R10000 processors. That system consists of forty modules, each of

which has two processors and the memory module. The modules are

connected through a hypercube interconnect whose bandwidth is 2.5

GB/s. The memory bandwidth of each module is 0.78 GB/s. Remote

memory access latency is about 2{4 times larger than local access la-

tency. The local latency of read access is about 270 ns, if no access

contention occurs. In the default con�guration, each page (whose size

is 16 KB) is placed on one of physical memory node in `�rst touch'

rule; when a processor P accesses a page out of physical memory and

raises swap-in, OS places the page on the memory node that is local

to P . The bene�t of �rst touch rule is that each processor can usually

use fast local memory. On the other hand, if many objects that are

shared among several processors live in a single memory node, memory

access contention may cause a performance problem.

In order to evaluate how memory management module a�ects applica-

tion performance, we have written some parallel benchmark applications

in C++. CKY and Cube are parallelized by using StackThreads/MP [49],

a �ne grained thread library. Matmul and BH is written with low level

thread libraries (Solaris threads on Enterprise 10000, and sproc systemcall

on Origin 2000). We describe their characteristic that are relevant to this

thesis.

Matmul Matmul is a simple program that computes product of dense

matrices. In the experimentation, it multiplies two N � N matrices

several times. Each row of matrices are allocated by threads in round-

robin fashion (See Figure 1.1). To evaluate e�ects of allocator clearly,

this program reallocate matrix rows before each multiplication. The

allocation rate of Matmul is smallest among all benchmarks. Its per-

formance is hardly a�ected by allocation speed itself; placement of

allocated objects is more important on DSM.

BH BH solves N-body problem using the Barnes-Hut algorithm [4].

Each simulation step consists of two phase: in tree construction phase,

13



BH makes a tree whose leaves correspond to particles (See Figure 1.2).

In calculation phase, it calculates the acceleration, speed, and location

of the particles by using the tree. Memory objects are allocated only

in the �rst phase.

We have implemented two versions of BH.

BH-st (sequential tree construction) : Only calculation phase is

parallelized, and tree construction phase is sequential. Because

calculation phase dominates the total runtime of BH application,

this implementation is proper at earlier phase in developing appli-

cation. However, only a single thread performs tree construction,

the placement of memory objects is imbalanced on DSM.

BH-pt (parallel tree construction) : Both phase is parallelized.

All threads allocate nodes and add them to a tree, thus the place-

ment of memory objects is almost balanced on DSM.

CKY CKY is a parser of context free grammars. It takes sentences

written in natural language and the syntax rules of that language as

input, and outputs all possible parse trees for each sentence. For each

input sentence, CKY constructs a single large matrix M (See Figure

1.3). M 's cell M [i; j] contains a list that consists of all nonterminal

symbols for substring from i th word to j th word. Threads calcu-

late lists for each cell in bottom-up, and �nally obtains top cell, that

corresponds to a list of parse trees for whole sentence.

Cube Cube searches an approximate solution of the Rubik's cube puz-

zle in breadth �rst fashion. Cube calculates all states within three

steps from the �rst state, and selects the best twenty states (See Fig-

ure 1.4). Cube repeats these processes �ve times. Because threads

allocate the state records in parallel, live objects are distributed in all

memory nodes on DSM.

1.2 Organization of Thesis

The rest of the thesis is organized as follows. Chapter 2 describes algorithm

of the scalable parallel allocator and its performance. Chapter 3 presents our
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Figure 1.1: Data structure of Matmul benchmark.

Particles

Figure 1.2: Data structure of BH benchmark.

Words

Not processed
yet

Already
processed

Figure 1.3: Data structure of CKY benchmark.
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stop parallel garbage collector, and shows its scalability. The performance

of parallel GC heavily depends on memory architecture. To understand

GC performance in detail, Chapter 4 gives a performance prediction model

of GC. Chapter 5 describes another version of GC; a concurrent parallel

garbage collector. Finally, we summarize the work and mention future work

in Chapter 6.
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Figure 1.4: Data structure of Cube benchmark.
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Chapter 2

Scalable Parallel Allocator

This chapter presents a parallel algorithm of a BIBOP memory allocator

on shared memory multiprocessor, named Locality-aware page shared(LPS).

The goal is scalability, locality, and high memory utilization. LPS algorithm

allows users to control the tradeo� between locality and memory utilization

on distributed shared memory (DSM) machines. The memory consumption

of LPS allocator is k times larger than that of the most economical method

(where k is a given constant). By using more memory, each thread can al-

locate local memory in a higher probability. To achieve this property, each

thread maintains free pages locally. By comparing the current memory con-

sumption and a threshold derived from k, each thread determines whether

it should obtain remote pages or consume new pages. The experimental

results on Origin 2000 DSM shows that users of LPS algorithm can control

the balance between locality and memory utilization by adjusting k. LPS

allocator is highly scalable because of thread local free list. It achieves 36

fold speedup with 64 threads.

2.1 Introduction

Parallel application programs that have irregular structure tend to allocate

memory objects very frequently. The performance of such programs is heav-

ily a�ected by the performance of memory allocator. However, many widely

used allocators, such as malloc function in libc library, are not parallelized.

While many OS vendors state that their libraries are `multi-threaded', many

of them do not assure that the libraries are parallelized. Actually, many allo-

cators that OS vendors provide are sequential; only one thread can allocate
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an object at a time. If several application threads call such allocators for

many times, the allocator would become bottleneck and limit the scalabil-

ity of application signi�cantly. Therefor, for memory-intensive programs,

we require parallel allocators, with which several threads allocate objects

simultaneously.

Not only allocation speed itself, allocators should take care of local-

ity. Locality is important especially on distributed shared memory (DSM)

machines such as Origin 2000 [38], where memory access cost depends on

memory location. Allocators should make an e�ort to give local memory

regions to requester thread, rather than remote memory regions. Because

allocated memory regions tend to be accessed by their requester thread,

better locality of allocation may be able to improve application speed 1. As

we will see below, however, when allocators focus on only locality, it may

consume much more memory regions than the application requires essen-

tially. If the memory consumption of allocators is not bound, it would cause

bad e�ects on other processes running on the machines; so we claim that

allocators should consider memory utilization.

This chapter proposes a parallel allocator algorithm. The goal of our

allocator is to achieve good scalability of allocation, good locality, and good

memory utilization. The key point to achieve these three condition is the

management policy of free regions. Generally, any memory allocators must

manage free memory regions to ful�ll allocation requests from application

threads. Many allocators, including ours, use data structures called free lists

to stock free regions.

Achieving scalability and locality is not a hard problem; using thread lo-

cal free lists would su�ce these two conditions. If allocator manages distinct

free lists for each application thread, the thread can obtain new memory re-

gions from its own free lists without any synchronization. Besides, we can

achieve good locality, by keeping free regions that are local to thread i in

thread i's free lists. However, this simple method can not achieve good

memory utilization; it may consume much memory regions for some pro-

grams. Consider a program where the timing of memory utilization among

1Of course, there is an exception; not all objects are accessed by their own requesters,
and some may be shared among several threads. If almost objects in the application are
shared, the e�orts of locality-aware allocators may be useless.
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threads di�er may cause problem, as shown in Figure 2.1 (B). In this pro-

gram, thread 1 uses memory regions of m bytes in some times, and thread

2 uses m bytes in other times. The total size of used memory regions at one

time is at most m bytes. For this program, simple allocators with thread

local free lists would consume m bytes for thread 1, and m bytes for thread

2. Thus the allocators totally consume 2m bytes for this program, though m

bytes would su�ce for program execution. Generally, in worst case, the sim-

ple allocators may consume P (the number of threads) times larger memory

regions than that program requires.

To achieve all of three conditions, this chapter proposes a new algorithm,

named Locality-aware page shared (LPS) algorithm. It is based on Big bag

of pages (BIBOP) allocator. It adopts thread level free lists for scalability

and locality. To limit memory consumption, it allows threads to steal free

regions from other threads' free lists. Moreover, LPS allocator allows users

to control a tradeo� between locality and memory utilization. Users have

only to set a constant variable named allowable consumption ratio k. LPS

allocator consumes up to k times larger memory regions than requisite, for

the purpose of better locality. If users focus on memory consumption rather

than locality, k should be set to a small number, such as 1:0. If users want

to improve locality, k should be set to a larger number.

Although we use garbage collection (GC) in the experimentation, the

discussion in this chapter can be applied for explicit memory release, such

as free function.

Section 2.2 describes our allocator algorithm, and Section 2.3 analyzes

the limitation of memory usage. Section 2.4 shows experimental results on

SGI Origin 2000 DSM. Section 2.5 mentions related work, and Section 2.6

summarizes this chapter.

2.2 Algorithm

The target programs of our parallel allocator are multi-threaded application

programs with kernel level threads, such as pthreads. We assume each

application thread is bound to distinct processor. Thus we will use the

words `thread' and `processor' similarly. All objects are included by the

single shared heap, and any thread can access any objects in the heap.
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Figure 2.1: Graphs show transition of memory usage by parallel application
with two threads. For program (A), both PS algorithm and AL algorithm
consume same amount of memory region. For program (B), AL method
may consume much more region than PS algorithm.
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The rest part of this section describes our parallel allocator algorithm.

Section 2.2.1 describes BIBOP allocator, which our allocator is based on.

Section 2.2.2 shows some assumption about underlying architecture. Section

2.2.3 explains naive allocator algorithms and their problems. Section 2.2.4

gives our new algorithm, named LPS.

2.2.1 BIBOP Allocator

The BIBOP allocator divides the heap into �xed sized pages, as shown

in Figure 2.2. In this thesis, we assume the BIBOP page size is equal to

OS page size, although this condition is not essential. Each page contains

objects of a particular size 2. The allocator manages two kinds of free lists:

free object lists and free page list. The former lists are for free regions that

are smaller than page size. The allocator maintains a set of free object lists;

each list contains objects of corresponding size. The free page list contains

pages that are completely free.

When an application thread requests a memory region, the allocator

provides a new region in the following algorithm. Here, we assume requested

size is smaller than page size.

1. Allocator examines the free object list for requested size. If the list

contains any free regions, the allocator returns one of them to the

requester thread. Otherwise, allocator goes to the next step.

2. Allocator examines the free page list. If allocator �nds any free pages,

it takes one of them. Then the allocator divides the page into small

regions of the requested size, and pushes them onto a free object list.

Then it returns one of the regions to the requester thread. If free page

list is empty and allocator fails, allocator goes to the next step.

3. Now the heap is exhausted. The allocator makes up free pages by

invoking garbage collection(GC), or requesting new pages from OS by

using systemcall such as mmap 3.

2In real implementation, objects of similar size may be placed into a single page by
rounding up the size.

3To reduce the number of invoking systemcall, the allocator requests several pages at
once, and pushes them into another list for fresh pages.
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Note that the allocation processes usually �nish in Step 1, because Step

2 (that is rarely invoked) �lls the free object list with many small regions.

The exception occurs because of large objects; when a thread requests a

larger region than page size, allocator skips Step 1 and examines free page

list �rst. In this chapter, we assume that application threads rarely request

such large objects.

When an allocated object is released by user (free()) or GC, the region

is pushed into free object list that corresponds to the size of the region.

If allocator �nds the page that contains freed region empty, the page is

returned to the free page list.

2.2.2 Assumption

Our parallel allocator works on any shared memory multiprocessors: SMP

(symmetric multiprocessor) and DSM (distributed shared memory). Our

locality-aware algorithm especially focuses on DSM machines, where locality

is more important. The DSM machine Origin 2000, on which we evaluate

our allocator, consists of several nodes, each of which has two processors

and physical memory node. Remote memory access latency is 2 � 4 times

slower than local access latency.

We make some assumptions about underlying architecture. First, we

assume that each page is placed on one of physical memory node in `�rst

touch' rule; when a processor P obtains a page from OS and raises swap-in,

OS places the page on the memory node that is local to P . Origin 2000

adopts the �rst touch rule.

Next, in the following discussion, we assume no swap-out and no page

migration occurs during application execution. Under this assumption, the

placement of each memory node is permanent.

2.2.3 Naive Parallel Algorithms and the Problem

By using two kinds of free lists, we can invent some simple parallel allocators

(see Figure 2.3) 4.

4We could adopt other approaches; for example, we can use both local free object lists
and shared free object lists, as Hoard allocator [5] does. The author plans to investigate
such approaches in future.

23



 

free
page list

free
object list

heap

Used memory

region

Free memory

region

Figure 2.2: Heap structure of BIBOP allocator. The heap consists of �xed-
sized pages. Each page includes objects of the same size. To keep track of
free regions, allocator uses free objects lists and free page list.
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� All-shared (AS) algorithm: All free lists are shared by all threads.

Actually, this is not a parallel allocator; the rest part of the thesis

ignores this approach.

� Page-shared (PS) algorithm: Each thread maintains free object lists

locally, while the free page list is shared.

� All-local (AL) algorithm: Each thread maintains all free lists locally.

AL algorithm is a good choice for scalability and locality. It is scalable

because allocation requests from several threads are processed independently

owing to thread local free lists. AL can achieve good locality, because free

regions are completely separated among threads and each memory region

is always reused by a single thread. However, it may not achieve good

memory utilization, as we have seen in Section 2.1. To suppress memory

consumption, threads should share free regions.

PS algorithm takes a middle position between AS and AL. It can achieve

scalability by using thread local free object list. The allocation process

usually �nishes in Step 1 described in Section 2.2.1, where synchronization

is not required. Besides, PS bounds memory consumption by sharing free

page list. However, it does not achieve good locality on DSM, because free

pages are reused by any threads. PS never accounts for the a�nity between

threads and memory regions.

Discussion about Locality

In spite of above description, PS algorithm achieves better locality than

AS (All-shared) algorithm. PS, AL (and LPS described below) algorithms

manage thread local free object lists. The main purpose is scalability; each

thread can usually allocate an object without synchronization. Moreover,

the local free object lists produce a secondary e�ect on locality. With thread

local lists, we can segregate objects allocated by di�erent threads into dif-

ferent pages. This can prevent unintended false sharing and reduce cache

invalidation. Not only DSM, SMP machines can gain this bene�t. This

is impossible with AS algorithm, where any threads obtain object from a

single set of free object lists.
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2.2.4 LPS Algorithm

This section describes Locality-aware Page-Shared (LPS) allocator algo-

rithm, which achieves scalability, locality, and good memory utilization. LPS

allows users to control the tradeo� between locality and memory utilization.

The upper bound of consumption by LPS algorithm is as k times as that by

PS algorithm, where k is allowable consumption ratio, which are speci�ed

by users. The range of k is 1 � k � P , where P is the number of threads.

In LPS algorithm, each thread maintains its own free object lists and

free page list, as in AL algorithm. Unlike AL algorithm, LPS allows threads

to steal free pages from other threads' free page lists.

Allocation process by thread i is as follows.

� 1. Allocator examines the free object list of thread i and tries to obtain

a free region. If it fails, allocator goes to the next step.

� 2-1. If allocator �nds a page in free page list of thread i, that page is

used for requested object. Otherwise, allocator goes to next step.

� 2-2. If function heap-expansion-allowed() described below returns `true',

allocator goes to Step 3 immediately. Otherwise, allocator goes to Step

2-3.

� 2-3. Allocator examines free page lists of all other threads in turn. If

allocator �nds an empty page in a list of any thread, allocator steals

the page from its owner thread and uses the page for the request.

Otherwise, allocator goes to Step 3.

� 3. Allocator invokes GC, or expands the heap by obtaining new pages

from OS.

In Step 2-2, we use a function named heap-expansion-allowed() to de-

termine whether the thread should steal free pages from others, or obtain

new pages. Intuitively, this function returns `true', if the current memory

consumption by allocator is less than a certain threshold. In this case, LPS

allocator consumes new pages and makes them local to the requester thread

i. If the function returns `false', It is more important to suppress consump-

tion than to improve locality.
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Before the de�nition of the function heap-expansion-allowed(), we de�ne

some variables: the amount of used pages u, the amount of living pages l, and

the amount of consumed pages a. Their values change as program execution

proceeds. We let u be the number of pages that contain objects allocated

by application program. Within u, we let ui be the number of pages whose

owner is thread ui (Thus u =
P

i ui). We let l be the number of pages

that contains objects that have survived the most recent GC. If application

program releases objects explicitly instead of GC, we simply let l be l = u.

We let a be the number of pages that allocator has obtained from OS since

program started. From their de�nition, a condition a � l � u holds. a

increases monotonously as program proceeds, because our allocator does

not return any pages to OS. While u and l is determined by application

program behavior 5, the consumption a is a�ected by both of u, l and

allocator algorithm. The goal of LPS allocator is to restrict growth of a.

Now we de�ne the function heap-expansion-allowed(). It returns `true',

when a < k(max l) and a <
P

i(maxui). Here (max l) and (maxui) are the

maximum number of l and ui since program has started.

Intuitively, (max l) is the approximation of the number of pages the

application program requires essentially. LPS algorithm aggressively obtain

new pages from OS, until the consumption reaches k(max l). When users

specify a larger number for k, LPS tries to achieve better locality, because

each thread has more chances to obtain new pages and localize them, rather

than to steal remote pages. When k = P , LPS behaves like AL algorithm.

As k is smaller, LPS consumes less memory regions. When k = 1, LPS

consumes as much regions as PS algorithm does. Notice that even if k = 1,

locality of LPS algorithm is better than PS algorithm, because each thread

examines its own free page list at �rst.

2.3 Analysis of Memory Consumption

This section analyzes the amount of consumed pages of each allocator algo-

rithm. In this discussion, we let aps; aal; alps be the consumption of PS, AL,

LPS algorithms, respectively. They are determined by algorithm itself and

the page usage by application program u; ui.

5To be exact, the timing of GC invocations a�ects u and l. This thesis ignores its
impact to make a discussion simpler.
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This section will show that conditions alps � kaps and alps � aal hold,

for any transition of u and ui.

To analyze consumption of PS algorithm, We let d be the number of

free pages in shared free page list. Those free pages are used for allocation

requests from any threads, therefore allocator obtains new pages from OS

(and aps increases) only if d = 0 and u = (maxu). Therefore the condition

aps = (maxu) holds at any time.

In AL algorithm, we let di be the number of free pages in thread i's free

page list. Since free pages does not migrate among threads in AL algorithm,

the memory consumption of each thread is determined independently from

other threads. Here we de�ne local consumption of thread i as aal;i = ui+di.

Thread i obtains new pages from OS whenever di = 0, thus aal;i = (max ui).

The total consumption is aal =
P

i aal;i =
P

i(maxui).

Now we analyze the consumption of LPS algorithm. The de�nition of di

is the same as in AL algorithm, and we let d be d =
P

i di.

First, we show that alps � kaps holds. When thread i tries to obtain a

free page and �nds its own free page list empty (di = 0), one of following

tasks is done.

1. If alps < k(max l), allocator obtains new page from OS. In this case,

alps increases.

2. If alps � k(max l) and d > 0, some other threads have free pages. In

this case, since allocator steals a free page from other threads, alps

does not change.

3. If alps � k(max l) and d = 0, no thread have any free pages. Allocator

obtains new page from OS e�ectively and alps increases. In this case

alps = (maxu) holds because d = 0.

The value alps increases in case (1) and (3), thus we can say alps < k(max l)

or alps = (maxu) at any time. From de�nition of l, l � u and k(max l) <

k(maxu) holds. And since k � 1, (maxu) � k(maxu) holds. Therefore

alps � k(max u) = kaps holds.

Secondly, alps � aal holds because of the function heap-expansion-allowed()

asserts alps <
P

i(maxui). From above discussion, the consumption of LPS

algorithm is bounded by alps � kaps and alps � aal. The consumption of
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LPS is same as that of PS when k = 1, and when k is large enough, it is

similar to that of AL.

2.4 Performance Evaluation

We have implemented PS, AL, LPS parallel allocation algorithms. This

chapter evaluates the performance of our parallel allocator through experi-

mentation on SGI Origin 2000 DSM.

First, we will show the peak throughput of allocation itself by using a

micro benchmark. Then we will show the performance of some applications

and compare the impact of allocator algorithms.

2.4.1 Scalability of Allocation

We have measured throughput of parallel allocation by using a simple paral-

lel benchmark that repeats allocation and release of objects for many times.

In this benchmark, each thread allocates 100,000 objects, each of which has

the size of 16 bytes, and releases all of them. We repeat the task 30 times,

and measure the execution time.

Figure 2.4 and Table 2.1 shows total throughput of allocation among

threads. The horizontal axis corresponds to the number of threads, and

the vertical axis is the number of total allocation operation per second.

The �gure and table show the performance of PS, AL, LPS algorithms. It

also includes the performance of libc malloc for comparison. We can see

while libc is faster than our allocators on serial execution, it cannot achieve

scalability at all. Throughput on parallel execution is lower than that on

serial execution. On the other hand, all of PS, AL, LPS can achieve high

scalability, owing to thread local free object lists. Within these allocators,

the performance of AL and LPS is better than PS. We consider this is due

to access contention to shared free page list. AL and LPS achieves similar

performance; 36-fold speed-up with 64 threads. PS achieves 21-fold speed-

up. We can see the allowable consumption ratio k does not visible e�ects

on the performance.
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2.4.2 Memory Consumption and Locality

This section shows that LPS algorithm enables users to control tradeo�

between locality and memory utilization. For this purpose, we use a bench-

marks where memory usage by each thread is unfair, like a program (B) in

Figure 2.1. In this benchmark, only one thread can allocate objects at one

time and after it releases those memory regions, another thread allocates

objects. The amount of memory region each thread allocates is about 5MB.

Figure 2.5 shows the memory consumption and the locality on this bench-

mark. The upper graph shows memory consumption of our allocators. The

vertical axis corresponds to amount of memory consumption; the product

of page-size and the number of consumed pages by allocator during whole

benchmark execution. With PS allocation algorithm, memory consumption

remains almost constant regardless of the number of threads. On the other

hand, AL algorithm consumes much more memory as threads increase; it

consumes about 5P MB, where P refers to the number of threads. The

graph shows LPS algorithm can control consumption by changing the al-

lowable consumption gap k. When k = 1, its consumption is similar to that

of PS algorithm, and as k gets larger, LPS consumes more memory regions.

The lower graph shows locality on the same benchmark. The vertical

axis shows remote page allocation ratio; which means the ratio that each

thread has obtained local free pages from free page list. In AL algorithm,

each thread always obtain local page; the ratio is zero. On the other hand,

in PS algorithm, the remote page allocation ratio is about 1 � 1=P . The

locality performance of LPS algorithm is between AL and PS. Even if k = 1,

LPS algorithm exhibits better locality than PS, because of local free page

list per thread.

2.4.3 Performance of Application Programs

This section evaluates e�ects of allocator on application performance. We

use three application programs matmul, BH-pt, and CKY, which we have

described in Section 1.1.

Table 2.2 shows the behavior of applications, such as the amount of

memory objects allocated, and allocation speed (the number of allocation

requests per second). The table describes execution with 64 application
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Figure 2.5: Memory consumption and remote page allocation ratio on unfair
benchmark.
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threads and LPS (k = 1) allocator. Except for execution time, it shows

total numbers among all threads.

Matmul (matrix multiply): In the experiment in this section, Mat-

mul multiplies two 1000�1000 matrices 30 times. As Table 2.2 shows,

The allocation speed is much less than other benchmarks.

BH-pt (N-Body solver): In the experiment, we simulate 100,000 par-

ticles for 30 time steps. We use BH-pt version, where both tree con-

struction phase and force calculation phase are done in parallel.

CKY (CFG parser): In the experiment, we parse 200 sentences, each

of which consists of 36 to 100 words. CKY's allocation speed (1.16 M)

is the highest among three benchmarks, though it is much less than

the peak throughput (26M) shown in previous section.

Figure 2.6{2.8 show the performance of three applications on Origin

2000. Each �gure contains graphs of memory consumption, remote page

allocation ratio, and application execution time. We have omitted garbage

collection time from execution time, while it includes memory allocation

time. The lower right graph shows the change of execution time compared

with that with LPS algorithm.

Figure 2.6 shows performance of matmul. Since all threads allocate same

amount of memory, the memory consumption is similar among allocator al-

gorithms. On the other hand, the choice among allocator algorithms a�ects

locality heavily. The remote page allocation ratio of LPS and AL is much

lower than LPS. With LPS (k = 1:5) and AL, the ratio is zero. The execu-

tion times with LPS and AL algorithms are 3{19 % faster than that with

LPS algorithm. The frequency of memory allocation of this application is

much lower than other applications, and execution time are dominated by

computation time. Therefore we consider this speed-up is due to improve-

ment of locality. With LPS or AL allocator, each thread has more chance

to access local memory than with PS allocator.

Figure 2.7 shows performance of BH-pt. AL algorithm tends to consume

more memory regions than PS algorithm. Currently the reason why LPS

sometimes more memory than AL, or less memory than PS is not clear.

While AL and LPS achieves good locality, the e�ect on overall performance
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# of threads 1 8 16 24 32 48 64

PS 0.70 4.88 8.96 12.47 14.95 15.42 14.93
LPS(k=1) 0.69 5.01 9.16 12.94 15.66 21.08 25.68
LPS(k=1.5) 0.69 4.99 9.13 12.73 15.78 20.82 26.06

AL 0.70 5.05 8.90 12.09 15.88 21.33 25.40
libc 0.98 0.16 0.10 0.07 0.07 0.10 0.05

Table 2.1: Memory allocation throughput. The number of malloc
(�1; 000; 000) per second by all threads is shown.

Benchmark Total memory # of Exec. Allocation
allocated (MB) allocation time (sec) speed (per sec)

Matmul 496.2 65.1K 25.7 2.54 K
BH-pt 2223 28.6M 174.6 164 K
CKY 1203 79.2M 68.5 1.16 M

Table 2.2: The amount of memory objects allocated, execution time without
GC time, and allocation speed of applications. This table shows statistics
on Origin 2000 with 64 threads. LPS (k = 1) allocator is used. Except for
execution time, the total numbers among all threads are shown.
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is less than matmul application. With LPS (k = 1:5) algorithm, the execu-

tion time is 2 % faster than that with PS with 64 threads. With AL, the

improvement is about 4%.

Figure 2.8 shows performance of CKY. This application involves less

parallelism than other applications, and we cannot achieve speed-up with

more than 16 threads. In CKY, memory consumption is signi�cantly af-

fected by the choice of allocator algorithms. AL algorithm consumes three

times larger memory region than PS algorithm. The remote page allocation

ratio with AL and LPS is much lower than that with PS. The improvement

of overall performance with AL or LPS is 2{5 %. LPS algorithm can achieve

similar execution speed as AL, while LPS consumes much less memory than

AL.

2.5 Related Work

Because many standard memory allocator such as libc malloc is not paral-

lelized, it is not easy to achieve good scalability for memory intensive ap-

plication. Many parallel programmer have constructed their own memory

management routine for better performance. For example, Apache multi-

threaded HTTP server [27] adopts custom-made region allocator. This ap-

proach is a heavy burden to programmers.

We believe desirable approach is adopting the general purpose parallel

allocator. Some researchers have designed and implemented parallel alloca-

tor.

The parallel allocator by Larson et al. [37] maintains several partial

heaps to reduce contention to shared resources. Empty regions larger than

page size are reused by any threads.

In the parallel BIBOP allocator by Boehm [8], each thread maintains a

part of free objects and other resources are shared. The focus of the parallel

BIBOP allocator by Berger et al.

[5] is achieving scalability and memory utilization, and their allocator

maintains both thread local heaps and shared heap. Unlike our allocator,

threads share non-empty pages in addition to empty pages, therefore its

memory consumption is lower than that of our allocator. On the other

hand, application may su�er from false sharing. However, they claim that
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Figure 2.6: Performance of matmul application on Origin 2000.
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Figure 2.7: Performance of BH-pt application on Origin 2000.
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Figure 2.8: Performance of CKY application on Origin 2000.

38



the e�ect of false sharing is very small. They have also shown the upper

bound of memory consumption analytically.

All parallel allocators focus on scalability of allocation task, however,

to my knowledge, they does not mention locality on DSM machines. The

parallel allocator this chapter proposed accounts for scalability, memory

utilization, and locality.

2.6 Summary

This chapter has proposed a parallel extension to BIBOP allocator for

shared memory multiprocessor, named Locality-aware-page-shared(LPS) al-

gorithm. The goal is to achieve scalability, locality on DSM machines, and

high memory utilization. There is tradeo� between locality and memory

utilization. LPS algorithm enables users to control the tradeo� by simply

changing a constant variable named allowable consumption ratio k. LPS

algorithm guarantees the upper bound of its memory consumption is as k

times as that of the most economical allocator. As the allocator consumes

more memory, application locality is improved.

Through experiments on large scale multiprocessor, SGI Origin 2000, we

evaluated the performance of our allocator. We found our allocator is highly

scalable; the speed-up of allocation task is 36-fold with 64 threads. With

our LPS allocator, application execution time is improved by good locality

and fast allocation; application gets 2{19% faster than the economical (PS)

allocator.

Future work concerned with this chapter includes investigation of the re-

lation between GC invocation timing and memory consumption. We require

more research on bound of locality, and automatic regulation of allowable

consumption ratio.
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Chapter 3

Scalable Parallel Garbage

Collector

This chapter describes an implementation of a mark-sweep garbage collector

(GC) for shared-memory machines and reports its performance results. It is

a simple `parallel' collector in which all processors cooperatively traverse ob-

jects in the global shared heap. The collector stops the application program

during collection phase. Implementation is based on the Boehm-Demers-

Weiser conservative GC library (Boehm GC). Experiments have been con-

ducted on two systems. One is Ultra Enterprise 10000, a symmetric shared-

memory machine with 64 Ultra SPARC processors, and the other is Origin

2000, a distributed shared memory machine with 80 R10000 processors. The

application programs used for our experiments are BH (an N-body problem

solver with Barnes-Hut algorithm), CKY (a context free grammar parser)

and Cube (a Rubik's cube puzzle solver).

On both systems, load balancing is a key to achieving scalability; a naive

collector without load redistribution hardly exhibits speed-up. Performance

can be improved by dynamic load balancing, which moves objects to be

scanned across processors, but we still observe several performance limiting

factors, some of which reveal only when the number of processors is large.

On Enterprise 10000, the straightforward implementation achieves at

most 12-fold speed-up. There are several reasons for this. The �rst one is

that large objects became a source of load imbalance, because the unit of

load redistribution was a single object. Performance is improved by split-

ting a large object into small pieces before pushing it onto the mark stack.
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Secondly, the marking speed drops as the number of processors increases, be-

cause of serializing method for termination detection using a shared counter.

By employing non-serializing method using local 
ags, the idle time is elim-

inated. Thirdly, processors were sometimes blocked long to acquire locks on

mark bits in BH application. The useless lock acquisitions are eliminated

by using optimistic synchronization. With all these careful implementation,

we achieved 14 to 28-fold speed-up on 64 processors.

Physical memory allocation policy has a signi�cant e�ect on Origin 2000,

a CC-NUMA architecture. With the default policy that allocates a physical

page to the node that �rst touches that page, the performance does not

improve on more than eight processors. By distributing memory regions in

the round robin policy, we achieved 3.7 to 6.3-fold speed-up on 16 processors.

3.1 Introduction

One of the important issues not yet addressed in the implementation of

general-purpose parallel programming languages is scalable garbage collec-

tion (GC) technique for shared-heaps. Most previous work on GC for shared-

memory machines is concurrent GC [20, 32, 43], by which we mean that the

collector on a dedicated processor runs concurrently with application pro-

grams, but does not perform collection itself in parallel. The focus has been

on shortening pause time of applications by overlapping the collection and

the applications on di�erent processors. Having a large number of proces-

sors, however, such collectors may not be able to catch up allocation speed

of applications. To achieve scalability, we should parallelize collection itself.

This chapter describes the implementation of a stop parallel mark-sweep

GC on a large-scale (up to 64 processors), multiprogrammed shared-memory

multiprocessor and presents the results of empirical studies of its perfor-

mance. The algorithm is, at least conceptually, very simple; when an allo-

cation requests a collection, the application program is stopped and all the

processors are dedicated to collection. Despite its simplicity, achieving scal-

ability turned out to be a very challenging task. In the empirical study, we

found a number of factors that severely limit the scalability, some of which

appear only when the number of processors becomes large. We show how to

eliminate these factors and demonstrate the speed-up of the collection. At
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present, we achieved approximately 28-fold speed-up on 64 processors.

We implemented the collector by extending the Boehm-Demers-Weiser

conservative garbage collection library (Boehm GC [10, 11]) on Ultra Enter-

prise 10000 SMP and SGI Origin 2000 DSM. The heart of the extension is

dynamic task redistribution through exchanging contents of the mark stack

(i.e., data that are live but yet to be examined by the collector).

The rest of the chapter is organized as follows. Section 3.2 compares our

approach with previous work. Section 3.3 brie
y summarizes the memory

management method. Section 3.4 describes our parallel marking algorithm

and solutions for performance limiting factors. Section 3.5 shows experi-

mental results, and we conclude in Section 3.6.

3.2 Previous Work

Most previous published work on GCs for shared-memory machines has

dealt with concurrent GC [20, 32, 43], in which only one thread performs a

collection at a time. The focus of such work is not on the scalability on large-

scale or medium-scale shared-memory machines but on shortening pause

time by overlapping GC and the application by utilizing multiprocessors.

When GC itself is not parallelized, the collector may fail to �nish a single

collection cycle before the application exhausts the heap (Figure 3.1). This

will occur on large-scale machines, where the amount of live data will be

large and the (cumulative) speed of allocation will be correspondingly high.

We are therefore much more interested in \parallel" garbage collectors, in

which a single collection is performed cooperatively by several threads. Sev-

eral systems use this type of collectors [30, 41] and we believe there are many

unpublished work too, but there are relatively few published performance

results. Previous publications have reported only preliminary measurements

or have examined scalability only by simulation.

Ichiyoshi and Morita proposed a parallel copying GC for a shared heap

[34]. It assumes that the heap is divided into several local heaps and a single

shared heap. Data move from a local heap to the shared heap, maintaining

the invariant that there are no pointers from the shared heap to a local

heap. Each thread collects its local heap individually. Collection on the

shared-heap is done cooperatively but asynchronously. During a collection,
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The time when memory
region can be reused GC

Time Time

Application

PEs

Our approachConcurrent GC

Figure 3.1: Di�erence between concurrent GC and our approach. If only
one dedicated thread performs GC, a collection cycle becomes longer in
proportion to the number of threads.
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live data in the shared-heap (called `from-space' of the collection) are copied

to another space called `to-space'. Each thread, on its own initiative, copies

data that is reachable from its local heap to to-space. Once a thread has

copied data reachable from its local heap, it can resume application on that

processor, which moves data in its local heap to the new shared-heap (i.e.,

to-space).

In this chapter, we adopt \Stop-Parallel" approach, which is much sim-

pler than Ichiyoshi and Morita's collector; it simply synchronizes all threads

at a collection and all threads are dedicated to the collection until all reach-

able objects are marked. Although they have not mentioned explicitly, we

believe that a potential advantage of their method over ours is its lower

susceptibility to load imbalance of a collection. That is, the idle time that

would appear in our collector is e�ectively �lled by the application.

Our collector algorithm is most similar to Imai and Tick's parallel copy-

ing collector [35]. In their study, all threads perform copying tasks coop-

eratively and any memory object in one shared heap can be copied by any

processor. Their algorithm is a parallel extension to Cheney's breadth �rst

copying algorithm [13]. Dynamic load balancing is achieved by exchanging

memory pages to be scanned in the to-space among processors. Speed-up is

calculated by a simulation that assumes processors become idle only because

of load imbalance|the simulation overlooks other sources of performance

degrading factors such as lock acquisition, and memory access costs. As we

will show in Section 3.5, such factors become quite signi�cant, especially in

large-scale and multiprogrammed environments.

The collector algorithm described in this chapter is an improved version

of the algorithm that the author and colleagues have constructed before

[22]. After that, some researchers have adopted Stop-Parallel GC approach.

Recent version of the conservative GC library by Boehm (version 6.0 and

later [8]) supports parallel allocation and GC. However, their focus seems

to be compatibility with previous version; its scalability is not su�cient on

large scale machines.

Flood et al. proposed two parallel GC algorithm for multi-threaded Java

virtual machine: a parallel copying algorithm and a parallel mark-compact

algorithm. In both algorithm, each thread maintains its own task pool

and performs dynamic load balancing via the pools. Their load balancing
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method is based on a lock-free work stealing algorithm by Arora et al [3] 1.

They have shown parallel copying algorithm achieves 4{5.5 fold speed-up on

8-processor Enterprise 3500, and parallel mark-compact yields 2.2{5.5 fold

speed-up. They use a status bitmap for termination detection that contains

all threads' status. When a certain thread becomes idle, it changes its

corresponding bit. However, as we will describe in Section 3.5, termination

detection method that uses a shared word sometimes causes bottleneck on

larger machines.

3.3 Overview of Parallel GC

Our stop-parallel GC implementation is based on the Boehm-Demers-Weiser

conservative GC library (Boehm GC), which is a mark-sweep GC library for

C and C++. Although some aspects described in this section come from

Boehm GC, their implementation that we utilized is not parallelized 2. The

interface to applications is very simple; it simply replaces calls to malloc

with calls to GC malloc. The collector automatically reclaims memory no

longer used by the application. Because of the lack of precise knowledge

about types of words in memory, a conservative GC is necessarily a mark-

sweep collector, which does not move data.

Our collector supports parallel programs that consist of several kernel

level threads, such as pthreads or Solaris threads. Although our collector

does not limit the number of threads, we can obtain the best performance

when each application thread is bound to distinct processor.

The memory allocation module adopts Big-Bag-of-Pages (BIBOP) method

as described in Chapter 2. It manages a heap in units of pages with �xed

size, and objects in a single page must have the same size. Free regions in

the heap are maintained by two level free lists: free object lists and free page

list. To support parallel allocation, the free lists are thread local. When an

application thread requests a memory region, the allocator examines the free

lists. If it fails, it tries to expand the heap, or start garbage collection.

When GC is invoked, all application threads are suspended by send-

ing signals to them. When all the signals have been delivered, every thread

starts GC task. To be exact, our collector adopts mark-lazy-sweep algorithm

1We currently plan to integrate this algorithm into our implementation
2Recent version of Boehm GC supports parallel allocation and GC.
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rather than naive mark-sweep algorithm; threads perform mark phase while

the world is stopped, and then restarts the world immediately after the

mark phase. Sweep phase, in which unmarked memory objects are pushed

onto free lists, is done lazily and incrementally as application program pro-

ceeds and requests more memory objects. To support lazy sweep phase, all

contents of mark bits must be preserved until sweeping is done 3.

3.4 Parallel Marking Algorithm

When GC is invoked, several threads starts mark phase. All objects that are

reachable from root sets (registers, execution stacks, and global variables)

are marked recursively. This section describes parallel algorithm of mark

phase. First, it describes data structure, basic algorithm and load balancing.

And then we show some optimization to improve scalability.

3.4.1 Data Structure

mark bitmaps For each page, separate header record is allocated that

contains information about the page, such as the size of the objects

in it. Also kept in the header is a mark bitmap for the objects in the

page. A single bit is allocated for each word (32 bits in our experi-

mental environments). Put di�erently, each word in a mark bitmap

describes the states of 32 consecutive words in the corresponding page,

which may contain multiple small objects. Therefore, in parallel GC

algorithms, visiting and marking an object must explicitly be done

atomically. Otherwise, if two threads simultaneously mark objects

that share a common word in a mark bitmap, either of them may not

be marked properly.

A simple way to guarantee that a single object is marked only once

is to lock the corresponding mark bit (more precisely, the word that

contains the mark bit). However, this increases memory consumption

for lock objects. Thus instead of using locks, we adopt \test-and-

compare&swap" sequence; we �rst read the mark bit without lock

3Boehm GC supports lazy sweeping partially. While it reconstructs free object lists
lazily, it constructs the free page list eagerly while the world is stopped. We have found
the eager page level sweeping sometimes prolongs the pause time signi�cantly, and have
made sweep phase completely lazy.

46



and quit if the bit is already set. Otherwise, we calculate the new

bitmap for the word and swap the word in the original location and

the new bitmap, if the original location is the same as the originally

read bitmap. We retry if the location has been overwritten by another

thread. Almost all modern processors, such as Ultra-SPARC and Pen-

tium series support this atomic compare&swap instruction. Although

MIPS architecture support compare&swap, it can be replaced with a

load-linked/store-conditional pair.

Fortunately, this algorithm is a non-blocking algorithm [31, 45, 46],

and hence does not su�er from untimely preemption.

mark stack The collector maintains marking tasks to be performed

with an array called mark stack . It keeps track of objects that have

been marked but may directly point to an unmarked object. Each

entry is represented by two words:

� the beginning address of an object, and

� the size of the object.

Figure 3.2 shows the marking process in pseudo code; each iteration

pops an entry from the mark stack and scans the speci�ed object,

possibly pushing new entries onto the mark stack. A mark phase

�nishes when the mark stack becomes empty.

As the pseudo code shows, all threads involved in GC heavily access

the mark stack. Thus each thread should maintain its own mark stack,

rather than shared mark stack to avoid bottleneck. This decision arises

another problem: load imbalance. Below we describe the dynamic load

balancing algorithm to alleviate the problem.

3.4.2 Dynamic Load Balancing

In the parallel marking algorithm, each thread has its own local mark stack.

When GC starts and all application threads are suspends, each threads

starts marking from its local root, pushing objects onto its local mark stack.

When all reachable objects are marked, the mark phase is �nished.
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push all roots onto mark stack.

while (mark stack is not empty) f

fo, sg := pop(mark stack) ; object and its size

for (i = 0; i < s; i++) f

c := o[i]

if (c is not a pointer) do nothing

else f

addr := address that contains mark bit of c

mask := bitmask of mark bit of c

retry:

word := *addr

if ((word & mask) != 0) do nothing ; already marked

else f

new-word := word | mask

compare&swap(addr, word, new-word) ; atomic mark

if (failed) goto retry

push(fc, size of cg, mark stack)

g

g

g

g

Figure 3.2: The marking process with mark bitmap and mark stack. Mark-
ing is done atomically. The code relevant to dynamic load balancing is
omitted.
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Note that any application threads can not be resumed until all reachable

objects are marked. If some application threads are resumed while other

threads are still marking, the coherence problem occurs; some objects that

are reachable from roots may be kept unmarked in unfortunate cases, due

to unexpected object updates by application. To avoid the leak, we require

write barrier, which informs any object updates to GC, as incremental /

concurrent collectors do. In this chapter, we prohibit concurrent running of

application threads and marking threads. Instead, we focus on shortening

the stop-mark phase by dynamic load balancing.

As we will show in Section 3.5, without dynamic load balancing, the

parallel marking hardly results in any recognizable speed-up because of the

imbalance of marking tasks among threads. Load imbalance is signi�cant

when a large data structure is shared among threads through a small number

of externally visible objects. For example, a signi�cant imbalance is observed

when a large tree is shared among threads only through a root object. In

this case, once the root node of the tree is marked by one thread, so are

all the internal nodes (Figure 3.3). To improve marking performance, our

collector performs dynamic load balancing by exchanging entries stored in

mark stacks.

Our implementation of dynamic load balancing is based on Lazy Task

Creation method [42], which is a �ne grained thread scheduling method.

Usually each thread performs marking with its own mark stack; it pops a

task (reference to an object to be scanned) from the top of the stack, and

pushes its children onto the top of the stack if necessary. When a thread

�nds its stack empty, the thread becomes `thief' and tries to steal a task

from other mark stacks. When it founds a thread that holds tasks, the thief

moves a task at the bottom of victim's stack to its own stack, and resumes

marking.

Since several threads, including the owner and thieves access a mark

stack, we require mutual exclusion. Generally, a mark stack is accessed

most frequently by its owner, thus it is desirable that the owner can access

the stack without lock acquisition. For this purpose, each stack maintains a

pointer named watermark between top and bottom, as described in Figure

3.4. Tasks stored between top and watermark are `private' to the owner of

mark stack. The owner can pop private tasks freely. Tasks stored between
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Objects marked by PE2

Objects marked by PE1

PE1’s root PE2’s root

heap

Figure 3.3: In the simple algorithm, all nodes of a shared tree are marked
by one thread.
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watermark and bottom are `public' tasks, which thieves can steal. To arbi-

trate among thieves, lock acquisition is required. When owner thread �nds

either task group empty, it locks the stack and moves watermark. In current

implementation, watermark is moved to the center between top and bottom.

3.4.3 Performance Limiting Factors and Solutions

The basic marking algorithm described above exhibits acceptable speed-

up on small-scale systems (e.g., approximately fourfold speed-up on eight

processors). As we will see in Section 3.5, however, several factors severely

limit speed-up and this basic algorithm never yields good speed-up with

more than 32 processors. Below we list these factors and describe how did

we address them in turn.

Load imbalance by large objects: We often found that a large object

became a source of signi�cant load imbalance. Recall that the small-

est unit of task distribution is a single entry in a mark stack, which

represents a single object in memory. This is still too large! We of-

ten found that only some threads were busy scanning large objects,

while other threads were idle. This behavior is most prominent when

applications use large matrices or large arrays. In one of our paral-

lel applications (BH), a single 120-KB array to hold the particle data

causes signi�cant load imbalance. In the basic algorithm, it was not

unusual for some threads to be idle during the entire second half of a

mark phase.

We address this problem by splitting large objects (objects larger than

256 bytes) into smaller (than 256-byte) pieces. When a thread pops

a large object from mark stack, it divides the object into halves and

pushes the two pieces again, instead of scanning popped object. The

thread recursively divides the object until it becomes su�ciently small.

In the experiments described later, we refer to this optimization as

SLO (Split Large Object).

Serialization in termination detection: When the number of threads

becomes large, we found that the GC speed suddenly dropped. It

revealed that threads spent a signi�cant amount of time to acquire a

lock on the global counter that maintains the number of idle threads.
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Figure 3.4: Dynamic load balancing method. An idle thread becomes a thief
and try to the bottom of other mark stacks.
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We updated this counter each time a stack became empty or tasks

were thrown into an empty stack. This serialized update operation on

the counter introduced a long critical path in the collector.

Note that this termination detection is a more di�cult problem than

the popular barrier synchronization. This is because threads can be

resurrected after they become idle. The number of idle threads does

not increase monotonously.

We implemented another termination detection method in which two


ags are maintained by each thread; one tells whether the private

tasks in mark stack of the thread is currently empty and the other

tells whether the public tasks is currently empty. Since each thread

maintains its own 
ags on locations di�erent from those of the 
ags of

other threads, setting 
ags and clearing 
ags are done without locking.

Termination is detected by scanning through all the 
ags in turn. To

guarantee the atomicity of the detecting process, we maintain an ad-

ditional global 
ag detection-interrupted , which is set when a collector

recovers from its idle state. A detecting thread clears the detection-

interrupted 
ag, scans through all the 
ags until it �nds any non-

empty queue, and �nally checks the detection-interrupted 
ag again

if all queues are empty. It retries if the process has been interrupted

by any thread. We must take care of the order of updating 
ags lest

termination be detected by mistake. For example, when thread A

steals all tasks of thread B, we need to change 
ags in the following

order: (1) public-empty 
ag of A is cleared, (2) detection-interrupted


ag is set, and (3) private-empty 
ag of B is set. We refer to this

optimization as NSB (Non-Serializing Barrier).

Access contention at memory node on DSM: In some parallel appli-

cation, only a single thread (or a few threads) allocates almost all mem-

ory objects in the heap. Typically, the allocator thread initializes the

objects and gives them to other threads. On distributed shared mem-

ory architecture (DSM) architecture that adopts `�rst-touch' memory

placement policy, such application causes imbalanced memory place-

ment; almost all memory objects are placed in a single physical mem-

ory node.
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Generally, since GC heavily accesses memory, memory placement pol-

icy a�ects GC performance. Especially, it accesses allocated objects

and mark bitmaps aggressively. As will show in Section 3.5, we have

seen memory access contention at physical memory node sometimes

limit GC scalability. Although changing placement policy can improve

GC performance, we should not change policy of allocated objects, be-

cause it may go against users' intention and degrade application per-

formance. On the other hand, moving mark bitmaps does not cause

any e�ects on application.

In basic implementation, the allocator thread of a certain page sets up

the corresponding mark bitmap. Thus when placement of objects is

imbalanced, so are placement of mark bitmaps. We have implemented

another placement policy of mark bitmaps, where they are distributed

among all physical memory nodes. We refer to this optimization as

BMB (Balanced Mark Bitmaps).

3.5 Experimental Results

3.5.1 Experimental Conditions

We have measured performance of the collector on two systems: the Ultra

Enterprise 10000 SMP and the Origin 2000 DSM.

In the measurement, we bind each application thread to distinct pro-

cessor. This section uses the words \thread" and \processor" in the same

sense.

To measure GC performance, we used following parallel application pro-

grams described in Section 1.1.

BH (N-Body solver): We use both versions of BH: BH-st (sequential

tree construction), and BH-pt (parallel tree construction). In BH-st,

only a single thread performs tree construction, thus many objects are

placed on a single memory node on DSM machines. In BH-pt, the

placement of memory objects is almost balanced on DSM machines

because all threads allocate objects. In the experiment, we simulate

30000 particles for 20 time steps.
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CKY (CFG parser): In the experiment, we parse the given 200 sen-

tences that consists of 36 to 100 words.

Cube (Rubik's cube solver): At each iteration, we traverse three steps

from the given state in breadth �rst, and select the best twenty states

for next iteration. We repeat the iteration for ten times. Because all

threads allocate the state records, living objects are fairly distributed

on DSM.

Table 3.1 shows the behavior of applications, such as the amount of living

objects and execution time. The table shows the maximum living objects

among several GC invocations.

3.5.2 E�ect on Application Running Time

Figures 3.5-3.6 show how highly-optimized parallel collector a�ects on total

application running time. The graphs show application performance with

two versions of collectors. \Opt" refers to the fully optimized version, and

\Simple" refers to the naive collector without dynamic load balancing. The

graphs show breakdown of running time. \GC" indicates total time applica-

tion thread is stopped for GC. \User" refers to running time except \GC".

Memory allocation time and lazy sweeping time are included in \User".

\GC" includes not only parallel mark phase, but synchronization costs after

signal has been sent, and clearing mark bitmaps, and so on.

When we used all or almost all the processors on the machine, we occa-

sionally observed GC invocations that performed distinguishably worse than

the usual ones. They were typically 10 times worse than the usual ones. We

have not yet determined the reason for these invocations. It might be the

e�ect of other processes. For the purpose of this study, we used a little

less processors; at most sixty processors on Enterprise 10000, and sixty-four

processors on Origin 2000.

With \Simple" collector, scalability of application is limited, especially

in CKY. \GC" time amounts to 30 percent of total running time on 60

processors on Enterprise 10000, while it amounts to only 9 percent with

\Opt" collector. On Origin 2000, the ratio is 35 percent with \Simple"

collector and 6 percent with \Opt" collector. Unfortunately, however, CKY
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application itself is less scalable than other applications; its speed degrades

on more than 16 processors even with \Opt".

In Cube application, we can also better performance with \Opt" collec-

tor. The di�erence gets larger as the number of processors becomes larger.

On 64 processors on Enterprise, GC time accounts for 4 percent of running

time with \Opt", while it accounts for 17 percent with \Simple".

The e�ect of GC is less signi�cant in BH application, because the calcu-

lation phase, which never allocates memory objects dominates application

running time. As for BH-st (sequential tree construction) version, GC time

accounts for 1.9 percent of running time with \Opt" on 60 processors on Ori-

gin. The ratio of GC time is 4.8 percent with \Simple". In BH-pt (parallel

tree construction) version, the ratio of GC time is relatively larger because

application itself is faster. GC time accounts for 3.6 percent with \Opt" and

8.5 percent with \Simple". On Enterprise, we can see that \User" time with

\Simple" collector is 10{30 percent longer than that with \Opt" collector.

The reason for this phenomenon is currently not understood.

3.5.3 Speed-up of GC

This section shows performance of parallel mark phase on two systems. We

de�ne the speed of mark phase as the ratio of the total amount of reachable

objects to the time of parallel mark phase. We discuss the average marking

speed among all invocations during application execution.

Figures 3.7-3.8 show speed-up of mark phase. We measured several ver-

sions of collectors. \Simple" refers to the algorithm without dynamic load

balancing. \No-Opt" supports dynamic load balancing, but it implements

no optimization. \Opt" is the fully optimized version, described in Section

3.4.3. The BMB (Balanced Mark Bitmaps) optimization, however, is imple-

mented only on Origin 2000 DSM. We let the speed of \Opt" collector on

single processor be 1.

The graphs show that Simple does not exhibit any recognizable speed-

up in any application. As Figure 3.7 show, No-Opt on Enterprise 10000

performs reasonably until a certain point, but it does not scale any more

beyond it. The exception is Cube, where we do not see the di�erence be-

tween No-Opt and Opt. The saturation point of No-Opt depends on the

application; Basic of CKY reaches the peak on 32 processors, while that of
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Figure 3.5: Application running time on Enterprise 10000.
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Figure 3.6: Application running time on Origin 2000.
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BH-st reaches the saturation point on 8 processors. Opt achieved about 26

to 32 fold speed-up in BH and in CKY, and about 19-fold speed-up in Cube

on 60 processors.

On Origin 2000, the GC speed-up is not so good as on Enterprise. Even

with Opt, the GC scalability is limited except in CKY, where Opt achieves

20 fold speed-up on 64 processors. However, the di�erence between Opt

and No-Opt is still important. In all application programs, Opt is 2{3

times faster than No-Opt. Unlike on Enterprise, we can see the signi�cant

performance gap between in BH-st and in BH-pt. Opt achieves 7-fold speed-

up in BH-st, and 13-fold speed-up in BH-pt. We consider this gap comes

from the di�erence in placement of memory objects. In BH-st, GC comes

across more access contention than in BH-pt. The e�ects of placement of

mark bitmaps is discussed in the following section.

3.5.4 E�ect of Each Optimization

Figures 3.9{3.10 show how each optimization a�ects GC scalability. \No-

XXX" stands for a collector that implements all the optimizations but XXX.

Especially in BH, removing the non-serializing barrier (NSB) optimiza-

tion yields a sizable degradation in performance when we have a large num-

ber of processors. Without NSB, BH-pt cannot achieve more than a 14-fold

speed-up. In CKY and Cube, interestingly, NSB has considerable e�ects

only on Origin 2000.

The splitting large objects (SLO) is important when we have a large

object in the application. In BH, we use a single array to to hold all particles

data. In CKY, we use a large matrix to hold the result of parsing all sub-

sentences. These large objects became a bottleneck when we omitted SLO

optimization.

As we have expected, the balanced mark bitmaps (BMB) is important in

BH-st, where distribution of memory objects is imbalanced. Without BMB,

the collector shows only 4-fold speed-up on 64 processors. Fair distribu-

tion of mark bitmaps improve GC performance up to 7-fold speed-up. In

other application, BMB has less e�ects on performance. We consider this

is because memory objects are allocated by several threads and distributed

among physical memory nodes.
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Figure 3.7: Average GC speed-up on Enterprise 10000.
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Figure 3.8: Average GC speed-up on Origin 2000.
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Figure 3.9: E�ect of each optimization on Enterprise 10000.
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Figure 3.10: E�ect of each optimization on Origin 2000.
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3.6 Summary

We constructed a highly scalable parallel mark-sweep garbage collector for

shared-memory machines. Implementation and evaluation are done on two

systems: Sun Ultra Enterprise 10000, a symmetric multiprocessor machine

with 64 processors and Origin 2000, a distributed shared memory machine

with 80 processors. This collector performs dynamic load balancing by ex-

changing objects in mark stacks.

Through the experiments on the large-scale machine, we found a num-

ber of factors that severely limit the scalability, and presented the following

solutions: (1) Because the unit of load balancing was a single object, a large

object that cannot be divided degraded the utilization of processors. Split-

ting large objects into small parts when they are pushed onto the mark stack

enabled a better load balancing. (2) Especially on 32 or more processors,

processors wasted a signi�cant amount of time because of the serializing

operation used in the termination detection with a global counter. We im-

plemented non-serializing method using local 
ags without locking, and the

long critical path was eliminated. (3) On Origin 2000, we must pay attention

to physical page placement. With the default policy that places a physical

page to the node that �rst touches it, the GC speed was not scalable. We

improved performance by distributing physical pages fairly among physical

memory nodes. We conjecture that this is because the basic policy causes

imbalance of access tra�c among nodes; since some nodes have much more

physical pages allocated than other nodes, accesses to these highly-loaded

nodes tend to contend, hence the latency of such remote accesses accordingly

increases. We will discuss this problem in Chapter 4.

When using all these solutions, we achieved 19 to 32-fold speed-up with

60 processors on Enterprise 10000, and 7 to 20-fold speed-up with 64 pro-

cessors on Origin 2000.
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Application # of GC Exec. Max. living Heap
time (sec) objects (MB) size(MB)

BH-pt 20 33.4 34.9 50
BH-st 18 63.3 29.4 50
CKY 38 47.8 33.7 50
Cube 15 15.29 17.2 30

Table 3.1: The number of GC invocation, execution time, the maximum
amount of living objects, and the heap size of applications. This table shows
statistics on Enterprise 10000 with 60 threads. Fully optimized collector is
used.

Simple Parallelized but no load balancing is done.

No-Opt Load balancing is done, but no optimization is done.

No-SLO All optimizations but SLO (splitting large object) are done.

No-NSB All optimizations but NSB (non-serializing barrier) are done.

No-BMB Origin 2000 only. All optimizations but BMB (balanced mark bitmaps) are done.

Opt All optimizations are done.

Table 3.2: Description of labels in following graphs.
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Chapter 4

Predicting Scalability of GC

This chapter describes a performance prediction model of parallel mark-

sweep garbage collectors (GC) on shared memory multiprocessors. The pre-

diction model takes the heap snapshot and memory access cost parameters

(latency and occupancy) as inputs, and outputs performance of the parallel

marking on any given number of processors. It takes several factors that

a�ects performance into account: cache misses costs, memory access con-

tention, and increase of misses by parallelization. We evaluate this model by

comparing the predicted GC performance and measured performance on two

architecturally di�erent shared memory machines: Ultra Enterprise 10000

(crossbar connected SMP) and Origin 2000 (hypercube connected DSM).

Our model accurately predicts qualitatively di�erent speedups on the two

machines that occurred in one application, which turn out to be due to

contentions on a memory node. In addition to performance analysis, ap-

plications of the proposed model include adaptive GC algorithm to achieve

optimal performance based on the prediction. This chapter shows the e�ect

of automatic regulation of GC parallelism.

4.1 Introduction

The performance of tracing garbage collectors (GC) such as mark-sweep GC

and copying GC is heavily a�ected by the characteristic of memory archi-

tecture, because GC incurs a large number of memory accesses. Especially,

the impact of memory performance is signi�cant when several processors

cooperatively perform GC work on parallel machines. In previous chapter,

we have reported that the performance of such parallel GC is sometimes
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severely limited on distributed shared memory (DSM) machine, while it

achieves good scalability on symmetric multiprocessors (SMP) [22, 21].

There are many factors that a�ects parallel GC performance: memory

access contention, task stealing, and so on. The goal of this chapter is to an-

alyze the e�ect of each factor quantitatively. For this purpose, this chapter

proposes a performance model of parallel GC. The predictor takes a heap

snapshot at GC starting time as input and architecture parameter, and out-

puts the running time of the mark phase on any given number of processors.

We evaluate the validity of this model by comparing the predicted perfor-

mance and the real performance obtained through experiments on parallel

machines. The experiments are done on two shared memory machines: the

Sun Enterprise 10000 (crossbar connected SMP) and the SGI Origin 2000

(hypercube connected DSM).

Applications of our work include construction of an adaptive GC algo-

rithm, which regulates itself to achieve the best performance. For example,

GC will be able to regulate the number of processors that are devoted to

collection, by using the predicted result.

Section 4.2 shows our parallel GC, which is the target of prediction. Sec-

tion 4.3 describes our prediction method. Section 4.4 compares the predicted

performance and the real performance, and Section 4.5 mentions related

work.

4.2 Parallel Mark-Sweep Garbage Collector

We focus on the stop parallel mark-sweep GC for shared memory machines,

which we have described in Chapter 3 and [22]. Our GC is a parallel ex-

tension to Boehm-Demers-Weiser conservative GC library [11]. When any

thread detects memory shortage, it suspends all application threads, and

then all threads cooperatively perform marking and sweeping. They per-

form dynamic load balancing to achieve scalability.

Threads traverse the graph of all live objects in the heap with the lazy

task creation (LTC) strategy [42]; each thread traverses objects in depth-

�rst, by using its own task pool, called mark stack. When a thread �nds

its mark stack empty, it tries to steal a task from other mark stacks. If the

attempt is successful, it steals one task from the bottom of the target stack,
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and restarts marking. The mark phase terminates when all stacks become

empty.

Like previous chapters, this chapter assumes that each thread is bound

to distinct processor. We use the words \thread" and \processor" in the

same sense.

4.3 Prediction Method

4.3.1 Overview

Our predictor takes a heap snapshot at GC starting point as input, and

shows the predicted running time of mark phase with P processors. Figure

4.1 shows the overview of our method.

1. We collect some information about GC workload and memory access

pattern by inspecting the heap snapshot (Section 4.3.4).

2. We estimate parallel running time TP that excludes cache miss costs

from T1 and T1 (Section 4.3.5).

3. We estimate the number of cache misses on parallel execution QP .

This may be larger than that on serial execution Q1, because of task

stealing. QP is estimated through analysis of live cache lines (Section

4.3.6).

4. We calculate the cache miss cost on parallel execution MP by using

Mean Value Analysis. Generally MP is larger than the miss cost on

serial execution M1, because of access contention (Section 4.3.7).

5. Finally, we obtain the overall running time TM
P as TM

P = TP+QPMP=P .

4.3.2 Assumption

We make the following assumptions to simplify the model. We believe the

e�ects of them on typical heap snapshots is small.

� On DSM, we assume that a certain memory region is accessed by any

processor at same probability. In other words, we assume the task

stealing scheduler is oblivious to locality.
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� We ignore the costs of cache invalidation. We assume that an access

request from processors is sent to the home memory node, and returns

directly to the source processor.

� We ignore the overlap between memory access latency and other com-

putational instructions.

4.3.3 Architecture Parameters

This section describes the basic memory access costs of parallel machines.

The access costs on these machines are shown in Table 4.1. In the table,

M1 corresponds to the round-trip time of memory access request without

contention costs, and SO is the occupancy time of the receiver memory node

by each request. We have determined them through benchmark tests that

aggressively access memory.

4.3.4 Heap Inspection

We obtain parameters that represent workload and memory access pattern

by inspecting heap snapshot.

First, we obtain the total computation work T1 and the depth of live

object graph T1 from the living object graph. Intuitively, T1 is the serial

running time and T1 is the minimum running time with an in�nite number

of processors. Both T1 and T1 exclude cache misses costs.

Next, we keep track of memory access pattern by simulating the serial

mark phase, and feed the pattern to the cache simulator. Thus we obtain

the number of serial cache misses Q1. We also calculate the number of

average living cache lines L during mark phase, which is used to estimate

the number of misses on parallel execution, as described in Section 4.3.6.

Besides, on DSM, we obtain the distribution of target of memory accesses

Vj. We let Vj be the ratio of access requests to the j th memory node, to

all requests in the machine. This is used for estimation of access contention

costs.

Finally, we estimate the total number of task stealing NS in parallel

execution with P processors. It is di�cult to know a precise value of NS

beforehand, because of nondeterminism. Our predictor adopts a rough esti-

69



  

T1

T ∞

P

TP

Q1

M1

SO

TP
M

Data from heap snapshot
Architecture parameter

Cilk model

MVA
Vj

MP

NS

L

QP

Figure 4.1: Overview of our performance prediction method. TM
P is the �nal

result; the marking time with access costs and contention costs.

O2K

local remote
access type M1(ns) M1(ns) SO(ns)

read 270 > 590 230
RW 850 > 1400 490

E10K

access type M1(ns) SO(ns)

read 560 250
RW 610 420

Table 4.1: Memory access cost on O2K and E10K, obtained from benchmark
tests. \RW" stands for atomic read-modify-write access.
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mate of NS ; NS = P log(T1)
1.

4.3.5 Performance Prediction without Miss Cost

In this section, we obtain TP , which is predicted parallel marking time with-

out costs of cache misses from T1.

When the object graph has very large width, our GC can utilize all

collector threads during mark phase. In such cases, parallel marking time

would be close to T1=P , when we ignore cache miss costs. On the other

hand, the object graph is narrow, speedup of parallel marking is limited

because of critical path. The parallel marking time cannot be less than T1.

Therefore, we let TP be TP = min(T1=P; T1).

Until now, the Cilk performance model [6, 7, 29] has shown that the

parallel running time is TP = O(T1=P + T1). Besides, Cilk group has

shown that e�ective thread schedulers achieve TP = T1=P +O(T1).

As for our parallel application programs, described in Section 4.4, Cilk's

estimation and ours give similar result. This is because the object graphs

are wide enough in most cases, and T1 is much less than T1=P .

4.3.6 Number of Cache Misses

We derive the number of cache misses on parallel execution QP from the

number of serial cache misses Q1. In LTC style execution, the computation

order is preserved in most cases between serial execution and parallel execu-

tion. The exception is caused by task stealing; tasks which were contiguous

in serial execution may be performed by di�erent processors in parallel ex-

ecution.

Figure 4.2 shows the behavior of cache lines during serial execution and

parallel execution of the same workload. Black and gray circles correspond to

cache misses, and white ones are cache hits. The circles arrayed horizontally

stand for accesses to a single cache line. In serial execution, we have �ve

cache misses in this case. In parallel execution, suppose two task steals

(vertical lines in the �gure) occur during this execution. Then three task

groups separated by two vertical lines are executed by distinct processors,

1This estimation is justi�ed only through experimentation. Better estimation is under
investigation.
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which have respective cache memories. Thus some memory accesses are no

more contiguous and the total number of cache misses is larger than Q1.

The predictor estimates QP as QP = Q1 + NSL, where NS is the total

number of task steals and L is the average number of live cache lines. Intu-

itively, we assume each task steal incurs about L additional cache misses.

4.3.7 Cost of Cache Misses

This section estimates the cache miss costs on parallel execution MP , from

sequential access costs M1. We utilize Mean Value Analysis to account

for access contention. Current model considers only contention at memory

nodes, and ignores contention at other parts of the network. When a proces-

sor raises a cache miss, it sends a access request to home memory node and

waits for the response (Figure 4.3). The miss cost MP may be larger than

M1, because of contention. To estimates contention costs, we use the occu-

pancy time So and the access distribution Vj , which may be unfair among

memory nodes on DSM.

The frequency of incoming access requests to j th memory node is

VjQP =T
M
P , where TM

P is overall running time. Thus the average waiting

time of each access request at j th memory node is SO�=(1 � �), where

� = SOVjQP =T
M
P . Here we obtainMP asMP =M1+SO�=(1��). Because

MP depends on the �nal result TM
P , the de�nition of MP is recursive. The

predictor uses the Newton method to calculate it.

4.4 Experimental Results

This section compares the predicted performance of parallel mark phase by

our model with the measured performance on parallel machines. We show

the average speed of the mark phase of several GC invocations through the

execution of parallel application programs. We use three parallel application

programs: BH-st, Cube, CKY.

BH (N-body solver): In the experiment of this section, we use only BH-st

version, where only a single thread performs tree construction. In BH-

st, GC performance signi�cantly di�er between two parallel machines.

We simulate 50000 particles for 10 time steps.
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Figure 4.2: The behavior of cache lines, in serial execution and parallel
execution.
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Figure 4.3: Behavior of a processor and a main memory node. Cache miss
cost is at least M1 = 2SL + SO, and gets longer if contention occurs.
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Cube (Rubik's cube solver): At each iteration, we select the best ten

states for next iteration. We repeat the iteration for ten times. Be-

cause processors allocate the state records in parallel, live objects are

distributed in all memory nodes in Origin 2000.

CKY (CFG parser): In the experiment, we parse ten sentences that con-

sists of 95 to 105 words. Like Cube, live objects are distributed in all

memory nodes in Origin 2000.

4.4.1 Evaluation of Predicted Performance

Figure 4.4 and Table 4.2 compare the predicted result and the real perfor-

mance on Origin 2000 and Enterprise 10000. The graphs show GC speed-

up by parallelization; the upper graphs corresponds to the results on Ori-

gin 2000 (O2K), and the lower ones show the results on Enterprise 10000

(E10K). The horizontal axis of each graph corresponds to the number of pro-

cessors and the vertical axis shows the speed-up, which is normalized to the

real sequential speed. \Real" refers to the measured speed-up and \Pred"

refers to the speed-up predicted by our predictor. \Pred(QP = Q1)" corre-

sponds to another prediction that ignores miss increase by parallelization.

\Pred(MP =M1)" ignores access contention cost.

The mark phase in BH-st achieves good scalability on Enterprise 10000.

The performance rises well with an increase of processors. On Origin 2000,

however, it reaches the peak on 32 processors and does not scale any more.

The predicted graph succeeds in capturing the di�erence between the two

machines. The graph shows that there is a signi�cant gap between \Pred(MP =

M1)" and \Pred" on Origin 2000; we can see that the access contention

heavily degrades the performance. Without contention costs, the model can

never predict behavior of the measured performance; this result justi�es our

model that takes contention costs into account.

In Cube on Origin 2000, the \Pred(QP = Q1)" is far from \Pred", thus

we can see that Cube su�ers from e�ects of miss increase by parallelization.

In CKY, the gap among \Pred", \Pred(QP = Q1)" and \Pred(MP =

M1)" is much less than in other application programs. This suggests that

e�ects of contention costs and increase of misses on the performance is not

very large.
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Table 4.2 shows the error of predicted result with 48 processors. In all

cases, the predictor tends to output faster speed than \Real"; the errors are

7 to 38%. This result suggests that there may be still some performance

limiting factors that our model does not account for yet.

4.4.2 Overhead of Predictor

To utilize the predicted result for online optimization, the predictor itself

must be fast enough. However, the predictor we have described is slow (\slow

ver." in Table 4.3), because it tracks all memory accesses and feeds them

to a cache simulator. We have made another predictor that is faster, but

less accurate (\fast ver." in the table). The fast predictor takes the amount

of live objects and Vj as input, rather than all memory access pattern.

Therefore, it tends to underestimate the number of cache misses. We use

this predictor for an adaptive GC algorithm in next section. Slow version is

still be useful to analyze GC performance in detail.

4.4.3 Performance Prediction on Future Machines

By using our predictor, we can predict the performance on future machines.

Consider two machines that have same memory architecture as O2000 and

E10000, but have much more processors than real machines. Figure 4.5

shows the predicted performance on the imaginary machines. For the pre-

diction, we used the heap snapshot of three application programs executed

with 32 processors. The graphs show that the performance will reach a

peak at 128 processors on O2000 in all application programs. We can see

that main memory access becomes bottleneck in BH-st and Cube, even on

E10000. Without accounting for contention costs, we cannot obtain these

results.

4.4.4 Adaptive GC algorithm

One of the application of our predictor is construction of adaptive GC al-

gorithms. As an example, this section describes automatic regulation of

GC parallelism. For some applications such as BH-st on Origin 2000, it is

meaningless to devote too many processors to GC. In such cases, we use less

processors than the number speci�ed by user. By reducing processors, other

processes may gain pro�t in multiprogramming environment.
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Cube/O2KBH/O2K

BH/E10K Cube/E10K CKY/E10K

CKY/O2K

Real Pred Pred(MP=M1) Pred(QP=Q1)

Figure 4.4: GC Speed-up. Graphs compare real speed-up(\Real") and pre-
dicted speed-up(\Pred").

application pred pred
/machine pred (MP =M1) (QP = Q1)

BH-st/O2K +15 % +260 % +49 %
Cube/O2K +38 % +77 % +140 %
CKY/O2K +24 % +28 % +31 %
BH-st/E10K +22 % +24 % +24 %
Cube/E10K +23 % +26 % +41 %
CKY/E10K +6.8 % +7.1 % +9.4 %

Table 4.2: The di�erence between predicted performance and real perfor-
mance with 48 processors.

overhead error error
predictor (1PE) (1PE) (48PE)

slow ver. 760 % -2.4 % +15 %
fast ver. 7.4 % +23 % +260 %

Table 4.3: Overhead and accuracy of two predictors, in BH-st/O2K. Over-
head is the ratio of prediction time to running time of mark phase.
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Figure 4.5: Predicted marking performance where the number of processors
is larger than real machine. The graphs assume that the number of main
memory nodes and memory performance are the same as real machine.

Table 4.4 shows the result of regulation of parallelism. In \full", GC

always use all of speci�ed processors. In \Adapt", GC uses the predicted

result of the fast predictor to �nd su�cient number of processors. The

bottom row of the table shows the average number of used processors in

\Adapt". We can see that only 22 processors are su�cient to achieve almost

same performance as that with 48 processors in this case.

4.5 Related Work

There are many pieces of work on performance analysis on parallel machines

that mention the importance of communication costs. The major part of

the researches focus on programs that have regular structures, on which it

is easier to estimate communication costs than on irregular programs.

The Cilk performance model [6, 7, 29] estimates the parallel running

time of both regular and irregular programs that are executed in LTC strat-

egy. We utilize this model to estimate TP , the parallel running time with-

out cache misses cost. Though the earlier model does not account for the

memory hierarchy, the recent model [29] by Frigo analyzes the costs of cache

misses. However, current Frigo's model may underestimate cache miss costs,

because it assumes that miss costs are always uniform. Through the exper-

iments, we have found that we cannot apply that assumption for DSM such

as Origin 2000, where software can control the location of memory pages.

The contention of access requests to a certain node may heavily degrade

77



performance on such machines. Another factor that Frigo's model accounts

for is the increase of cache misses by parallelization. However, it tends to

overestimate the increase, because it estimates the number of cache misses

as QP = Q1 +O(HNS), where H is the number of all cache lines each pro-

cessor has. In our model, QP = Q1 + LNS , where L is the number of live

cache lines, which depends on application behavior.

The LogP model [17] analyzes the behavior of distributed parallel ma-

chines with four architectural parameters: the latency, the overhead of mes-

sage processing, the bandwidth, and the number of processors. Several re-

searches have used LogP model to study parallel programs. More recently,

Frank et al. proposed the LoPC model [28], which is based on LogP, but

accounts for contention costs by using Mean Value Analysis. Our estimation

method of cache miss costs is strongly a�ected by the LoPC model.

4.6 Summary

This chapter proposed a performance prediction model for a parallel garbage

collector on shared memory parallel machines. This model takes a heap

snapshot at GC starting time as input, and estimates parallel running time

of mark phase. This model takes contention costs of memory accesses into

account, which are especially important on DSM. It also accounts for the

increase of cache misses by task stealing in parallel execution.

We have compared the predicted GC performance with the measured

performance through experiments on two parallel machines: Sun Enterprise

10000 SMP and SGI Origin 2000 DSM. The prediction error of parallel

marking time with 48 processors is 7 to 38%. In BH-st application, which

incurs unfair memory location, the GC scalability on Origin 2000 is much

worse than that on Enterprise 10000. Without taking contention costs into

account, the model can never explain behavior of the performance. As an

example of applications of our model, we have shown the experimental result

of automatic regulation of GC parallelism.

The future work includes improving the accuracy of prediction. In ad-

dition to accuracy, the predictor should be fast when we use it for online

optimization. We also plan to apply our model for general parallel applica-

tion programs. It would be interesting to investigate how we can manage
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programs with more complex synchronization pattern and memory access

pattern than GC.
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# speci�ed processors 8 16 32 48
GC speed-up / full 3.8 4.9 6.1 6.3
GC speed-up / adapt 3.8 4.5 5.8 6.0
# avg. used processors 8.0 12.4 19.9 21.8

Table 4.4: The result of automatic regulation of GC parallelism, in BH-
st/O2K.
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Chapter 5

Concurrent Parallel Garbage

Collector

Chapter 3 has shown that a scalable stop parallel garbage collector can im-

prove execution times of applications by reducing GC time. However, some

applications such as server applications and GUI applications require short

pause times in addition to good execution times. For this purpose, this

chapter describes a concurrent parallel GC, where collector threads and ap-

plication threads run in parallel, and collection itself is done by multiple

threads. The experimental results of this collector on Enterprise 10000 and

Origin 2000 are shown. This collector is based on the incremental update

algorithm, on which the �nalization phase determines the worst pause time.

Compared with stop parallel GC, the advantage of this concurrent parallel

GC on pause times gets smaller relatively as the number of threads increases,

because stop parallel GC scales better. The most important element that

determines application execution times with concurrent collectors is the im-

plementation of a write barrier. This chapter compares two implementation:

one uses virtual memory facility, and the other is implemented by code in-

sertion. The former yields overhead of memory protection, which becomes

larger as the number of threads increases. The latter also causes consider-

able overhead on execution times, which is 70 % in the worst case. However,

its scalability is better, and gets faster than the former implementation on

48 threads and more. Potentially, the application execution times may be

improved by using concurrent parallel collectors rather than stop parallel

collectors, though such situations did not occur in the experimentation.
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5.1 Introduction

The performance of application programs heavily depends on memory man-

agement modules. In previous chapters, we have focused on the scalabil-

ity of GC to improve the execution times (or throughput) of applications.

Moreover, some applications require real time collectors. For example, the

response time of server applications and GUI applications depends on the

pause time of collectors.

Many researchers have tackled on the GC pause time by using concur-

rent collection algorithm[20, 32, 43], on which a GC thread and application

threads run in parallel. However, if garbage collection itself is not paral-

lelized, the GC thread may fail to catch up with memory allocation requests

from application threads, on large scale multiprocessors. To solve this scal-

ability problem, this chapter describes a concurrent parallel collector, where

collector threads and application threads run in parallel, and collection itself

is done by multiple threads. Cheng et al. [14] have described algorithm and

performance of a concurrent parallel collector for SML. Unlike theirs, this

chapter describes the implementation that requires no compiler support.

Concurrent parallel collectors have a potential ability to improve not

only pause time but application execution time, because they can make idle

processors during application execution participate collection work. More-

over, they may be able to alleviate memory bus tra�c especially on DSM.

In spite of such advantages, they have the following disadvantages.

� It imposes a write barrier overhead on applications. The write barrier

is required to guarantee that all reachable objects are retained even if

applications update object graph during GC cycle.

� Generally, concurrent collectors are more `conservative' than stop col-

lectors; they reclaim less garbages because of 
oating garbages. Thus

more collection tasks are required to proceed applications.

The e�ect of write barrier on execution times is important, particularly.

For the experiments, we have implemented two versions of write barrier: one

uses virtual memory facility, and the other is implemented by code insertion.

Our collector is based on the incremental mark sweep GC for C/C++

by Boehm et al [9], and parallelized in a similar manner described in Chap-
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ter 3. The collector adopts incremental update method [19, 52] to achieve

concurrency. This chapter evaluates the performance of our collector on

Enterprise 10000 SMP and Origin 2000 DSM. We compare pause times and

application execution times of the concurrent parallel collector and the stop

parallel collector.

Section 5.2 describes the algorithm of concurrent parallel collector, and

we evaluate the performance in Section 5.3. Section 5.4 discuss the relation

between pause times and algorithm. Section 5.5 mentions previous work on

concurrent collectors, and we summarize this chapter in Section 5.6.

5.2 Algorithm

Our concurrent parallel GC implementation has the following features:

� It uses Big bag of pages (BIBOP) allocator, though it is not an essential

condition.

� It is based on incremental update method.

� It uses page level memory protection facility of the underlying OS 1.

� It treats new objects allocated during collection as `unmarked'. This

condition allows very short lived objects to be reclaimed.

Data structure our collector uses is similar to that we have described in

Chapter 3. Each thread maintains its local mark stack, and marking is done

by using mark bitmaps.

Since application programs run during collection, collection must start

before the heap is exhausted. When page level allocator �nds the number of

empty pages is lower than a threshold (15% of the heap in the experimenta-

tion below), it triggers a collection. As Figure 5.1 shows, GC cycle consists

of three phases: start phase, concurrent phase and �nalize phase.

Start phase: The collector changes the access protections of all pages in

the heap to `Read-only' by using mprotect systemcall. It empties a

set named dirty page set.

1We describe an implementation by software afterward.
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Then it determines the GC speed k to prevent starvation. It deter-

mines k = (M � F )=F , where M is the number of all pages in the

heap, and f is the number of empty pages 2.

It stops all application threads by sending a signal. The suspended

threads push their own roots (stack, registers) onto their mark stack.

Global variables are also pushed on one of mark stacks. Then all

threads restarts application immediately.

concurrent phase: Each thread proceeds marking with its mark stack in-

crementally, when it allocates memory objects. Whenever the allo-

cation count exceeds a page size (= P bytes), it examines memory

regions more than fP bytes. In addition to allocator threads, idle

threads can participate in the concurrent phase. Several threads can

proceed marking simultaneously, and marking algorithm is similar to

that of the stop parallel algorithm in Chapter 3; threads performs

dynamic load balancing. When all mark stacks become empty, con-

current phase �nishes.

�nalize phase: The incremental update method requires �nalize phase to

prevent any reachable objects from being left unmarked. Unfortu-

nately, the work amount of this process is unbound, though it is

smaller than that of full garbage collection in many cases. When

one of threads detects the termination of concurrent phase, it sends

signals to all threads to suspend application again. The threads exam-

ines pages included in dirty page set and �nds objects already marked,

then push them onto mark stacks. Besides, they push roots onto mark

stacks again. Then they start parallel marking cooperatively. We ex-

pect that almost reachable objects have been already marked, and this

phase �nishes early. After �nishing the second traversing, the collector

prepares for lazy sweeping and resumes application.

As any concurrent/incremental GC does, our collector needs to know

accesses information to objects by application threads. Our collector uses

write barrier, which informs the collector about object updates during GC

2Unfortunately, we cannot guarantee that collection always catch up with allocation
requests, because of external fragmentation. When starvation occurs, the allocator thread
is delayed until collection �nishes.
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Figure 5.1: A GC cycle consists of start phase, concurrent phase, and �nalize
phase.

cycle. When application threads try to update objects that are protected

at the beginning of GC cycle, an exception occurs and signal handler is

invoked. The thread adds the target page into the dirty page set, changes

its protection to `Read-write', and resumes application. In the �nalize phase,

the collector can know all pages in the heap that are updated during GC

cycle. Because some unmarked objects may be installed in marked objects,

the �nalize phase must rescue such unmarked objects.

5.2.1 Optimization

The collector changes protection of pages over and over. It protects all pages

at the start phase, and unprotects pages that are updated by application.

When the page level allocator allocates a new page, it also unprotects the

page because it will be updated immediately. Changing memory protection

imposes overhead on application execution time. As Appel et al. [1] has

described, the overhead gets larger as the number of processors increases, in

order to maintain TLB consistency. This section describes a technique to

reduce the protection overhead.

We utilize the fact that changing protection of consecutive pages at one

time incurs smaller overhead than operating them individually. When the
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collector tries to unprotect a page because of updating or allocation, it

examines the status of adjacent pages. If they are currently empty pages,

they will be used by allocator in the near future. Therefore the collector

unprotects those pages at one time beforehand. This technique reduces the

frequency of changing memory protection.

We could adopt an alternative method, in which the collector protects

only live pages selectively at start phase. We have found, however, this

method increases the number of protection and incurs more overhead.

5.2.2 Software Write Barrier

We have described a write barrier that uses virtual memory facility, with-

out compiler support. Many compilers of modern languages such as ML

and Java can support incremental/concurrent GC by inserting code frag-

ments at object updating codes. While this software write barrier approach

produces overhead even out of GC cycles, its overhead does not grow on

multiprocessors. Section 5.3 estimates the performance of such write bar-

rier by software. For this purpose, we have instrumented the source code

of applications by hand. We expect overhead of this instrumented version

performs as well as that of write barrier with compiler support.

In the experiments, the collector remembers dirty regions per page. With

software write barrier, we could maintain the dirty regions in a �ner grain

manner. This will enable us to reduce the amount of GC tasks in the �nalize

phase, though we have not implemented it.

5.3 Performance Evaluation

This section compares the concurrent parallel GC and the stop parallel GC

on two multiprocessors: Enterprise 10000 SMP and Origin 2000 DSM. We

use three applications: BH-pt, CKY and Cube, which we have described in

Section 1.1. We also measure the cost of software write barrier, by inserting

write barrier codes in source codes of BH-pt and Cube by hand.

CKY and Cube are parallelized by using StackThreads/MP, a �ne grain

thread library. We have made a modi�cation to its user-level thread sched-

uler, and allow idle threads to participate in concurrent marking.
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5.3.1 Total Execution Time

Figure 5.2 shows the execution times of applications with several GC ver-

sions. `Stop' represents the stop parallel collector described in Chapter 3.

`Conc-VM' refers to the concurrent parallel collector introduced above. Its

write barrier is implemented by using virtual memory facility. `Conc-Soft'

refers to the concurrent parallel collector with software write barrier. We

have measured another version for comparison; `Stop-Soft' refers to a stop

parallel collector that su�ers from overhead of software write barrier. The

results in the �gure are normalized to that of `Stop'.

There are no considerable di�erence between `Stop-Soft' and `Conc-Soft'

in all cases. This result suggests that the most important element that

a�ects the execution times is the overhead of write barrier, rather than the

increase of GC tasks on current collectors.

In all applications, the overhead of `Conc-VM' gets larger as the number

of threads increases. The reason seems to be that changing memory protec-

tion takes a longer time on multiprocessors. With 60 threads on Enterprise

10000, the execution times of `Conc-VM' are 24%{83% longer than that of

`Stop'. The di�erences are 21%{94% with 64-four threads on Origin 2000.

On the other hand, overhead of software write barrier does not grow.

The overhead in Cube tends to decrease as threads increase when we have

more than 8 threads. In BH-pt, `Conc-Soft' is always faster than `Conc-VM'.

In cube, `Conc-Soft' outperforms `Conc-VM' with more than 32 threads on

Enterprise 10000, and more than 48 threads on Origin 2000. The overhead of

software write barrier is larger on Enterprise 10000 in BH-pt, while Origin

2000 incurs more overhead in Cube. The reason of this phenomenon is

unclear yet.

5.3.2 Pause Time

This section shows GC pause times, which have heavy e�ects on application

response times. We focus on pause time of �nalize phase, rather than that

of concurrent phase. The reason is that reducing pause time of concurrent

phase is not hard in principle 3. On the other hand, �nalize phase needs to

atomic from a viewpoint of applications; dividing this phase is hard.

3We do NOT assert that it is trivial to guarantee the su�cient progress of applications.
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Figure 5.2: Total execution time of each application. The results are nor-
malized to that of `Stop'. 88



BH-pt/E10K

# of threads 1 8 16 32 48 60

Stop avg. 259 77 43 34 34 37
Stop max. 360 104 53 50 42 46

Conc-VM avg. 193 24 18 19 23 27
Conc-VM max. 347 41 27 29 37 40

CKY/E10K

# of threads 1 8 16 32 48 60

Stop avg. 518 125 65 42 41 47
Stop max. 1307 214 99 61 55 57

Conc-VM avg. 161 51 33 27 30 35
Conc-VM max. 269 79 52 43 38 46

Cube/E10K

# of threads 1 8 16 32 48 60

Stop avg. 288 59 47 36 46 47
Stop max. 452 88 83 55 58 67

Conc-VM avg. 206 34 36 27 35 42
Conc-VM max. 283 56 62 49 59 57

Table 5.1: Average pause time and worst pause time on Enterprise 10000,
in milliseconds. `Conc-VM' shows the pause time of �nalize phase.

Tables 5.1{5.2 compare the full collection time of `Stop' and the time

of �nalize phase of `Conc-VM'. Tables show average pause times and worst

pause times. We can see the pause times of `Conc-VM' are shorter than those

of `Stop' in many cases. The advantage is especially large with less than 16

threads; the pause times of `Conc-VM' are 1.3{3 times shorter. However, the

advantage becomes smaller with more threads. Finalize phase of `Conc-VM'

does not scale as well as `Stop'. We consider this is because the costs that

are independent of the amount of GC task, such as synchronization costs,

dominate the time of �nalization phase on many threads. Unfortunately,

`Conc-VM' sometimes yields worse pause times on 60{64 threads.
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BH-pt/O2K

# of threads 1 8 16 32 48 64

Stop avg. 131 53 51 52 58 73
Stop max. 285 72 62 62 73 91

Conc-VM avg. 221 54 35 38 44 66
Conc-VM max. 338 87 50 59 68 126

CKY/O2K

# of threads 1 8 16 32 48 64

Stop avg. 611 161 99 75 76 90
Stop max. 1580 247 143 101 97 111

Conc-VM avg. 321 89 55 48 53 68
Conc-VM max. 639 148 81 73 68 85

Cube/O2K

# of threads 1 8 16 32 48 64

Stop avg. 288 73 73 58 72 87
Stop max. 443 124 94 78 88 113

Conc-VM avg. 251 69 54 62 59 95
Conc-VM max. 380 96 75 100 100 164

Table 5.2: Average pause time and worst pause time on Origin 2000, in
milliseconds. `Conc-VM' shows the pause time of �nalize phase.
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5.4 Discussion

Section 5.3.2 has shown that current implementation cannot shorten pause

times extremely. There some approaches to reduce pause times.

Using �ne grain write barrier: In the �nalize phase of current algorithm,

the collector performs (1) marking from dirty pages, and (2) marking

from roots. While the latter must be atomic in principle, we can move

up the former to concurrent phase. Although this modi�cation can

reduce the �nalize phase, the execution time would su�er from very

large overhead when we use write barrier using virtual memory. If the

collector removes a page from the dirty page set and scans it in con-

current phase, the page must be protected again to catch updates in

the future. Thus the collector may change the protection of each page

for multiple times during a single GC cycle. This modi�cation causes

much larger overhead than current algorithm, where each page is pro-

tected once and unprotected at most once during a GC cycle. When

we use software write barrier, it would be possible to implement this

modi�cation without so heavy overhead.

Using another algorithm: Another approach is to use an algorithm that

does not require �nalize phase. The snapshot-at-beginning algorithm

[53, 52] retains all objects that are live at the beginning of GC cycle,

and objects allocated during GC cycle. It does not require �nalize

phase to rescue reachable and unmarked objects. This algorithm is

more `conservative' than incremental update algorithm; it reclaims

less garbages. Therefore the larger number of GC cycles are required

to proceed application, and may extend the execution time. More

detailed comparison is under investigation.

5.5 Related Work

Incremental/concurrent garbage collection has a long history [19, 2, 53, 52,

20, 32, 43]; many researchers have described tracing GC algorithms that

allow applications to proceed during collection. The advantages of this ap-

proach are twofold: reducing the pause time and e�cient utilization of mul-

tiprocessors. However, most of previous work do not work well on large scale
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multiprocessors because the collector itself is not parallelized. If only a sin-

gle dedicated thread performs GC, starvation may occur when we have a lot

of application threads. GC speed may fail to catch up with the allocation

request speed by application.

Some implementations of concurrent GC use virtual memory facility

rather than compiler support, such as an incremental mark-sweep collector

by Boehm et al.[9]. In their implementation, only a single thread can process

collection work. Our implementation is a parallel extension to their collec-

tor. Their collector is based on incremental update method, and requires

the �nalize phase. It supports generational collection, that investigates only

newly allocated objects, though we did not use that facility. Their imple-

mentation [8] provides two methods to implement a write barrier on general

purpose OS: (1) protecting memory pages and catching the write access to

objects, and (2) reading dirty bits of all pages on SVR4 OS. As they have

already described, it takes a long time to read dirty bits, which must be

read atomically. Especially, the overhead is larger on multiprocessors. Thus

we used memory protection facility for our experimentation. Protecting the

heap need not be atomic in principle; we can protect pages in the heap

incrementally.

Cheng et al.[14] described and evaluated a concurrent parallel copying

garbage collector for multiprocessors. Their algorithm is based on a repli-

cating garbage collector by Nettles et al.[43], which requires only a write

barrier, not a read barrier. Cheng's collector achieves scalability by using

thread local task pool, and performs work sharing via a shared pool. The

space and Time that their collector consumes is theoretically bound. They

implemented the collector within the runtime system of a SML compiler.

The worst pause times of their collector range from 3 to 5 ms on unipro-

cessor, which is much better than that of our current implementation. We

believe this di�erence comes from the following reasons.

� They adopt a technique to enable �ne grain root scanning.

� Their collector does not require a long atomic phase, such as the �nal-

ize phase. However, their collector is more `conservative' than ours;

all objects allocated during GC cycle is retained. Thus it may require

more collection cycles to proceed applications.
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� Since their collector uses software write barrier, it can maintain up-

dated objects in a �ne grain manner 4.

Ichiyoshi and Morita's collector [34] is also concurrent (asynchronous)

and parallel. Collection on the shared-heap is done as follows. Each thread

asynchronously traverses objects that are reachable from its own root and

local heap. Their algorithm allows for several threads to proceed collection

simultaneously. However, their algorithm seems to su�er from starvation

if the amount of reachable objects are not fairly distributed, because no

dynamic load balancing is performed.

5.6 Summary

This chapter has described implementation and performance of a concurrent

parallel GC, in which collector threads and application threads run in par-

allel, and collection itself is done in parallel. Our current implementation

is based on the incremental update method. Through the experimentation

on Enterprise 10000 SMP and Origin 2000 DSM, we have compared per-

formance of concurrent parallel GC and stop parallel GC. With concurrent

parallel GC, execution times of applications are longer because of some fac-

tors such as increase of GC tasks and overhead of a write barrier. We have

shown overhead of a write barrier is important. The implementation that

uses virtual memory facility incurs heavier overhead as the number of appli-

cation threads increases. With 60{64 threads, execution times su�er from

21{94% overhead. GC pause times of incremental update method depends

on the performance of �nalize phase. The running time of �nalize phase is

1.3{3 times shorter than that of stop parallel GC, with 16 threads or less.

Unfortunately, this advantage becomes smaller when we have more threads.

Concurrent parallel collectors may potentially be able to improve execution

times, by utilizing idle processors during application execution for collection

work. However, we did not see such cases.

We are planning to brush up our implementation. For example, mak-

ing the software write barrier �ne grain would reduce pause time of �nal-

ize phase. We also require comparison between incremental update and

4Although our collector supports software write barrier, it currently maintains updated
objects coarsely. More implementation e�orts are required.
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snapshot-at-beginning both in theory and through experiments.
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Chapter 6

Conclusion

This thesis has described design and implementation of a dynamic mem-

ory management module, which achieves scalability on large scale shared

memory machines. High performance general purpose memory allocator re-

lieves programmers' job to implement application speci�c allocators. High

performance garbage collectors makes the approach of automatic memory

reclamation more attractive.

Many parallel allocators described before maintain thread-local heaps to

serve allocation requests in parallel. While they achieve scalability of alloca-

tion, most of them does not account for memory utilization and locality. Our

allocator achieves scalability, locality on DSM machines, and high memory

utilization. It also enables users to control the tradeo� between locality and

memory utilization. Through experiments, the allocation speed with our

allocator with 64 threads is 36 times faster than that on serial execution.

By allocation speed-up and better locality, overall application performance

improved by 2{19 %, compared to simpler parallel allocator.

Although there are many studies about garbage collectors on multipro-

cessors, researchers tend to focus on concurrent garbage collectors, where

one thread performs GC while other thread proceeds application. This ap-

proach has an advantage that pause time of application is negligible. How-

ever, with much more processors, reclamation speed may fail to catch up

allocation speed. We have constructed parallel garbage collectors; multiple

threads cooperatively perform GC. In stop parallel GC, all program threads

are stopped and all threads cooperatively perform GC. The some studies

have adopted this approach, however, most of them do not achieve enough
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performance. We have proposed some optimizations to eliminate bottle-

neck. With the optimizations, our collector is 14 to 28 times faster than

serial GC with 60 threads on Sun Enterprise 10000. In concurrent parallel

GC, application threads can run with multiple collector threads simultane-

ously. We have evaluated the overall execution times and pause times, and

shown overhead of write barrier heavily a�ects execution times.

While our stop parallel collector scales well on SMP, the performance is

sometimes severely limited on distributed shared memory (DSM) machines.

To understand the performance, we constructed the GC performance model

that accounts for di�erence among architectures. The model is conscious of

access contention at receiver memory node, as LoPC model is. We found

the contention cost heavily a�ects GC performance on DSM machines.

We list a part of future work below.

Using compiler support This thesis has described a memory man-

agement module without any compiler support. By using compiler

support, we could have more e�cient module. First, if compiler pro-

vides type information of objects, we can adopt moving garbage col-

lectors such as copying GC and mark-compact GC. Such collectors

can eliminate fragmentation and enable fast allocation that uses an

allocation pointers rather than free lists. Secondly, if compiler emits a

write barrier code, more scalable write barrier than that uses virtual

memory would be possible. Thirdly, we can alleviate the frequency

of accesses to the single shared heap, by using the results of static

analyses such as the escape analysis [18, 51] and the region analysis

[50]. These analyses the scope of allocated objects in given programs.

We can allocate thread-local objects, which are accessed by a single

threads, on stacks or thread private heap [47]. Thus we can reduce

the frequency of allocation and garbage collection of the shared heap,

which involve multiple threads. Note that each thread cannot collect

thread local heaps described in Chapter 2 in local, because any objects

can be shared by several threads in our current system.

Support for distributed architecture Recently, distributed archi-

tecture such as PC/workstation cluster is preferred as a method to

realize high performance computing system in cost-e�ective approach.

96



We are planning to construct high performance memory management

module for distributed architecture. An approach is to construct our

module that this thesis described on top of software distributed shared

memory [39, 36]. However, we would need to new optimization tech-

niques for this environment, as software DSM has di�erent characteris-

tic from SMP or hardware DSM. Chapter 2 focused on how we decides

the home of each object on hardware DSM. The decision is more im-

portant software DSM, where access costs to remote memory is much

larger than on hardware DSM. Many tracing garbage collector algo-

rithms for distributed environment have been proposed [33, 44]. Their

algorithm assumes message passing, and each processor only traces

local objects. On the other hand, our GC algorithm allows collec-

tor threads to trace any objects in the heap, even on hardware DSM.

While the distributed approach that accounts for locality can reduce

the number of communication, it may su�er from load imbalance and

fail to shorten GC time. By mixing the distributed GC algorithm and

our algorithm for shared memory, it may be possible to construct a

better GC system.
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Appendix A

Application Interface of

Scalable Memory

Management Module

This chapter describes appliaction program interface (API) of our memory

management module, which this thesis has shown. Our module is named

SGC (GC for Shared memory multiprocessors), and it is a parallel extention

to Boehm's conservative garbage collector library [11, 8]. It is based on

version 4.10 of Boehm's GC, and some ideas and code fragments are from

newer version. We hereafter call the library by Boehm "the original version".

SGC is a garbage collecting storage allocator for parallel C/C++ pro-

grams. Programs may use a thread library (such as solaris threads or

pthreads).

Each thread allocates objects from the shared heap. In the multiple

process version, the heap is shared using a memory mapped �le (mmap in

Unix) implicitly. The library has the following features to achieve good

performance on multiprocessors:

parallel memory allocation Memory allocation is thread-safe and

multiple allocations can be done in parallel.

parallel garbage collection When a garbage collection is requested,

all user threads are stopped. Then multiple threads cooperatively

perform the collection. We hereby shrink the time of a single garbage

collection (For now, we do not support so-called `concurrent garbage

collection' by which we mean garbage collection that runs concurrently
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with the application. We instead `parallelize' a single collection, as-

suming the application is stopped during a collection).

There are some functions that exist in the original version but are missing

in the parallel version. There are also some changes in their interfaces. For

example, we require the user program to explicitly call the initialization

function at appropriate points.

A.1 Supported Environments

The SGC library currently works on the following environments.

� Solaris on SPARC (v8plus or higher) processor

� Solaris on Intel (Pentium or higher) processor

� Linux on Intel (Pentium or higher) processor

� IRIX on MIPS (MIPS II or higher) processor

A.2 Description of API

The user program must include sgc.h (sgc cpp.h for C++ programs).

All functions are thread-safe. Public variables such as GC free space divisor

are shared by all threads. Thus, changes by one thread are visible to all

threads. It is the responsibility of the programmer to safely share these

variables among threads.

SGC init(int ngcp, SGC attr t *attrp) initializes the garbage col-

lector. This must be called exactly once, before any GC function is called.

The library uses NGCP threads for garbage collection. Currently ATTRP

must be NULL.

int GC pthread create(...) is valid only when the library is com-

piled for the pthread version. It is a replacement of pthread create. It

creates new thread. Do not directly use pthread create. Parameters and

return values are the same as pthread create.

int GC pthread join(...) is valid only when the library is compiled

for the pthread version. It is a replacement of pthread join. It waits for
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thread termination. Do not directly use pthread join. Parameters and re-

turn values are the same as pthread create.

int GC thr create(...) and int GC thr join(...) are valid only

when the library is compiled for the Solaris thread version. They are re-

placements of thr create or thr join. Parameters and return values are the

same as thr create or thr join.

pid t GC sproc(...) and pid t GC sprocsp(...) are valid only when

the library is compiled for the sproc version. They are replacements of the

`sproc' and `sprocsp' in IRIX. It creates a new process that shares the heap.

Do not directly use sproc. Parameters and return values are the same as

sproc. You must use PR SADDR option, because the sproc version library

assumes shared address space.

pid t GC wait(...) and pid t GC waitpid(...) are valid only when

the library is compiled for the sproc version. They are replacement of the

`wait' or `waitpid' in Unix. It waits for process termination. Do not directly

use wait or waitpid. Parameters and return values are the same as wait or

waitpid.

void *GC malloc(size t size) allocates SIZE bytes of memory. The

allocated object is automatically freed when it becomes unreachable.

void *GC malloc atomic(size t size) is similar to GC malloc, but

GC malloc atomic assumes that there are no pointers relevant to GC.

void *GC malloc uncollectable(size t size) is similar to GC malloc,

but the allocated object is not automatically freed.

void *GC malloc atomic uncollectable(size t size) is simliar to GC malloc,

but the allocated object is treated as atomic (pointer-free), and not auto-

matically freed.

void GC free(void *object) explicitly frees the object allocated by

GC malloc and friends.

int GC expand hp(size t size) explicitly expands heap size.

void GC gcollect() explicitly invoke a garbage collection.

void GC add roots(char *low, char *high) registers the region from

low and high as a root.

void GC clear roots() removes all roots added by GC add roots.

void GC register finalizer(GC PTR obj, GC finalization proc fn,

GC PTR cd, GC finalization proc* ofn, GC PTR *ocd) registers a �nal-
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izer. The �nalizer is a user-de�ned function that are called automatically

when associated object is reclaimed.

int GC free space divisor controls the frequency of garbage collec-

tions (the default is 4).

int GC dont gc controls invocation of garbage collections. When set

to 1, garbage collector never performs garbage collection even if the heap

over
ows. It instead expands the heap (the default is zero).

int GC gc no counts the number of GCs.
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