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Architecture Trends
• Each processor has more and more cores

– Recent Xeon/EPYC have up to 56/64 cores
• Each core gains higher FLOPs with SIMD 

instructions
– AVX-2, AVX-512, SVE…

• In order to mitigate memory-wall problem, 
modern architecture tends to have
– Deeper cache hierarchy

• L1  L2  L3 Main memory
– Hybrid memory including High-bandwidth 

memory or NVM

 Algorithm kernels has been & need to be 
reconsidered



Cache Blocking
• Cache blocking is one of standard techniques to 

improve locality
• Used to accelerate

– Dense/sparse linear algebra
– Stencil computation
– Graph algorithms, etc.

Block size
< Cache size

access 
pattern



Issues of Cache Blocking
• Block sizes need to be 

architecture aware
– Sizes of each cache level
– Number of cache levels

• cf: Typical HPC CPUs have 3 level, while 
Xeon Phi have 2 level

• If we support multi-level blocking, 
programming gets harder

Registers

Main Memory

L3 cache

L2 Cache

L1 Inst
Cache

L1 Data
Cache



Cache-Oblivious Approach
• Cache-oblivious approach has been proposed [Frigo et 

al. 99]
• Recursive divide & conquer is used to make the 

working set size fit size of each cache level

This approach makes algorithms more architecture 
independent
– Applied to linear algebra kernel, stencil, graph, FFT…



Locality is a Big Issue, But We Have More
• Cache oblivious approach improve locality for multiple 

level of caches
• However, we need to investigate whether it works well 

with considerations of other features in modern 
processors
– SIMD parallelism
– Multi/many core parallelism

Cache oblivious
approach

Aligned access 
for SIMD

Data layout
transformation

Multi-core
Parallelism

Optimization Techniques



Our Target Algorithm:
Floyd-Warshall Algorithm

Floyd-Warshall (FW)algorithm:
• A well-known algorithm for All-pairs Shortest Path 

(APSP) problem in graph analysis

Input

N

Output



Summary of This Work

• A high performance FW implementation is given
– Works with AVX-512 SIMD instructions
– Supports multi-core
– Based on cache-oblivious approach

• 1.1 TFlops on dual Skylake Xeon
• 700 Gflops on Xeon Phi KNL

– In single precision

• https://github.com/toshioendo/hoalgos



Non-Blocked FW Algorithm

N

D: a distance
matrix of size N

Complexity:
O(N3)

D[i,j]: the weight of 
the edge from i to j

D[i,j]: the length of
shortest path from i to j



(Non-Recursive) Blocked FW Algorithm
procedure FW-Blocking(D)

for k = 0 … N/BS-1
FW-BASE(Dkk, Dkk, Dkk)
for all Dkj

FW-BASE(Dkk, Dkj ,Dkj)
for all Dik

FW-BASE(Dik, Dkk, Dik)
for all Dij

FW-BASE(Dik, Dkj ,Dkj)

BS

Block D11

Base kernel (Block-wise)

Main algorithm



Recursive Blocking FW Algorithm
[Park et al. 04]

 Stop recursion
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Integration with Optimizations for 
Modern Processors

• So far, cache oblivious approach has been adopted
• Furthermore, we need to introduce optimizations for 

modern processors
– SIMD parallelism
– Data layout transformation
– Multi-core parallelism
– Kernel optimization with register blocking



Acceleration with 
AVX-512 SIMD Instructions

[Rucci et al. 17]

With AVX-512, 16 SP values
are computed at once

“min (c, a+b)” is achieved
by using a mask register

“c = min (c, a+b)”

BS should be a multiple of 16



Introducing Block Data Layout
• With cache blocking, memory access pattern is improved
• However, we may still suffer from conflict cache misses with 

the standard column major format
Block data layout is adopted
Layout transformation is done before&after FW computation

(performance measurement includes this overhead)

column major format block data layout

BS

Note: recursive division sizes 
should be a multiple of BS 

consecutive
memory
address



Acceleration with 
Muti-Core Parallelism

• OpenMP is used

procedure FW-Blocking(D)
for k = 0 … N/BS-1

FW-BASE(Dkk, Dkk, Dkk)
for all Dkj

FW-BASE(Dkk, Dkj ,Dkj)
for all Dik

FW-BASE(Dik, Dkk, Dik)
for all Dij

FW-BASE(Dik, Dkj ,Dkj)

Non-recursive blocked algorithm

omp for

omp for

omp for

Recursive blocked algorithm

omp task
omp task

omp taskwait

omp task
omp task

omp taskwait



Re-visiting Base Kernel (1)

Every element in C is read from/written to memory for BS times
This “inefficiency” is required preserve data dependency

– Data written to C in k-th step may be read (as A or B) in k’-th step (k’>k)
 Loop interchange is illegal in such cases

k loop is at outermost

16 elements are read from C

16 elements are written to C



Re-visiting Base Kernel (2)

Do we always need to preserve dependency? No!

Aliased cases
If (A=C and/or B=C), we have to 
preserve data dependency

 Blocks A, B are read and C is written

(1) A=B=C

(2) A!=B=C

(3) B!=A=C

Non-aliased cases
If (A!=C and B!=C), we have 
opportunities for loop 
interchange optimization

(4) A!=C && B!=C



Optimized Kernel with Loop 
Interchange and Register Blocking

Now k loop is
inner

16 accum
ulators

are used

After k loop finishes, memory
read/write to C occur 
only once per element

This kernel can be used only when A!=C and B!=C



Floyd-Warshall Implementations
Park et al. 04 Rucci et al. 17 Ours

Cache Blocking Yes Yes Yes
Recursive 

Cache Blocking
Yes - Yes

SIMD Parallelism - Yes Yes
Block Data Layout Yes ? Yes

Multi-core 
Parallelism

- Yes Yes

Register Blocking - - Yes



Experimental Environments
2 machines, both of which 
support AVX-512 are used
• 2-socket Xeon Skylake 
• Xeon Phi KNL



Block Size Configuration
• Even with cache oblivious approach, we still have to 

determine a single parameter, block size (BS)

From the result of preliminary
evaluation, we use BS=64BS=16

BS=32

BS=64

BS=128



Performance Evaluation: 
1-Core SkyLake

Non-Recursive
is good, but 
Recursive achieves
the fastest speed!!

Register blocking
contributes +30%
speed-up

W/o layout change,
we see slowdown
when N is a multiple of 1024

Faster



Performance Evaluation: 
1-Core KNL

We suffer from
heavier impacts of 
conflict misses!

Register blocking
contributes +100%
speed-up

Matrix D is put on MCDRAM; using DDR4 showed similar performance
(refer to the paper)

Faster



Performance Evaluation: 
(16+16)-Core SkyLake

Faster
Recursive version
exceeds 1.1TFlops!!

On the other hand, our recursive version gets slower with smaller N 
• Overhead of “omp task” ?

cross point



Performance Evaluation: 
64-Core KNL

Faster

~0.7TFlops !!

We see that slow-down with smaller N is heavier

Conflict misses make
execution completely
impractical

cross point



Peak Performance Ratio
• 2-socket Skylake:

– Measured: 1.117 TFlops
– Peak (SP): 5.304 TFlops
Peak perf ratio=21%
If we do not count FMAD in peak, ratio=42%

• KNL:
– Measured: 0.687 TFlops
– Peak (SP): 5.324 TFlops
Peak perf ratio=13%
If we do not count FMAD in peak, ratio=26%

NOTE: In FW, FMAD cannot be used efficiently



Summary

• A high performance FW implementation is given
– Cache-oblivious approach is integrated with

• SIMD parallelism
• Multi-core parallelism
• Data layout transformation
• Register blocking with careful algorithm analysis

• Succeeds performance of state-of-art implementations
– 1.1 TFlops on dual Skylake Xeon
– 700 Gflops on Xeon Phi KNL

• In this experiment, MCDRAM and DDR4 worked similarly

https://github.com/toshioendo/hoalgos



Future Work
• Evaluation of other heterogeneous memory

– DIMM type 3D-Xpoint 

• Towards further performance implementation
– Reducing overhead of task creation by “omp task”
– Improving memory affinity

• Recursion + task creation works worse in this aspect
Need improved multi-task runtime

• Towards more “architecture-independent” implementation
– Our current version is free from cache-size parameter, but
– The base kernel depends on SIMD-type and width
 ARM SVE (scalable vector extension) looks attractive
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