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ABSTRACT
In order to implement algorithms on processors with deep cache
hierarchy, the cache oblivious approach, which is based on recur-
sive divide and conquer, is considered to be promising. This paper
focuses on single-node implementation of Floyd-Warshall (FW)
algorithm, which is an important graph computation kernel. For
higher performance, another facility of modern processors, SIMD
instructions need to be integrated to recursive approach efficiently.
This paper describes a methodology to construct recursive imple-
mentations that takes architecture with SIMD and multi-core into
account while harnessing cache. The experiment shows our FW
implementation exhibits around 1.1 TFlops on a dual-socket Sky-
Lake machine and 700 GFlops on a Xeon Phi machine, both of
which have AVX512 SIMD ISA.

CCS CONCEPTS
• Computing methodologies → Parallel algorithms; • Com-
puter systems organization → Parallel architectures.
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1 INTRODUCTION
In recent modern computer architecture, memory access tends to
become performance bottleneck inwide range of applications. Due
to this problem, often called “memory wall” problem [1], it is the
key to harness cache memory hierarchy in order to alleviate mem-
ory access costs. In this context, one of standard techniques is cache
blocking, withwhich each processor core performs computation on
a smaller block that fits within cache size. The technique has been
widely used to accelerate dense linear algebra[2–4], sparse linear
algebra[5, 6], stencil computation[7–9], graph algorithms[10, 11]
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and so on. In order to realize efficient cache blocking, the imple-
mentation should take care of capacity of each cache level, which
can be different among processor products. Also different proces-
sors may have different number of cache levels, while they support
the same instruction set architecture (ISA), such as Intel SkyLake
Xeonwith three level cache and Xeon Phi with two level cache[12].

As more architecture independent direction, cache oblivious ap-
proach has been proposed[13]. The approach is based on recursive
divide and conquer strategy and can make the working set size
fit each cache level automatically without specifying cache sizes
as architecture parameters. Theoretical analyses on the amount of
cachemisses have beenmade for several algorithms[14–17].While
this approach has been successful both in theory and implemen-
tation on modern architecture with deeper cache/memory hierar-
chy, not many studies on the relationship with SIMD parallelism,
another feature in modern processors, have been done. Without
using SIMD parallelism, we cannot bring out high performance of
processors.

This paper focuses on the all-pairs shortest path (APSP) prob-
lem, which is an important kernel of graph analysis area. And we
take the Floyd-Warshall (FW) algorithm, one of well-known algo-
rithms for APSP and describe a single-node implementation on top
of multi-core processors that have AVX512 SIMD ISA. The FW al-
gorithm has been shown to achieve high performance by using
SIMD parallelism, it significantly suffers from access costs to main
memory[11]. Our implementation harnesses two types of paral-
lelism, SIMD parallelism and multi-core parallelism, while miti-
gating access to main memory largely by using cache oblivious
approach. The basic idea is that we use high performance kernels
tuned with SIMD instructions as the basis of the recursive call.
Multi-core parallelism is also harnessed naturally by embedding
task creation in the recursion. Due to this design, the implementa-
tion is not fully architecture independent despite the original idea
of the cache oblivious approach. The experiment shows our im-
plementation exhibits around 1.1 TFlops on a dual-socket Skylake
Xeon machine and 700 GFlops on a Xeon Phi machine (single pre-
cision).

The main contributions of this paper are as follows:

• Amethod to implement high performance algorithmonmod-
ern processors by combining cache oblivious approach and
SIMD parallelism is described.

• As a case study, an implementation of FW algorithm is de-
scribed. The performance reaches 22% of the peak perfor-
mance (44% if FMADD is not considered) with 32 SkyLake
cores. A developing version of the implementation is pub-
licly available at
https://github.com/toshioendo/hoalgos.
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1: procedure FW(D)
2: for k = 0, . . . ,N − 1 do
3: for i = 0, . . . ,N − 1 do
4: for j = 0, . . . ,N − 1 do
5: if D[i, j] > D[i,k] + D[k, j] then
6: D[i, j] = D[i,k] + D[k, j]

Figure 1: A simple FW algorithm

2 BACKGROUND AND RELATEDWORK
2.1 Floyd-Warshall Algorithm
The Floyd-Warshall (FW) algorithm computes the shortest paths
between all pairs of N vertexes of a given directed graph in com-
pute complexity of O(N 3). The input of the algorithm is a dense
N × N matrix D, where Di , j is the length of an edge from i to j. If
there is no edge from i to j, Di , j is set to an infinity (often imple-
mented as a very large positive number).

Figure 1 shows a simple algorithm of FW. After its execution,
the matrix D contains the shortest path length of each vertex pair.
This algorithm, which is based on triply nested loop, has a similar
structure to dense matrix-matrix multiplication (MM) algorithm.
However, since the computation in this algorithm is done in-place,
data dependency that does not appear in MM has to be considered
in blocked or divide-and-conquer implementation.

Considering such dependency, blocked algorithms[10] and re-
cursive divide-and-conquer algorithms[17–19] have been proposed.
Figure 2 is an overview of recursive implementation. The algo-
rithm starts from FW function that calls FW-REC function with
specifying the input matrix D as three parameters. In FW-REC,
three matrices are divided (lines 11 to 13) as shown in Figure 3,
and FW-REC is called recursively for eight times (lines 14 to 21).
In actual implementation, matrix division does not trigger copying
of contents; instead, indices of matrices are used to locate partial
matrices to be computed. If the matrices are “sufficiently” small,
FW-BASE is called as the base case to stop recursion. The function
is similar to that in Figure 1, but input matricesA,B may be differ-
ent from the output C , while A and/or B may be same as C (alias
cases).

Park et al.[17] have theoretically studied memory access traffic
with the cache sizeC and shown that the divide-and-conquer algo-
rithm achieves the traffic amount of Ω(N 3/

√
C), which is asymp-

totically optimal. This is achieved without knowledge of architec-
ture parameters such as C , thus this algorithm is cache-oblivious.
Also several reports have shown this approach works efficiently
through experimentation. On the other hand, not many studies on
the relationship with SIMD instructions, which are keys to harness
plenty of ALUs equipped to modern processors.

2.2 Target Processors with AVX-512 SIMD
Instructions

In this paper, wemainly use an Intel Xeon SkyLakemachine and an
Xeon Phi KNL machine, whose specifications are shown in Table1.
Both machines support Intel’s recent SIMD instruction set, called
AVX-512[20], the successor of SSE/AVX/AVX2. Especially, this pa-
per focuses on float (FP32) data type and avx512f subset is used.

1: procedure FW-Base(A,B,C)
2: for k = 0, . . . , BS − 1 do
3: for i = 0, . . . , BS − 1 do
4: for j = 0, . . . , BS − 1 do
5: if C[i, j] > A[i,k] + B[k, j] then
6: C[i, j] = A[i,k] + B[k, j]
7: procedure FW-Rec(A,B,C)
8: if A,B,C is smaller than a threshold then
9: FW-Base(A,B,C)
10: else
11: Divide A into A00,A01,A10,A11
12: Divide B into B00,B01,B10,B11
13: Divide C into C00,C01,C10,C11
14: FW-Rec(A00,B00,C00)
15: FW-Rec(A00,B01,C01)
16: FW-Rec(A10,B00,C10)
17: FW-Rec(A10,B01,C11)
18: FW-Rec(A11,B11,C11)
19: FW-Rec(A11,B10,C10)
20: FW-Rec(A01,B11,C01)
21: FW-Rec(A01,B10,C00)
22: procedure FW(D)
23: FW-Rec(D,D,D)

Figure 2: Overview of recursive divide-and-conquer FW al-
gorithm. BS in FW-BASE is the small problem size in base
cases.

Figure 3: Division of matrices in FW-REC function.

With AVX-512, each core has 32 512-bit registers called ZMM reg-
isters, while the previous AVX2 provides 16 256-bit registers. Users
can pack 16 float (FP32) elements or 8 double (FP64) elements into
a single ZMM register. AVX-512 provides instruction set to ma-
nipulate the ZMM registers. For example, the vaddpd instruction,
which is expressed by the _m512_add_ps(a, b) intrinsic function
in C/C++, executes 16 summation operations to each float element
of packed a and b.
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Table 1: The target machines. In the evaluation in the paper,
turbo boost is off.

SkyLake machine KNL machine
# of CPUs/machine 2 1
CPU Xeon Gold 6140 Xeon Phi 7210

(SkyLake) (Knights Landing)
# of cores/CPU 18 64
Clock (base) 2.3GHz 1.3GHz
L1D cache 32KiB/core 32KiB/core
L2 cache 1MiB/core 1MiB/2-cores
L3 cache 24.75MiB/CPU (none)
Supported SIMD avx512f, avx512dq, avx512f, avx2, etc.

avx2, etc.
Peak perf/core
- double (FP64) 73.6GFlops 41.6GFlops
- float (FP32) 147.2GFlops 83.2GFlops
Peak perf/CPU
- double (FP64) 1326GFlops 2662GFlops
- float (FP32) 2652GFlops 5324GFlops
MCDRAM Memory (none) 8channels
Capacity 16GiB
Bandwidth ∼500GB/s
DDR4 Memory DDR4-2666 6ch × 2 DDR4-2400 6ch
Capacity 192GiB 192GiB
Bandwidth 256GB/s 115GB/s
OS CentOS 7.6 CentOS 7.3
Compiler Intel 19.0.2 Intel 19.0.2

With SIMD instructions, the FP32 peak performance of the Sky-
Lake machine in Table1 is calculated as follows. Here, we assume
the clock frequency is fixed at the base clock, 2.3GHz1. While each
typical SIMD operation can execute 16 FP32 operations, a fused
multiply-add (FMADD) operation such as _mm512_fmadd_ps exe-
cutes 16×2 (=mul+add) operations. The later is usually counted to
calculate peak performance. Also each core has twoAVX-512 units.
In total, the core peak performance is calculated as 16×2×2 2.3GHz
= 147.2GFlops. Thus peak with two SkyLake CPUs (18 × 2 cores)
is 5.3TFlops. Through the similar discussion, FP16 peak perfor-
mance of KNL machine is 83.2GFlops per core and 5.32TFlops to-
tally. However, if the target software cannot utilize FMADD op-
erations, the upper limit of performance is the half of the above
theoretical number. FW algorithm with SIMD extension described
below falls under this category.

There is a significant difference between the SkyLake machine
and the KNL machine in memory hierarchy. First, the former has 3
level caches, while the latter has 2 level caches. On the other hand,
the KNL machine has two types of main memory layer; a com-
monDDR4-DRAM layer and anMCDRAM layerwith higher band-
width. Xeon Phi provides several configuration modes for main
memory; this paper uses the “flat” mode, where DDR4 and MC-
DRAM are logically flat and each layer corresponds to a NUMA
node.
1According to Intel’s white paper, clock frequency when AVX-512 instructions are
running is lower than the base clock frequency[21]. In this discussion, this slow down
is ignored for simplicity

1: procedure FW-Base-SIMD(A,B,C)
2: for k = 0, . . . , BS − 1 do
3: for i = 0, . . . , BS − 1 by 16 do
4: a = _mm512_loadu_ps(&A[i,k])
5: for j = 0, . . . , BS − 1 do
6: b = _mm512_set1_ps(B[k, j])
7: c = _mm512_loadu_ps(&C[i, j])
8: sum =_mm512_add_ps(a,b)
9: mask =_mm512_cmp_ps_mask
10: (sum, c, _CMP_LT_OQ)
11: _mm512_mask_storeu_ps(&C[i, j],mask, sum)

Figure 4: Pseudo-code of a kernel function for a block size
of BS with AVX-512 operations by Rucci et al.[11] Modified
for explanation.

2.3 FW Implementation with AVX-512
Using AVX-512 instructions, Rucci et al. has described a blocked,
non-recursive implementation of FW algorithm [11] . The pseudo
code of the kernel for a block size of BS is shown in Figure 4, which
is slightly modified for explanation. In this paper, the matrix is
aligned in column-major order. As described in above, since the
input blocks A,B,C may be aliased, k-loop is at outermost to pre-
serve dependency.

The basic idea of this kernel is to compute 16 consecutive el-
ements in C , which are Ci , j ,Ci+1, j , . . . ,Ci+15, j at once by using
values ofAi ,k ,Ai+1,k , . . . ,Ai+15,k and Bk , j . In lines 4 and 7, 16 el-
ements inA andC are loaded from memory and packed into SIMD
registers, a and c , respectively. For B, a single element Bk , j is used
for 16 operations. For this reason, this element is broadcast to all
16 elements in b by _mm512_set1_ps operation (line 5). Then sum,
summation of a and b, is computed and then compared with c by
using a “mask’ register. Now a[s] (0 ≤ s ≤ 15) denotes s-th element
of a single SIMD register a. The operation in lines 9–10 means
mask[s] = 1i f sum[s]<c[s] for all s . In line 11, elements of C on
memory is updated by sum[s] ifmask[s] == 1.

The number of floating operations of this kernel is 2BS3, count-
ing add and compare operations. For the entire FW algorithm, that
is 2N 3.

Rucci et al. have evaluated the performance on a Xeon Phi KNL
machine and achieved up to 338GFlops with MCDRAM memory.

3 RECURSIVE FW IMPLEMENTATIONWITH
SIMD

3.1 Single-core Implementation
This section describes our Floyd-Warshall implementation based
on cache-oblivious approach for a single core. Our starting point
is a combination of recursive call described in Figure 2 and anAVX-
512 based kernel in Figure 4. A simple combination, however, still
suffers from slow down caused by property of machine architec-
ture. Hereafter, we describe several techniques to improve the per-
formance. Many of them are well known in the area of dense linear
algebra software, and we will demonstrate that those techniques
have significant impacts on the divide-and-conquer FW algorithm.
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3.1.1 Block-Aligned Recursive Division and Block Size. In the orig-
inal recursive algorithm, the input matrix size N is divided into
half repeatedly until the size gets smaller than a threshold. Then
the small block is computed by the base function. The division size
there, BS in functions in Figures 2 and 4, should be a multiple of 16,
which is the number of float elements in a SIMD register. In order
to achieve this, we keep the division size to be a multiple of 16 in
every recursive call, as far as possible.

The value of BS is configured to be 64, unless otherwise noted.

3.1.2 Using Block Data Layout. Algorithms described so far as-
sume that the input matrix is in the column-major format. Using
this format, algorithm suffers slow down by the following reasons.
First, even if the algorithm processes smaller blocks than cache
capacity, it may suffer from conflict cache miss costs when data el-
ements in each block are scattered. Secondly, if N is indivisible by
16, memory accesses in lines 4, 7 and 11 in Figure 4 are unaligned
accesses, significantly slower than aligned accesses.

To alleviate those memory access costs, we transform the ma-
trix into block data layout[22, 23]. This layout assumes that the
block size BS is predefined, and BS ×BS elements in each block are
placed contiguously on memory. When each block is sufficiently
smaller than cache size, conflict misses are minimized. Also when
BS is amultiple of 16 (BS = 64 in this paper), unaligned accesses are
avoided.When this technique is adopted, we suffer from transform
cost of O(N 2), but it is asymptotically smaller than FW computa-
tion cost of O(N 3).

3.1.3 Second Kernel with Register Blocking. In FW, k-loop must be
at the outermost in order to preserve data dependency. Thus the
SIMD kernel in Figure 4 has the same structure, and the contents
of a SIMD register c is written back to the matrix in each itera-
tion. These access are expected to be cache-hit accesses, however,
cache access costs are larger than costs of register manipulation.
This kernel, which writes back c to the matrix frequently, is too
pessimistic when A,B,C are not aliased and different from each
other.

Improving performance of those “non-aliased” cases is impor-
tant, since such cases are major in the entire FW algorithm. The
number of kernel calls for “aliased” cases is only O((N /BS)2), out
of O((N /BS)3) total kernel calls.

For non-aliased cases, we have implemented another kernel func-
tion that minimizes load/store operations as shown in Figure 5.
Since there is no possibility for aliases, we have more choices for
the order of loops. Here there are i, j-loops outside of k-loop. In
lines 4-32, we focus on a 16×16 small block inC , smaller than aBS×
BS block. Here we use 16 SIMD registers, denoted as c0, c1, · · · , c15
in the code. They are used to accumulate temporary results and
this technique is a kind of register blocking [24, 25].

First, all elements in c0, c1, · · · , c15 are initialized by infinity (a
very large positive value in the implementation). Then for each
k , a local result that corresponds to Ci+ii , j+j j is accumulated to
the ii-th element of cjj (lines 8-21). After k-loop finishes, values
of c0, c1, · · · , c15 are reflected to the matrix C . Here occurs com-
parison between SIMD registers again (lines 22-32). This way, this
kernel writes back results to C much less frequently than that in
Figure 4.

1: procedure FW-Base-RegBlock(A,B,C)
2: for i = 0, . . . , BS − 1 by 16 do
3: for j = 0, . . . , BS − 1 by 16 do
4: c0 = _mm512_set1_ps (∞)
5: · · ·
6: c15 = _mm512_set1_ps (∞)
7: for k = 0, . . . , BS − 1 do
8: a = _mm512_loadu_ps (&A[i,k])
9: // for c0
10: b = _mm512_set1_ps(B[k, j + 0])
11: sum =_mm512_add_ps(a,b)
12: mask =_mm512_cmp_ps_mask
13: (sum, c0, _CMP_LT_OQ)
14: c0 = _mm512_mask_blend_ps(mask, c0, sum)
15: · · ·
16: // for c15
17: b = _mm512_set1_ps(B[k, j + 15])
18: sum =_mm512_add_ps(a,b)
19: mask =_mm512_cmp_ps_mask
20: (sum, c15, _CMP_LT_OQ)
21: c15 = _mm512_mask_blend_ps(mask, c15, sum)
22: // for c0
23: tmpc = _mm512_loadu_ps(&C[i, j + 0])
24: mask =_mm512_cmp_ps_mask
25: (c0, tmpc, _CMP_LT_OQ)
26: _mm512_mask_storeu_ps(&C[i, j + 0],mask, c0)
27: · · ·
28: // for c15
29: tmpc = _mm512_loadu_ps(&C[i, j + 15])
30: mask =_mm512_cmp_ps_mask
31: (c15, tmpc, _CMP_LT_OQ)
32: _mm512_mask_storeu_ps(&C[i, j + 15],mask, c15)

Figure 5: A kernel function with AVX-512 operations that
have fewer load/store memory accesses. This works cor-
rectly only if A,B,C are not aliased (different from each
other).

Weused the small block size of 16×16. While the first dimension
comes from the number of float elements, the second dimension,
which corresponds to the number of accumulators, can be tuned.
However, we should not choose too large number since a single
core has only 32 SIMD registers.

3.2 Multi-core Implementation
This section extends the divide-and-conquer FW implementation
describe above to harness multi-core parallelism. We can paral-
lelize this algorithm by using parallel task creation. For this pur-
pose, we use the omp task directive in OpenMP API. Here we
should consider data dependency among sub tasks, which is more
strict in “aliased” cases than in “non-aliased” cases.

Figure 6 shows the pseudo code. Lines 9-22 show recursive calls
in “aliased” cases. When all of A,B,C are the same sub matrix, the
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1: procedure FW-Parallel-Rec(A,B,C)
2: if A,B,C is smaller than a threshold then
3: FW-Base(A,B,C)
4: else
5: Divide A into A00,A01,A10,A11
6: Divide B into B00,B01,B10,B11
7: Divide C into C00,C01,C10,C11
8: if location of C is same as that of A or B then
9: FW-Parallel-Rec(A00,B00,C00)
10: #pragma omp task
11: FW-Parallel-Rec(A00,B01,C01)
12: #pragma omp task
13: FW-Parallel-Rec(A10,B00,C10)
14: #pragma omp taskwait
15: FW-Parallel-Rec(A10,B01,C11)
16: FW-Parallel-Rec(A11,B11,C11)
17: #pragma omp task
18: FW-Parallel-Rec(A11,B10,C10)
19: #pragma omp task
20: FW-Parallel-Rec(A01,B11,C01)
21: #pragma omp taskwait
22: FW-Parallel-Rec(A01,B10,C00)
23: else
24: #pragma omp task
25: FW-Parallel-Rec(A00,B00,C00)
26: #pragma omp task
27: FW-Parallel-Rec(A00,B01,C01)
28: #pragma omp task
29: FW-Parallel-Rec(A10,B00,C10)
30: #pragma omp task
31: FW-Parallel-Rec(A10,B01,C11)
32: #pragma omp taskwait
33: #pragma omp task
34: FW-Parallel-Rec(A11,B11,C11)
35: #pragma omp task
36: FW-Parallel-Rec(A11,B10,C10)
37: #pragma omp task
38: FW-Parallel-Rec(A01,B11,C01)
39: #pragma omp task
40: FW-Parallel-Rec(A01,B10,C00)
41: #pragma omp taskwait

Figure 6: Parallel recursive divide-and-conquer FW algo-
rithm. with parallel task creation.

algorithm has most severe dependencies2. First we compute C00,
aliased withA00 and B00 (line 9). By using the results, we can com-
pute C01 and C02. These two computation can be done in parallel
(lines 10-13). Then we have to wait until two tasks with taskwait
directive (line 14) and then we computeC11 (line 15). In latter half,
we do the similar computation from C11 (lines 16-22).

2If we consider cases where only two matrices are aliased, we could alleviate the
dependency. The current implementation does not distinguish such cases since its
effects on performance are minor

Figure 7: Performance with different block sizes on SkyLake
1core.

The parallel algorithm in “non-aliased” cases (lines 24-41) is sim-
pler; 4 computations in the first half are done in parallel, and then
computations in the latter half are done in parallel.

In recursive task creation, it is widely known that it has an
advantage to stop task creation when the sub problem size gets
smaller than a dedicated threshold, since task creation costs are
suppressed. In our case with the compiler described in Table 1,
however, we observed the highest performance if we create tasks
until the sub problem size reachesBS , when the recursive call stops.

4 PERFORMANCE EVALUATION
4.1 Evaluation Conditions
This section describes performance evaluation of our FW imple-
mentation using SIMD instructions on a SkyLake machine and a
KNL machine described in Table 1. On a KNL machine, we use
“Flat”memorymode, inwhichDDR4memory andMCDRAMmem-
ory are visible as two NUMA nodes. We show performance for
when only DDR4 is used and MCDRAM is used. For this purpose,
numactl Linux command is used to configure memory allocation
policy.

4.2 Single-core Performance
First, we evaluate performance of our recursive implementation
with several block sizes (BS) on a single core of the SkyLake ma-
chine (Figure 7). The x-axis of the graph corresponds to the prob-
lem size N and its y-axis is the performance in GFlops. Here we
observe that BS = 64 exhibits higher performance than BS = 16
or BS = 32, while BS = 128 suffers slow down. In the best case of
BS = 64, 42.6GFlops speed is achieved, which is 29% of peak per-
formance of a single core, 147.2GFlops. As described in Section 2.2,
for FW algorithm which does not use FMADD operations, the the-
oretical upper limit is halved and 73.6GFlops. Based on this value,
the performance ratio is 58%3. Hereafter, we let BS = 64.

3Considering AVX-512 clock lower than base clock, the ratio is even higher
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Figure 8: Effects of optimization techniques on performance
on SkyLake 1core.

Figure 9: Effects of optimization techniques on performance
on KNL 1core. DDR4 memory is used.

Figure 10: Effects of optimization techniques on perfor-
mance on KNL 1core. MCDRAMmemory is used.

Next, we evaluate effects of optimization techniques described
in Section 3.1 on performance . The followings are compared on
each machine configuration:

Rec-OPT: Recursive algorithm with optimization techniques.
NonRec-OPT: Blocked, non-recursive algorithm. Optimiza-

tion techniques, block data layout (Section 3.1.2) and reg-
ister blocking kernel (Section 3.1.3) are used.

Rec-NoBDL: Recursive algorithm. Block data layout (BDL)
optimization is omitted.

Rec-NoRBK: Recursive algorithm. Usage of register blocking
kernel (RBK) in non-aliased cases is omitted; a SIMD kernel
in Figure 4 is always used.

NoBlocking: No blocking technique is used; this evaluation is
done by applying the SIMDkernel to the entire inputmatrix.

Figures 8, 9, 10 show results on the SkyLake machine, the KNL
machine (MCDRAM), the KNL machine (DDR4) machine, respec-
tively. We observe that without blocking (NoBlocking), the perfor-
mance is tremendously worse in all cases, although it works rea-
sonably with very small matrices. The performance curves are dif-
ferent between SkyLake and KNL. While there is heavy slowdown
N = 512 on KNL, the performance decrease is gradual on Sky-
Lake.We consider this is due to absence of L3 cache on KNL;When
N = 512, the matrix size reaches 1MiB, which is equal to L2 cache
size on KNL. On SkyLake, we consider that larger L3 cache works
to alleviate the slowdown.

The optimized recursive algorithm (Rec-OPT ) achieves the best
performance and stable against varying N . This demonstrates that
recursive divide-and-conquer approach makes algorithms oblivi-
ous to cache/memory hierarchy. It achieves 42.6GFlops on Sky-
Lake, 12.7GFlops on KNL with MCDRAM and 12.9GFlops on KNL
with DDR4. On KNL, the performance ratio is around 15% (when
half of peak is based, it is around 30%), while it is 29% on SkyLake.
The reasons of this difference between SkyLake and KNL shall be
analyzed in the near future.

The non-recursive blocked algorithm (NonRec-OPT ) also works
fairly well, and shows similar high performance when N < 2048.
However, it suffers from slowdown up to 11% with larger N . We
consider this reason as follows: by blocking with size BS , the al-
gorithm can use L1 cache efficiently. On the other hand, when the
size of a sub-matrix N × BS (0.5MiB with N = 2048,BS = 64) gets
close to or larger than L2/L3 cache, non-recursive algorithm has a
disadvantage compare with the recursive version.

Next, we evaluate the effect of the block data layout (BDL) op-
timization. The performance of Rec-NoBDL is lower than Rec-OPT.
More notable feature is that it suffers heavy slow down when N
is a multiple of 1024. When N = 4096, Rec-NoBDL is 50% and
80% slower than Rec-OPT on SkyLake and KNL, respectively. As
described in Section 3.1.2, it is natural to consider this is due to
conflict cache misses. The transformation of layout is necessary to
make the performance stable against the change of problem sizes.

The performance of Rec-NoRBK explains the impact of using
register blocking kernel (RBK). The performance is stable against
N , however, it is significantly slower than Rec-OPT. Basically, the
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Figure 11: Effects of optimization techniques on parallel
performance on SkyLake. 32 cores are used.

Figure 12: Effects of optimization techniques on parallel
performance on KNL. 64 cores and DDR4 memory is used.

performance ratio of the two gets closer to ratio of the two ker-
nels in Figure 4 and Figure 5 with sufficiently large N , since “non-
aliased” cases are the majority. The difference is 24% on SkyLake
and 48% on KNL.

4.3 Multi-core Performance
This section evaluates multi-core algorithm described in Section
3.2. Figures 11, 12, 13 shows performance with 32 cores on the Sky-
Lake machine, that with 16 cores on the KNL machine with DDR4
memory, and that on the same condition with MCDRAMmemory,
respectively.

On SkyLake, Rec-Opt achieves 1117GFlops at N = 65536 with
32 cores, which is 28.2 times higher than 1-core case. On KNL, the
performance is 686-687GFlops with 64 cores, 53-54 times higher
than 1-core case. Unlike in the single-core case, the performance
largely depends on N .

We observe performance of NonRec-Opt is more stable against
N . We consider the difference in behavior between the two comes

Figure 13: Effects of optimization techniques on parallel
performance on KNL. 64 cores and MCDRAM memory is
used.

from difference in costs of “omp task” directive frequently used
in Rec-Opt and “omp for” in NonRec-Opt. Performance of Rec-Opt
gets higher with larger N , and it gets over NonRec-Opt when N ≥
32768 on SkyLake. We see similar tendency on KNL, however, the
cross points are at different places. In the discussion so far, there
were not notable differences between MCDRAM and DDR4 on
KNL. Here we observe a difference in the performance of NonRec-
Out; it stays around 640GFlops with DDR4 and 660GFlops with
MCDRAM, which brings about different cross points between the
two.We consider this is caused by thatMCDRAMhas higher band-
width than DDR4.

We observe that the speed down in Rec-NoBDL is heavier than
in single-core case. We suppose this is due to costs for conflict
cache misses that occur in parallel, which increase demands for
main memory bandwidth. We observe differences here between
MCDRAM and DDR4 again; with DDR4, speeds of Rec-NoBDL are
20 to 30 GFlops when N is a multiple of 16384. With MCDRAM,
on the other hand, they are only around 10 GFlops. This contra-
dicts with the fact that MCDRAM has higher bandwidth; we will
investigate this point in future.

Rec-NoRBK shows a similar tendency to the single-core case.
On KNL, its speed is 365 GFlops at N = 65536, 47% lower than
Rec-Opt. This number is close to 338GFlops reported by Rucci et
al.[11]. This result indicates that the register blocking technique
is a key for high performance, even in the blocked algorithm with
sufficiently low cache miss ratio.

5 CONCLUSION
This paper described a parallel high performance implementation
of Floyd-Warshall (FW) algorithm. This is designed to harness prop-
erties of modern processors, deep cache hierarchy, SIMD paral-
lelism and multi-core parallelism. Its basic strategy is to combine
optimized kernels for AVX-512 and recursive divide-and-conquer
approach for cache-obliviousness. In addition to that, we have shown
that several techniques that are common in dense linear algebra
software are keys to improve performance. By integrating block
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data format and register blocking, the implementation achieved
1.1TFlops on a dual-socket Skylake machine and 700GFlops a KNL
machine.

We have reported a performance issue on multi-core version
when the problem size is not very large. In these cases, it is slower
than non-recursivemethodwith a traditional blocking. To improve
this, we will need task parallel runtimes with higher performance
and scalability.

Another issue is related to productivity of software. In spite of
the basic idea of cache-oblivious approach, which minimizes ar-
chitecture dependent parameters, our current implementation in-
cludes architecture dependent part. When we port this software to
architecture with different SIMD instruction sets, such as AVX-2,
ARM Neon and ARM scalable vector extension (SVE), we need to
rewrite kernels and optimize them. More portable way to generate
kernels (semi) automatically is required. Also it will be interest-
ing to utilize SVE, which supports different processor generations
with different vector length without changing binary code.

By harnessing knowledge and experiments through implemen-
tation of cache-oblivious FW algorithm, we will apply the tech-
niques to other applications, including graph problems with more
irregular structures, and kernels of deep learning andmachine learn-
ing.
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