
Integrating Cache Oblivious Approach
with Modern Processor Architecture:
The Case of Floyd-Warshall Algorithm

Toshio Endo (遠藤敏夫)
GSIC, Tokyo Institute of Technology (東京工業大学)

Supported by NEDO and RWBC-OIL, AIST

Architecture Trends
• Each processor has more and more cores

– Recent Xeon/EPYC have up to 56/64 cores
• Each core gains higher FLOPs with SIMD

instructions
– AVX-2, AVX-512, SVE…

• In order to mitigate memory-wall problem,
modern architecture tends to have
– Deeper cache hierarchy

• L1 L2 L3 Main memory
– Hybrid memory including High-bandwidth

memory or NVM

 Algorithm kernels has been & need to be
reconsidered

Cache Blocking
• Cache blocking is one of standard techniques to

improve locality
• Used to accelerate

– Dense/sparse linear algebra
– Stencil computation
– Graph algorithms, etc.

Block size
< Cache size

access
pattern

Issues of Cache Blocking
• Block sizes need to be

architecture aware
– Sizes of each cache level
– Number of cache levels

• cf: Typical HPC CPUs have 3 level, while
Xeon Phi have 2 level

• If we support multi-level blocking,
programming gets harder

Registers

Main Memory

L3 cache

L2 Cache

L1 Inst
Cache

L1 Data
Cache

Cache-Oblivious Approach
• Cache-oblivious approach has been proposed [Frigo et

al. 99]
• Recursive divide & conquer is used to make the

working set size fit size of each cache level

This approach makes algorithms more architecture
independent
– Applied to linear algebra kernel, stencil, graph, FFT…

Locality is a Big Issue, But We Have More
• Cache oblivious approach improve locality for multiple

level of caches
• However, we need to investigate whether it works well

with considerations of other features in modern
processors
– SIMD parallelism
– Multi/many core parallelism

Cache oblivious
approach

Aligned access
for SIMD

Data layout
transformation

Multi-core
Parallelism

Optimization Techniques

Our Target Algorithm:
Floyd-Warshall Algorithm

Floyd-Warshall (FW)algorithm:
• A well-known algorithm for All-pairs Shortest Path

(APSP) problem in graph analysis

Input

N

Output

Summary of This Work

• A high performance FW implementation is given
– Works with AVX-512 SIMD instructions
– Supports multi-core
– Based on cache-oblivious approach

• 1.1 TFlops on dual Skylake Xeon
• 700 Gflops on Xeon Phi KNL

– In single precision

• https://github.com/toshioendo/hoalgos

Non-Blocked FW Algorithm

N

D: a distance
matrix of size N

Complexity:
O(N3)

D[i,j]: the weight of
the edge from i to j

D[i,j]: the length of
shortest path from i to j

(Non-Recursive) Blocked FW Algorithm
procedure FW-Blocking(D)

for k = 0 … N/BS-1
FW-BASE(Dkk, Dkk, Dkk)
for all Dkj

FW-BASE(Dkk, Dkj ,Dkj)
for all Dik

FW-BASE(Dik, Dkk, Dik)
for all Dij

FW-BASE(Dik, Dkj ,Dkj)

BS

Block D11

Base kernel (Block-wise)

Main algorithm

Recursive Blocking FW Algorithm
[Park et al. 04]

 Stop recursion

A00 A01

A10 A11

B00 B01

B10 B11

C00 C01

C10 C11

A00 A01

A10 A11

B00 B01

B10 B11

C00 C01

C10 C11

1st half

2nd half

Integration with Optimizations for
Modern Processors

• So far, cache oblivious approach has been adopted
• Furthermore, we need to introduce optimizations for

modern processors
– SIMD parallelism
– Data layout transformation
– Multi-core parallelism
– Kernel optimization with register blocking

Acceleration with
AVX-512 SIMD Instructions

[Rucci et al. 17]

With AVX-512, 16 SP values
are computed at once

“min (c, a+b)” is achieved
by using a mask register

“c = min (c, a+b)”

BS should be a multiple of 16

Introducing Block Data Layout
• With cache blocking, memory access pattern is improved
• However, we may still suffer from conflict cache misses with

the standard column major format
Block data layout is adopted
Layout transformation is done before&after FW computation

(performance measurement includes this overhead)

column major format block data layout

BS

Note: recursive division sizes
should be a multiple of BS

consecutive
memory
address

Acceleration with
Muti-Core Parallelism

• OpenMP is used

procedure FW-Blocking(D)
for k = 0 … N/BS-1

FW-BASE(Dkk, Dkk, Dkk)
for all Dkj

FW-BASE(Dkk, Dkj ,Dkj)
for all Dik

FW-BASE(Dik, Dkk, Dik)
for all Dij

FW-BASE(Dik, Dkj ,Dkj)

Non-recursive blocked algorithm

omp for

omp for

omp for

Recursive blocked algorithm

omp task
omp task

omp taskwait

omp task
omp task

omp taskwait

Re-visiting Base Kernel (1)

Every element in C is read from/written to memory for BS times
This “inefficiency” is required preserve data dependency

– Data written to C in k-th step may be read (as A or B) in k’-th step (k’>k)
 Loop interchange is illegal in such cases

k loop is at outermost

16 elements are read from C

16 elements are written to C

Re-visiting Base Kernel (2)

Do we always need to preserve dependency? No!

Aliased cases
If (A=C and/or B=C), we have to
preserve data dependency

 Blocks A, B are read and C is written

(1) A=B=C

(2) A!=B=C

(3) B!=A=C

Non-aliased cases
If (A!=C and B!=C), we have
opportunities for loop
interchange optimization

(4) A!=C && B!=C

Optimized Kernel with Loop
Interchange and Register Blocking

Now k loop is
inner

16 accum
ulators

are used

After k loop finishes, memory
read/write to C occur
only once per element

This kernel can be used only when A!=C and B!=C

Floyd-Warshall Implementations
Park et al. 04 Rucci et al. 17 Ours

Cache Blocking Yes Yes Yes
Recursive

Cache Blocking
Yes - Yes

SIMD Parallelism - Yes Yes
Block Data Layout Yes ? Yes

Multi-core
Parallelism

- Yes Yes

Register Blocking - - Yes

Experimental Environments
2 machines, both of which
support AVX-512 are used
• 2-socket Xeon Skylake
• Xeon Phi KNL

Block Size Configuration
• Even with cache oblivious approach, we still have to

determine a single parameter, block size (BS)

From the result of preliminary
evaluation, we use BS=64BS=16

BS=32

BS=64

BS=128

Performance Evaluation:
1-Core SkyLake

Non-Recursive
is good, but
Recursive achieves
the fastest speed!!

Register blocking
contributes +30%
speed-up

W/o layout change,
we see slowdown
when N is a multiple of 1024

Faster

Performance Evaluation:
1-Core KNL

We suffer from
heavier impacts of
conflict misses!

Register blocking
contributes +100%
speed-up

Matrix D is put on MCDRAM; using DDR4 showed similar performance
(refer to the paper)

Faster

Performance Evaluation:
(16+16)-Core SkyLake

Faster
Recursive version
exceeds 1.1TFlops!!

On the other hand, our recursive version gets slower with smaller N
• Overhead of “omp task” ?

cross point

Performance Evaluation:
64-Core KNL

Faster

~0.7TFlops !!

We see that slow-down with smaller N is heavier

Conflict misses make
execution completely
impractical

cross point

Peak Performance Ratio
• 2-socket Skylake:

– Measured: 1.117 TFlops
– Peak (SP): 5.304 TFlops
Peak perf ratio=21%
If we do not count FMAD in peak, ratio=42%

• KNL:
– Measured: 0.687 TFlops
– Peak (SP): 5.324 TFlops
Peak perf ratio=13%
If we do not count FMAD in peak, ratio=26%

NOTE: In FW, FMAD cannot be used efficiently

Summary

• A high performance FW implementation is given
– Cache-oblivious approach is integrated with

• SIMD parallelism
• Multi-core parallelism
• Data layout transformation
• Register blocking with careful algorithm analysis

• Succeeds performance of state-of-art implementations
– 1.1 TFlops on dual Skylake Xeon
– 700 Gflops on Xeon Phi KNL

• In this experiment, MCDRAM and DDR4 worked similarly

https://github.com/toshioendo/hoalgos

Future Work
• Evaluation of other heterogeneous memory

– DIMM type 3D-Xpoint

• Towards further performance implementation
– Reducing overhead of task creation by “omp task”
– Improving memory affinity

• Recursion + task creation works worse in this aspect
Need improved multi-task runtime

• Towards more “architecture-independent” implementation
– Our current version is free from cache-size parameter, but
– The base kernel depends on SIMD-type and width
 ARM SVE (scalable vector extension) looks attractive

	Integrating Cache Oblivious Approach with Modern Processor Architecture: The Case of Floyd-Warshall Algorithm
	Architecture Trends
	Cache Blocking
	Issues of Cache Blocking
	Cache-Oblivious Approach
	Locality is a Big Issue, But We Have More
	Our Target Algorithm:�Floyd-Warshall Algorithm
	Summary of This Work
	Non-Blocked FW Algorithm
	(Non-Recursive) Blocked FW Algorithm
	Recursive Blocking FW Algorithm�[Park et al. 04]
	Integration with Optimizations for Modern Processors
	Acceleration with �AVX-512 SIMD Instructions�[Rucci et al. 17]
	Introducing Block Data Layout
	Acceleration with �Muti-Core Parallelism
	Re-visiting Base Kernel (1)
	Re-visiting Base Kernel (2)
	Optimized Kernel with Loop Interchange and Register Blocking
	Floyd-Warshall Implementations
	Experimental Environments
	Block Size Configuration
	Performance Evaluation: �1-Core SkyLake
	Performance Evaluation: �1-Core KNL
	Performance Evaluation: �(16+16)-Core SkyLake
	Performance Evaluation: �64-Core KNL
	Peak Performance Ratio
	Summary
	Future Work

