
Realizing Out-of-Core Stencil Computations
using Multi-Tier Memory Hierarchy

on GPGPU Clusters

Toshio Endo
Global Science Information and Computing Center,

Tokyo Institute of Technology, Japan
Email: endo@is.titech.ac.jp

Abstract—The memory wall problem is one of major obstacles
against the realization of extremely fast and large scale simu-
lations. Stencil computations, which are important kernels for
CFD simulations, have been highly successful on GPU clusters
in speed, due to high memory bandwidth and computation speed
of accelerators. However, their problem scales have been limited
by small capacity of GPU device memory. In order to support
larger domain sizes than not only device memory capacity but
host memory, we extend our approach that combines locality im-
proved stencil computations and a runtime library that harnesses
memory hierarchy. This paper describes the extended version of
HHRT library that supports multi-tier memory hierarchy, which
consists of device memory, host memory and high speed flash SSD
devices. And we demonstrate our approach effectively realizes
out-of-core execution of stencil computations, whose problem
scales are three time larger than host memory capacity.

I. INTRODUCTION

With the existence of many-core accelerators including
GPUs and Xeon Phi processors, exascale supercomputers will
be realized in a few years to accommodate high performance
simulations in weather, medical and disaster measurement area.
On the other hand, the scales of those simulations will be
limited by the memory wall problem[1]; the improvement of
capacity and/or bandwidth of memory is slower than that of
processors. It will be a significant obstacle in making larger
and finer scale simulations.

We already suffer from this problem especially on clusters
with many-core accelerators. In current high-end products,
while computation speed and memory bandwidth are high
(around 1 to 2 TFlops in double precision and 200 to 400 GB/s
per accelerator), memory capacity per accelerator is limited to
6 to 16 GiB. Owing to the advantage in performance of GPUs,
many stencil-based applications have been executed success-
fully on general purpose GPU (GPGPU) clusters, however, the
problem sizes have been limited by capacity [2], [3], [4].

In order to realize extremely fast and large scale simula-
tions, we need properly designed approaches to harness deeper
memory hierarchy. An example of architecture of a GPGPU
computing node is shown in Figure 1. If we harness both of
high performance of upper memory layer and large capacity
of lower layer, fast and large scale simulations could be
realized. In this direction, we have demonstrated an approach
of combination of application programs with locality improve-
ment techniques and underlying runtime library to perform
data swapping between memory layers[5], [6]. Stencil-based

application programs, the whole-city airflow simulation[7] and
dendritic solidification simulation[8] have been executed on
top of a run-time library called Hybrid Hierarchical Run-time
(HHRT) in order to enable larger problem scales that surpass
the GPU device memory capacity by effectively using capacity
of larger host memory. In order to reduce data swapping
overhead between memory layers, a locality improvement
technique known as temporal blocking [9], [10], [11], [12],
[13] for stencil computations has been applied.

The objective of this work is to expand the problem scales
of such simulations even further, by harnessing recent flash
SSD devices. While access bandwidth of traditional SSD
devices have been limited by SATA or SAS buses, recent
products achieve bandwidth more than 1GB/s. Especially,
some m.2 SSD devices achieve this performance at a low price
around $500. Figure 1 shows an example of node architecture
equipped both with a GPU accelerator and a high performance
flash SSD device. Here we observe three-tier memory hierar-
chy that consists of device memory, host memory and flash
SSD. We expect that we can realize application execution
with problem scales larger than 100GiB by using this memory
hierarchy.

Toward this objective, this paper describes an extension
to the HHRT library to support SSD devices. This is done
by using SSD devices to accommodate application data when
HHRT executes data swapping implicitly. We describe required
modification in order to exceed the host memory capacity,
including swapping host memory data and treatment of com-
munication buffers. Also we support parallel data swapping
on compute nodes with multiple SSD devices. These modifi-
cations are performed inside the HHRT library, and we do not
need modification to application code.

The relation between performance and problem scales of
a stencil benchmark is evaluated on two GPGPU computing
environments equipped with SSD devices. One is a PC server
with a high performance m.2 SSD shown in Figure 1. The other
is a cluster called TSUBAME-KFC/DL[14], where each node
has Tesla K80 GPUs and SATA SSD devices. We show that our
approach enables out-of-core execution with problem scales
larger than host memory capacity; we successfully execute
the stencil benchmark with 192GiB problem size, three times
larger than host memory. Also we analyze the effects of
access speed of SSDs on performance, and relation between
performance and problem sizes in detail. Our approach realizes

Fig. 1. Memory hierarchy of a GPGPU machine from the viewpoint of
GPU cores. Here an SSD with bandwidth of >1GB/s is equipped. This figure
illustrates a PC server used for performance evaluation in Section V.

good scalability, which paves the road toward extremely fast
and large scale simulations in coming exascale era.

II. HHRT: HYBRID HIERARCHICAL RUNTIME

A. Concept of HHRT

The objective of Hybrid Hierarchical Runtime (HHRT) li-
brary is to extend applications’ supportable problem scales[5].
The main targets of HHRT are applications whose problem
scales have been limited by the capacity of upper memory
layer, such as GPU device memory in GPU clusters. For
instance, such applications include simulation software based
on stencil computations written for GPUs[2], [3], [4], [8].
They have been enjoyed high computing speed and memory
bandwidth of GPUs, however, most of them are designed
as ”in-core”, or supported problem sizes are determined by
device memory capacity as shown in Figure 2 (A), in spite
of the existence of larger memory (storage) layers, including
host memory and file systems. While the problem sizes are
expanded by using multiply GPUs and compute nodes, they are
still limited by the aggregated amount of used device memory
capacity.

The problem scales of such applications are expanded by
executing them with only slight modifications on top of HHRT
library. Basically we assume that the target applications of
HHRT have the following characteristics:

• The applications consist of multiple processes working
cooperatively.

• Data structure that is frequently accessed by each
process is put on upper memory layer.

Many stencil applications on GPU clusters described above
have already these characteristics, since they are written in
MPI to support multiple nodes, and regions to be simulated are

Fig. 2. Execution model on typical MPI/CUDA and execution model on
HHRT library.

Fig. 3. State transition of each process on HHRT.

distributed among processes so that each process has smaller
local region than device memory capacity.

In the following discussion, we focus on the current HHRT
library, which targets applications written in MPI for inter-
process communication and CUDA for using GPUs. Now
HHRT library is implemented as a wrapper library of CUDA
and MPI, thus it has the same APIs as CUDA and MPI, except
some additional APIs for performance improvement[5].

On the execution model of HHRT, each GPU is shared by
multiple MPI processes as illustrated in Figure 2 (B). This is
contrary to the typical execution method shown in Figure 2
(A).

When users execute their application on top of HHRT, they
would typically adjust the number of MPI processes so that
the data size per each process is smaller than the capacity of
device memory. Hereafter Ps denotes the number of processes
sharing a single GPU, which is 6 in the figure. By invoking
plenty number of processes per GPU, we can support larger
problem sizes than device memory in total.

This oversubscribing model itself, however, does not sup-
port larger problem sizes. We cannot hold all the data of Ps

processes on the device memory at once, when Ps is large
enough. Instead, we execute swapping out of memory regions
of some processes from the device memory (process-wise
swapping).

On HHRT, swapping is tightly coupled with process
scheduling. Swapping out may occur at yield points, where
process may start sleeping, instead of individual memory
accesses. In current library, based on CUDA and MPI, yield
points correspond to blocking operations of MPI, such as
MPI_Recv, MPI_Wait, and so on.

Figure 3 illustrates state transition of each MPI process.
Each process is in one of states, ”running”, ”blocked” or
”runnable” 1 .

When a running process p reaches a yield point, it starts
swapping out contents of all the regions that the process holds
on the device memory into some dedicated place (called swap
buffer hereafter) on the lower memory layer, such as host
memory. Then the process releases the capacity of device
memory so that it can reused by other processes, and the
process starts sleeping. While the MPI operation that have
let the process p start to sleep is still blocked, the process
p remains in ”blocked” state. Even when the operation is
unblocked (for example, a message has arrived), the process p
may not start running immediately if the capacity of device
memory is insufficient; here p is in the ”runnable” state.
Afterwards, when the size of free space in device memory
becomes sufficient, the sleeping process p can start swapping-
in; it allocates the heap region again on device memory,
copying user data from swap buffer to the heap on device
memory. Then p can exit from the yield point, which is an
MPI blocked operation function. Now p is in the ”running”
state.

With this swapping mechanism, Ps processes share the
limited capacity of device memory in a transparent fashion
from application programs.

Generally, we can obtain better performance if more than
one process out of Ps processes can be in ”running” state, since
such a situation enables overlapping of swapping processes
and running processes. This can be done by configuring the
data size of each process to be less than half of device memory
capacity. Figure 2 shows such a situation where two processes
are running and other four processes are sleeping.

B. The Base Implementation of HHRT

Here the base implementation of HHRT [5] is briefly
described. As described before, this implementation is for
application programs written with CUDA and MPI. To support
them, the HHRT library is implemented as a wrapper library
of CUDA and MPI. Hereafter we distinct APIs provided by
HHRT library called by application processes directly, from
those of the underlying CUDA or MPI by prefix. For example,
HHcudaMalloc and HHMPI_Recv are provided by HHRT,
and cudaMalloc and MPI_Recv come from the underlying
CUDA or MPI.

The version described in this section takes memory hierar-
chy of device memory and host memory into account, and the
capacity of device memory is time-shared among processes.
This will be extended to support even larger problem scales
than host memory in Section III.

1In the actual implementation, there are two transient states, ”swapping-in”
and ”swapping-out”.

In order to realize the concept of HHRT, we have imple-
mented the following mechanisms.

1) Memory Management: When a process’s data is
swapped out, all the memory regions that reside on the device
memory are copied into swap buffer on the lower layer. For this
purpose, those regions allocated by HHcudaMalloc and its
variants have to be tracked by HHRT library. We have imple-
mented memory management functions in the HHRT library.
In the initialization phase, HHRT allocates a large heap region
by using the underlying CUDA. When HHcudaMalloc is
called by application processes, it finds a free region from the
heap region, and returns it to the caller.

2) Heap Management: The heap region of each process
has to be managed with the following conditions.

• After the heap region is released in swapping-out, the
reclaimed capacity can be reused by another process.

• After the heap region is allocated again in swapping-
in, the address of the heap has to be same as previous
one. This condition is required for the transparent
execution of application processes.

For these conditions, we take the following approach. In
the initialization phase, one of Ps processes (for example,
the process that has the least MPI rank) becomes the rep-
resentative, and it allocates the heap region by (underlying)
cudaMalloc. Then Ps processes share the region by using
CUDA IPC mechanism. The representative exports the region
by cudaIpcGetMemHandle and the other processes obtain
the address of the region by cudaIpcOpenMemHandle API.

After preparing shared memory on device memory, HHRT
keeps track of the current user process of the region. Infor-
mation of those management information is located on (host)
shared memory between processes. When a process releases
its heap in swapping-out, it updates the heap user variable
on the shared memory by -1 (that means no-user). Other
sleeping (runnable) processes periodically checks the variable,
and when it finds heap user is -1, it atomically updates the
variable to its rank. By using this mechanism, the device
memory capacity is time-shared by processes.

III. EXTENSION TO HHRT FOR OUT-OF-CORE
COMPUTATIONS

This section describes extension to HHRT library in order
to support larger application data than the capacity of host
memory. The basic idea is simple; we use files on file systems
as swap buffer in addition to host memory. If those files are
put on fast disk devices such as m.2 flash SSDs, the cost of
swapping is expected to be moderate.

The extensions are done inside the HHRT library, enabling
expansion of supportable data size without modifying applica-
tion code.

A. Swapping Data on Host Memory

In order to exceed the host memory capacity, we should
consider swapping out data allocated on host memory, in
addition to data on device memory for the following reason.
When an application process allocates considerable amount of

Fig. 4. Usage of three tiers memory hierarchy. Application data both on
device memory and host memory are swapped out to lower layer.

data on host memory, the number of processes on a compute
node is limited and the total application data size is limited,
without swapping those data out elsewhere. For our main target
applications including stencil computations, the data structures
mainly used for computation tend to be placed on device
memory rather than host memory. However, they may still
consume host memory for data I/O, data initialization, or MPI
communication. In order to enlarge data sizes in such cases,
data both on device memory and on host memory should be
swapped out to lower memory layers as shown in Figure 4.

Our heap management for host memory is implemented in
similar ways to that for device memory described in Section
II-B. In addition to cudaMalloc, wrapper functions for
malloc, calloc, free etc., from libc are implemented.

The heap management should be done while satisfying the
following conditions:

• After the heap region is released in swapping-out, the
reclaimed capacity can be reused by another process.

• After the heap region is allocated again in swapping-
in, the address of the heap has to be same as previous
one.

For this purpose, we chose to use mmap/munmap system-
calls for heap allocation. In swapping-in phase, each process
calls mmap to allocate a region for heap on host memory. In
order to preserve the address of the heap, we specify the start
address explicitly. After each process in swapping-out phase
calls munmap, another process can reuse the capacity.

B. Using Files as Swap Buffers

In swapping out, all data on heaps are evacuated to swap
buffers created on lower memory layer. For this purpose,
each process internally creates two files as swap buffers,
each of which are for device memory heap and host memory
heap, respectively. When a process opens these files, we
use O_DIRECT flag in order to suppress the effects of file
caching, which consumes host memory. In the swapping-in/out
operations, HHRT library read/write systemcalls for file access.

If the compute node has several SSDs, each process on
the node can be configured to use one of them in a round-

Fig. 5. State transition of each process on the extended HHRT. It includes
states in which data are on files.

robin style, to enable parallel swapping to improve HHRT
applications performance.

C. Behavior of Processes

With mechanisms explained so far, application data both
on device memory and host memory can be swapped out to
lower memory layer. This section describes how we schedule
swapping to keep application performance higher. Here we
assume that transfer speed between host memory and files are
lower than that between device and host. As shown in Figure1,
it is the case even if we use the latest m.2 SSD, whose access
bandwidth is around 75% lower than PCIe.

With this assumption, our strategies are:

• To evacuate data from device memory as fast as
possible, since we regard device memory as the most
precious resource.

• To reduce the frequency of swapping that involve
access to files.

Based on this discussion, the behavior of each pro-
cess described in Section II-A is modified as in Figure 5.
Here ”Blocked” state is extended to ”Blocked-On-Host” and
”Blocked-On-File”, and ”Runnable” state is treated similarly.
When a running process p reaches a yield point, it first
evacuates data on device memory into host memory, then it is
in Blocked-On-Host state. Now the capacity of device memory
can be reused by other processes. Afterward, if p finds the
host memory consumption is high, it evacuates data both on
device memory and host memory into files, which work as
swap buffers, and moves to Blocked-On-File state. On the
other hand, if the MPI operation is unblocked before the above
transition occurs, the process p moves to Runnable-On-Host
state directly, without involving file access.

D. Treatment for Communication Buffers

We have described our basic implementation of our exten-
sion to HHRT. However, we noticed another issue occurs when
HHRT simply releases regions on heap memory in swapping-
out phases. Let us consider a process calls MPI_Recv spec-
ifying a heap pointer (hereafter p1) as a communication
buffer. Since MPI_Recv is a blocking operation, HHRT may
swap all the data out during MPI_Recv is ongoing. Here

if p1 is included in the host heap, whose memory region is
discarded after swapping out, it would break the behavior of
the underlying MPI since MPI_Recv tries to write received
data to p1. Thus we need special treatments to exclude these
buffers from the targets of swapping out conceptually.

Our current solution is to make additional buffers on host
memory to duplicate data for communication. For example,
HHMPI_Recv in HHRT makes the duplication before calling
the underlying MPI_Recv. Instead of p1, we pass a pointer
of the duplicated buffer (p1′) as a parameter of MPI_Recv.
Similarly, such duplications are done in other communication
operations, including non-blocking ones or collective ones.
These duplicated buffers (such as one pointed by p1′) are kept
on host memory until the corresponding MPI communication
finishes. After that they are released.

E. Current Limitations

Our intention in designing and implementing HHRT is to
support generic parallel applications written in CUDA and
MPI. However, there are still limitations and assumptions on
the applications. Elimination and relaxation of these limitations
are included by our future work.

• Each process can use up to one GPU.

• Each process has to be single-threaded.

• Only MPI-1 APIs are supported. Especially one-side
communication APIs in MPI-2 are not supported.

• The current version does not support some CUDA fea-
tures including unified virtual memory, texture cache,
Hyper-Q, etc.

• Global variables (on device or on host) are not targets
of swapping, thus they consume memory capacity and
may limit the total problem scale.

• Basically source files have to be re-compiled with
#include "hhrt.h" before linking. If some
memory regions are allocated by other parts, such as
third-party libraries, those regions are not targets of
swapping.

• C++ new is not supported yet.

• malloc invocations inside CUDA kernel functions
are not considered.

IV. A STENCIL BENCHMARK FOR EVALUATION

We evaluate performance of out-of-core execution with the
extended HHRT library by executing a ”seven-point” stencil
benchmark on top of it. This is the same one evaluated in
our previous publication[5]; without modifying the application
code, we can expand the stencil size larger than the host mem-
ory capacity. This section briefly describes the benchmark and
temporal blocking, which is a locality improvement technique.

Stencil computations are commonly found kernels in CFD
and engineering simulations. The target area to be simulated is
expressed as a regular grid, and all grid points are computed in
each time step. The new value of each grid point is calculated
based on values of its adjacent points in the previous time step.

Fig. 6. Behavior of each process in stencil computations on GPU clusters.
(a) without temporal blocking, (b) with temporal blocking.

Our benchmark is designed for GPU clusters by using
CUDA and MPI, and like typical stencil applications, it
distributes the grid to be simulated among MPI processes.
And each local grid per process is usually smaller than device
memory capacity. The behavior of the first version (without
temporal blocking) is shown in Figure 6 (a). Before computa-
tion in each time step, we need MPI communication of process
boundary region (called halo) between adjacent processes, due
to data dependency between adjacent grid points.

Such stencil implementations are known to have poor
locality. On top of HHRT, this issue introduces very frequent
swapping since each time step involves blocked MPI opera-
tions for boundary exchange. As a result, performance gets
significant low with larger problem sizes than device memory
capacity.

In order to improve locality of stencil computations, we
use a known technique called temporal blocking[9], [10], [11],
[12], [13]. We have shown this technique can be implemented
easier on top of HHRT than totally hand-coded cases[5], [6].

Figure 6 (b) shows the process behavior in this approach.
Here a parameter k denotes the temporal blocking size. When
we start the computation for a relatively small sub-grid,
we continuously perform the computation for it for k steps
without interruption. In the algorithm in Figure 6 (b), the
frequency of MPI operations, which work as yield points on
HHRT, is reduced to 1/k. Instead, the cost of each boundary
communication becomes k times larger in order to prepare
sufficient boundary data for local k steps computation.

Also this implementation of temporal blocking introduces
redundant computation costs for extra boundary area, which
gets heavier with larger k. Techniques such as wavefront
blocking and diamond blocking[15], [16] have been proposed
to eliminate such redundant computation; applying them on
top of HHRT is included in our future work.

TABLE I. PLATFORMS USED FOR EVALUATION

PC server TSUBAME-KFC/DL
of nodes 1 40
GPU NVIDIA Tesla K40 NVIDIA Tesla K80

SP peak perf. (GFlops) 4.29 (5.0 w/ boost) 2.8 (4.37 w/ boost)
Device memory BW (GB/s) 288 240
Device memory size (GiB) 12 12

of GPUs/node 1 8 (4 boards)
CPU Intel Core i7-6700K Intel Xeon E5-2620 v2
of CPUs/node 1 2
CPU-GPU connection PCIe gen3 x8 PCIe gen3 x16

Peak BW (GB/s) 8+8 16+16
Host memory size (GiB) 64 64
SSD Samsung 950PRO m.2 Intel DC S3500

Read BW (GB/s) 2.5 0.50
Write BW (GB/s) 1.5 0.41
Size (GB) 512 480

of SSDs/node 1 2
Network Interface Gigabit Ethernet 4x FDR InfiniBand
OS CentOS 7.2 CentOS 6.4
MPI MPICH 3.2 MVAPICH2 2.2a
CUDA 7.5 7.0

V. PERFORMANCE EVALUATION

A. Evaluation Conditions

Our performance evaluation has been conducted on two
GPGPU platforms shown in Table I. One is a PC server
equipped both with a NVIDIA K40 GPU and a m.2 SSD whose
bandwidth is 2.5GB/s (Read), 1.5GB/s (Write). Its memory
hierarchy has been shown in Figure 1. Since the device
memory capacity is 12GiB and the host memory capacity
is 64GiB, the host swapper is necessary for problem sizes
≥12GiB, and so is the file swapper for ≥64GiB problems.

The other platform is a 40-node GPGPU cluster named
TSUBAME-KFC/DL [14]. Each node has four NVIDIA K80
gemini boards, thus eight GPUs are available 2. In this paper, a
single GPU per node is used to evaluate the effect of memory
hierarchy. The sizes of device memory and host memory are
same as those of the PC server described above. Note that
the application performance is significantly affected by SSD
access performance in ”out-of-core” cases. Each TSUBAME-
KFC/DL node is equipped with two SATA SSDs. Their band-
width is severely lower than the m.2 SSD described above;
0.5GB/s for read and 0.41GB/s for write per SSD. We use
two SSDs per node for parallel file swapping as described in
III-B.

As the benchmark program, we used a seven-point stencil
program with temporal blocking described in Section IV
linked with our HHRT library. The computed grids are three-
dimensional arrays, whose elements have float data type.
The 3D grid is decomposed in two-dimension among MPI
processes. In the following discussion, we evaluate the per-
formance for various problem sizes. The problem size is
given as the aggregated sizes of 3D arrays that should be
computed, excluding extra halo region introduced for temporal
blocking. Also we do not count the redundant computations to
obtain the performance number in GFlops, while the redundant
computations increase the execution time. These assumptions
are made for fairness in comparison during various temporal
blocking size k.

2When [14] is published, the node had four K20X GPUs. They have been
upgraded later

TABLE II. THE NUMBER OF MPI PROCESSES THAT SHARE A SINGLE
GPU FOR EACH PROBLEM SIZE. THE NUMBERS IN PARENTHESIS

ILLUSTRATE PROCESS GRID SIZES FOR 2D DECOMPOSITION.

Problem size Ps

6(GiB) 1 (=1×1)
8 1 (=1×1)

12 4 (=1×4)
16 4 (=1×4)
24 6 (=2×3)
32 12 (=3×4)
48 16 (=4×4)
64 24 (=4×6)
96 32 (=4×8)
128 48 (=6×8)
192 80 (=8×10)

B. Evaluation on a Single GPU

The graphs in Figure 7 show the performance of the
stencil program on a single GPU on the PC server and a
TSUBAME-KFC/DL node. ”TB” in graphs corresponds to
the cases with temporal blocking, and ”NoTB” does not use
temporal blocking (thus k = 1). In TB cases, we show the
fastest cases with varying k. Also Ps, the number of processes
to be oversubscribed is configured for each problem size so that
each process’s data on GPU is sufficiently smaller than device
memory capacity; the numbers are shown in Table II.

On both machines, we have successfully executed the
program with problem sizes of up to 192GiB, which is three
times larger than host memory capacity, and 16 times larger
than device memory. This is owing to HHRT’s facility for
oversubscription and swapping.

While NoTB is impractically slow with 12GiB problem
sizes or larger for too heavy swapping cost, the situation is
significantly better on TB for better locality. Comparing the
two graphs, we observe differences between the two machines
in TB performance when swapping occurs. When only host
swapper is required (12 to 48GiB), the slow down compared
with ”in-(GPU)core” case is 6 to 17% on the PC server, and 19
to 46% on KFC/DL node. This result looks counterintuitive,
since the latter machine provides faster PCIe communication.
Through preliminary experiments, we observed that this dif-
ference is mainly due to host-to-host memory transfer speed.
On a PC server with a newer CPU gave faster memory copy
speed.

In the context of this paper, the performance difference
with file swapper is more important. In the case of 96GiB
problem, the slow down compared with 6GiB case is 47% on
the PC server and 75% (TB (2SSDs))on the KFC/DL node.
This difference directly comes from the bandwidth of SSDs.
Even when two SSDs on KFC/DL are used in parallel, the
aggregated bandwidth is still about the half of that of the
m.2 SSD. When only one SSD is used (TB (1SSD)), the
performance is roughly halved.

With larger problem sizes (128 or 192GiB), the speeds
are degraded on both machines; this is analyzed in the below
section.

C. Discussion on Performance Limiting Factor

Considering the characteristics of our benchmark with
temporal blocking on top of HHRT, we have to carefully

PC server with an m.2 SSD

A TSUBAME-KFC/DL Node

Fig. 7. Performance evaluation with various problem sizes on a single GPU.

choose the temporal block size k. If k is too small, the
performance suffers from large swapping costs due to more
frequent ”yield” points. If k is too large, the computational
cost increases for redundant computation.

There are additional issues that limit both the performance
and problem scale; memory consumption of user processes
inflates as k gets larger for the following reasons:

1) Each MPI process allocates its local grids surrounded
by halo regions whose width is k. Thus device
memory consumption is increased.

2) Each MPI process allocates MPI buffers for
halo exchange on host memory. As described in
SectionIII-D, their copies occupy host memory even
in ”On-File” states. Their sizes are inflated as k is
larger.

Table III shows the performance of the stencil benchmark
with various k and various problem sizes on two machines.
We discuss the effects of k according to the following three
categories.

• Smaller than device memory (6 to 8GiB): The speed
performances are best when k=1 and degraded as k
gets larger, since the amount of redundant computation
increases. There is no swapping.

• Smaller than host memory (12 to 48GiB): The
performances with k=1 are less than 10GFlops due to
heavy swapping costs. They are improved with larger
k, since the frequency of swapping is O(1/k). After
hitting ”suit spots”, the performance is degraded by

redundant computation costs. The best k is around 32
on the PC server and around 64 on a KFC/DL node.
The exception is the case of 48GiB on KFC/DL
node. Here due to the issue 1) above, the memory
consumption in increased with k and there are swaps
to files if k ≥ 48 (the performance numbers in the
table are in italic font). Thus the performances in those
cases are degraded, which makes k = 32 the peak as
a result.

• Larger than host memory (64 to 192GiB): The
performances with k=1 are even lower for larger costs
for file swapping. They are improved with larger k,
however, the improvement is slower than the above
case. With further larger k, the execution fails, as
shown as ”OOM” in the table. This is mainly due
to the issue 2), which causes inflation of host memory
consumption even if almost all the processes are at
”On-File” states. This issue is severer with larger
problem sizes; if it is 192GiB, the executions with
k ≥ 16 fail. This explains the performance degrada-
tion we observed in Figure 7. When problem sizes
are larger, the upper limit of k that enables successful
executions is decreased, which also limits the highest
performance.

Finally, in addition to the above two issues, we observed
the following issue that also limits our problem scales:

3) We observed that when a GPU is used by multiple
processes, considerable amount of device memory is
consumed besides explicitly allocated region. In our
platforms, the amount of such implicit consumption
is around 75MiB per process. We consider they are
buffers used for internal management by CUDA.

This memory pressure gets more significant with larger Ps

(the number of processes that share a GPU). For example, if
Ps = 80 as in the case with 192GiB problem, 75×80 = 6000
MiB, which is around 50% of device memory, is occupied
implicitly, which is not available to user programs. The basic
idea to support larger problem scales on HHRT is to increase
the number of oversubscribed processes Ps. However, we
cannot use larger Ps than 160 on our platforms, since the
aggregated internal buffers use up the device memory. As a
result, the supportable problem sizes are limited.

We expected that this problem would be alleviated by
using CUDA MPS (multi process servers), which works as
a multiplexer of CUDA device. Unfortunately, current MPS
only supports up to 16 client processes, thus we abandoned it.

D. Evaluation on Multiple Nodes

This section evaluates the performance by using multiple
nodes. Here we used 32 TSUBAME-KFC/DL compute nodes
at maximum. Like the previous sections, we used one GPU
per node.

Figure 8 demonstrates weak scalability. The graph shows
the case of 24GiB problem size per node, and 96GiB per
node. The temporal block size k is 32 in the former case,
and it is 12 in the latter case. It is smaller than in the single
GPU evaluations; since the effects of issue 2) described in

TABLE III. EFFECTS OF TEMPORAL BLOCK SIZE k ON PERFORMANCE
FOR VARYING PROBLEM SIZES.

PC server with an m.2 SSD
k=1 8 16 24 32 48 64 96

6(GiB) 149 148 145 142 137 134 129 119
8 149 147 145 142 139 133 129 121
12 8.72 65.7 101 130 134 132 126 114
16 9.39 63.2 108 138 141 135 130 106
24 9.37 63.3 98.8 122 125 130 122 110
32 9.79 58.3 89.5 121 136 127 121 98 .3
48 8.12 61.7 88.7 116 125 72.7 87.9 91.5
64 3.23 22.3 34.4 49.0 57.7 85.9 82.6 75.5
96 2.68 20.7 33.4 47.7 53.4 79.3 OOM OOM
128 2.67 18.8 38.4 45.4 50.6 OOM OOM OOM
192 2.55 17.7 OOM OOM OOM OOM OOM OOM

A TSUBAME-KFC/DL Node (2 SSDs are used)
k=1 8 16 24 32 48 64 96

6(GiB) 153 145 145 144 137 134 130 121
8 149 148 146 144 142 136 133 126
12 5.23 39.1 65.1 84.0 94.3 103 111 95.3
16 4.54 37.4 63.2 91.0 88.9 116 124 101
24 4.75 35.3 56.5 77.2 97.6 106 112 107
32 3.91 31.6 53.8 65.9 90.5 92.9 107 51.1
48 4.37 30.7 53.4 66.8 82.3 40.8 43.5 47.4
64 1.54 10.9 18.1 25.2 32.7 40.8 46.9 OOM
96 1.51 9.79 18.5 23.7 29.2 38.4 OOM OOM
128 1.37 9.79 17.9 22.6 27.3 OOM OOM OOM
192 1.35 9.67 OOM OOM OOM OOM OOM OOM

• Each number represents the speed in GFlops.
• The underlined number shows the fastest case in each row.
• The italic numbers correspond to cases when the file swapper is used.
• ”OOM” means execution failure due to ”Out Of Memory”.

Fig. 8. Weak scability evaluation on TSUBAME-KFC/DL.

Section V-C are heavier in multiple node evaluations, we took
the above numbers.

We observe the scalability is pretty good in both cases.
Compared with a single GPU performance (97.6GFlops in
24GiB case and 15.2GFlops in 96GiB case), we got 21.8 times
and 23.9 times speed up on 32 GPUs. In the latter case, we
have successfully executed the problem of 96 × 32 = 3072
GiB size by using limited computing resources.

Currently, the resultant speed 363GFlops is not so high due
to the insufficient speed of SATA SSDs. If each node were
equipped with fast m.2 SSDs as the PC server we used, we
could obtain around 1TFlops for 3TiB problem. It is possible
to constructing such clusters in low price, since the cost of an
m.2 SSD we used is around $400, while we require mother
boards that support m.2.

VI. RELATED WORK

Non volatile memory devices, especially NAND flash
memory devices, have been widely attracted attention since
they fill the performance/capacity gap between traditional
DRAM and hard disks. There are lots of software projects
and products that harness flash; some use them as accelerators
of hard disks, such as DDN’s Infinite Memory Engine 3. On
the other hand, this work uses flash devices in order to expand
available capacity of host memory and GPU device memory.
However, we do not use the standard swapping mechanism
of OS, but process-wise swapping mechanism of HHRT for
performance.

The HHRT model is largely inspired by Adaptive MPI
(AMPI) [17], implemented on top of CHARM++ [18]. Both
AMPI and HHRT provide execution model where several MPI
processes share the limited resources on computer systems.
On the other hand, AMPI itself does not support swapping
between memory hierarchy.

Our HHRT implementation has lots of common ideas with
the virtual memory based runtime by Becchi et al[19]. Their
system provides time-sharing facility of GPU device memory
capacity by data swapping. Their main focus is to maintain
multiple distinct GPU applications on limited number of
GPUs, while our focus is to support MPI parallel applications
that consist of multiple processes, which have inter-process de-
pendency. For this difference, HHRT has features that Becchi’s
system does not have: yielding mechanism coupled with MPI
communication operations and treatment for communication
buffers.

From the applications’ viewpoint, temporal blocking for
stencil computations have a long history and have been im-
plemented in various computer architectures [9], [10], [11].
While most previous papers have focused on improving cache
hit ratio, Mattes et al. and we have previously demonstrated
the effects of (completely hand written) temporal blocking in
order to reduce data transfer costs between device memory
and host memory[12], [13]. While based on these results,
our objective is to support multi-tier memory hierarchy, GPU
device memory, host memory and flash devices, while reducing
swapping costs.

Midorikawa et al.[20] implemented and evaluated out-
of-core stencil computations that consider host memory and
flash devices. They have successfully obtained performance
gain with temporal blocking. Our work differs from it since
we take GPU device memory into account, and thus in-core
performance used as ”baseline” is much higher on GPUs than
on CPUs.

Generally, programming locality improvement techniques
tends to be troublesome for end programmers; most of the
above projects have been involved with this issue. One of
approaches to relieve it is to use domain specific frameworks,
such as Physis [21] or Shimokawabe’s framework[22]. With
this framework, programmers write stencil applications in for-
all style. After programmers write a code fragment for a single
grid point update, without considering details of underlying
architectures. This approach is highly promising since it would
be possible to implement optimization techniques including

3http://www.ddn.com/products/infinite-memory-engine-ime14k/

temporal blocking in a user-transparent style. On the other
hand, if users already have application codes written in MPI
and CUDA[2], [3], [4], [8], they have to rewrite the code for
the framework. Our approach with HHRT allows users to use
such existing code as a start point, and to improve it step by
step.

Recently NVIDA has announced upgraded version of Uni-
fied Memory mechanism that comes with CUDA version 8
4. With this mechanism, programmers can allocate memory
regions whose contents are moved between device memory
and host memory transparently. Also those regions may be
larger than device memory capacity. This has a similar effect as
the swapping mechanism of HHRT. However, Unified Memory
does not support arbitration between processes sharing a GPU.
Also currently it does not support the extension to flash
devices, which HHRT supports.

VII. CONCLUSION

This paper has demonstrated an extension to the HHRT
library, a data swapping library between deeper memory hi-
erarchy on GPU clusters, in order to support the hierarchy
of flash devices. On top of this extended library, we success-
fully executed extremely large scale stencil computations, by
integrating an algorithm level locality improvement, temporal
blocking.

Through the performance evaluation on two computing
environments equipped with GPUs and flash devices, we can
support problem size 3 times larger than host memory and
16 times larger than GPU device memory. The performance
overhead for such larger sizes largely depends on access
performance of flash devices. With the latest m.2 SSDs with
bandwidth larger than 1GB/s, we observed the overhead for the
problem size of 96GiB is 47%, showing that the out-of-core
execution involving flash devices is realistic.

Also we have demonstrated the effects of parallel swapping
using multiple flash devices and high scalability using multiple
compute nodes. In spite of the above results, there are still
rooms to improve problem scales and performance. Through
the detailed measurements, we discussed several scale limiting
factors mainly related to host memory consumption.

Future work includes performance evaluation of real simu-
lation workloads as done in [6], and improvement of the HHRT
implementation both in scale and performance, by resolving
current limiting factors, toward extremely high performance
and large simulations on top of next generational Exascale
supercomputers.

Acknowledgements

This research is funded by JST-CREST, ”Software Tech-
nology that Deals with Deeper Memory Hierarchy in Post-
petascale Era”.

REFERENCES

[1] R. Lucas et al.: Top Ten Exascale Research Challenges, DOE ASCAC
Subcommittee Report (2014).

[2] E. H. Phillips, M. Fatica: Implementing the Himeno Benchmark with
CUDA on GPU Clusters, IEEE International Symposium on Parallel and
Distributed Processing (IPDPS), pp. 1-10 (2010).

4https://developer.nvidia.com/cuda-toolkit

[3] D. A. Jacobsen, J. C. Thibault, I. Senocak: An MPI-CUDA Implementa-
tion for Massively Parallel Incompressible Flow Computations on Multi-
GPU Clusters, 48th AIAA Aerospace Sciences Meeting, 16pages (2010).

[4] M. Bernaschi, M. Bisson, T. Endo, M. Fatica, S. Matsuoka, S. Mel-
chionna, S. Succi: Petaflop Biofluidics Simulations On A Two Million-
Core System, IEEE/ACM SC’11, 12 pages (2011).

[5] T. Endo, G. Jin: Software Technologies Coping with Memory Hierarchy
of GPGPU Clusters for Stencil Computations. IEEE Cluster Computing
(CLUSTER2014), pp. 132-139 (2014).

[6] T. Endo, Y. Takasaki, S. Matsuoka: Realizing Extremely Large-Scale
Stencil Applications on GPU Supercomputers. IEEE International Con-
ference on Parallel and Distributed Systems (ICPADS 2015), pp. 625-632
(2015).

[7] N. Onodera, T. Aoki, T. Shimokawabe, T. Miyashita, H. Kobayashi:
Large-Eddy Simulation of Fluid-Structure Interaction using Lattice
Boltzmann Method on Multi-GPU Clusters, 5th Asia Pacific Congress
on Computational Mechanics and 4th International Symposium on Com-
putational Mechanics (2013).

[8] T. Shimokawabe, T. Aoki, T. Takaki, A. Yamanaka, A. Nukada, T. Endo,
N. Maruyama, S. Matsuoka: Peta-scale Phase-Field Simulation for Den-
dritic Solidification on the TSUBAME 2.0 Supercomputer, IEEE/ACM
SC’11, 11 pages (2011).

[9] M. E. Wolf and M. S. Lam: A Data Locality Optimizing Algorithm.
ACM PLDI 91, pp. 30–44 (1991).

[10] M. Wittmann, G. Hager, and G. Wellein: Multicore-aware parallel
temporal blocking of stencil codes for shared and distributed memory.
Workshop on Large-Scale Parallel Processing (LSPP10), in conjunction
with IEEE IPDPS2010, 7pages (2010).

[11] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey: 3.5-D
blocking optimization for stencil computations on modern CPUs and
GPUs. IEEE/ACM SC’10, 13 pages (2010).

[12] L. Mattes, S. Kofuji: Overcoming the GPU memory limitation on FDTD
through the use of overlapping subgrids. International Conference on
Microwave and Millimeter Wave Technology (ICMMT), pp.1536–1539
(2010).

[13] G. Jin, T. Endo, S. Matsuoka: A Parallel Optimization Method for
Stencil Computation on the Domain that is Bigger than Memory Capacity
of GPUs. IEEE Cluster Computing (CLUSTER2013), 8 pages, (2013).

[14] T. Endo, A. Nukada, S. Matsuoka: TSUBAME-KFC: a Modern Liquid
Submersion Cooling Prototype towards Exascale Becoming the Greenest
Supercomputer in the World. IEEE International Conference on Parallel
and Distributed Systems (ICPADS 2014), pp. 360-367 (2014).

[15] V. Bandishti, I. Pananilath, U. Bondhugula: Tiling stencil computations
to maximize parallelism. IEEE/ACM SC’12, 11 pages (2012)

[16] T. Malas, G. Hager, H. Ltaief, H. Stengel, G. Wellein, D. Keyes:
Multicore-Optimized Wavefront Diamond Blocking for Optimizing Sten-
cil Updates. SIAM J. Sci. Comput., 37(4), C439–C464 (2015).

[17] C. Huang, O. Lawlor, L. V. Kale: Adaptive MPI, Languages and
Compilers for Parallel Computing, Lecture Notes in Computer Science
Volume 2958, pp 306-322 (2004).

[18] L. V. Kale, S. Krishnan: CHARM++: A Portable Concurrent Object
Oriented System Based On C++, ACM Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA), pp. 91-
108 (1993).

[19] M. Becchi, K. Sajjapongse, I. Graves, A. Procter, V. Ravi and S.
Chakradhar: A Virtual Memory Based Runtime to Support Multi-tenancy
in Clusters with GPUs, ACM Symposium on High-Performance Parallel
and Distributed Computing (HPDC ’12), pp 97-108 (2012).

[20] H. Midorikawa, H.Tan: Locality-Aware Stencil Computations Using
Flash SSDs as Main Memory Extension, IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CCGrid 2015), pp. 1163-
1168 (2015).

[21] N. Maruyama, T. Nomura, K. Sato, and S. Matsuoka: Physis: An
Implicitly Parallel Programming Model for Stencil Computations on
Large-Scale GPU-Accelerated Supercomputers, IEEE/ACM SC’11, 12
pages (2011).

[22] T. Shimokawabe, T. Aoki and N. Onodera: High-productivity Frame-
work on GPU-rich Supercomputers for Operational Weather Prediction
Code ASUCA, IEEE/ACM SC’14, pp. 251-261 (2014).

