Making Wide-Area, Multi-Site MPI Feasible
Using Xen VM

Masaki Tatezono!, Naoya Maruyama', and Satoshi Matsuoka'-2

! Tokyo Institute of Technology, 2-12-1 Ohokayama, Meguro, Tokyo, 152-8552 Japan
{masaki.tatezono, naoya.maruyama, matsu}@is.titech.ac.jp
2 National Institute of Informatics, 2-2-1 Hitotsubashi, Chiyoda, Tokyo, 101-8430
Japan

Abstract. Although multi-site MPI execution has been criticized in the
past as being ”impractical” due to limitations in network latency and
bandwidth, we believe many of the obstacles can be overcome by various
means for wider classes of applications than previously believed. One
such technique is transparent dynamic migration of MPI, coupled with
aggressively performance-oriented overlay networks, assuming availabil-
ity of gigabits of bandwidth on future WANs. The problem, of course, is
to investigate the exact implications to application performances given
the arsenal of such techniques, but such work has been quite sparse. Our
current work involves using Xen as the underlying virtual machine layer
to implement such migration, along with performance-optimizing migra-
tion strategies—this particular paper deals with performance evaluations
of MPI on Xen VMs including what are the possible performance hin-
drances, implications of migrations, as well as the effect of variations in
latencies and bandwidth parameters as realized by the overlay network
using a software network emulator.

Keywords: MPI, cluster computing, grid computing, virtualization

1 Introduction

Executing MPI on wide-area, multi-site clusters has been considered impractical.
One of the reasons for this impracticality is heterogeneity of clusters. Using mul-
tiple clusters with different hardware and software is hard for typical applications
users. Another reason is regarded as low performance of wide-area networks, im-
posing high communication overhead. Finally, the asymmetric networks caused
by firewalls and NATSs make multi-site MPI execution further difficult.

To achieve efficient multi-site MPI execution, we envision that the applica-
tion user runs his programs on a wvirtual cluster that actually runs on multiple
physical clusters connected with future high-speed wide-area networks. The vir-
tual cluster hides heterogeneity of different system configuration using virtual
machine monitors (VMMs) such as Xen [1]. It also hides the network asymmetry
using overlay networks as a virtual network substrate. Moreover, it can exploit

dynamic migration of VMs to use available resources more efficiently. For ex-
ample, when a cluster of faster CPUs and larger memory becomes available for
use, an already-running virtual cluster can be migrated to the cluster for better
performance.

There exists some past work that attempts to combine VMMs with overlay
networks for multi-site MPI execution, such as Violin [2]. However, its evaluation
of MPI performance has been done only with a single program, HPL, in a single
site. Also, as far as we know, there is no performance evaluation on multi-site,
wide area virtual clusters. Thus, the performance of more diverse set of appli-
cations, running on wide-area overlay networks, is still unknown and remains to
be evaluated.

The primary purpose of this paper is a study of performance of MPI on
a virtual cluster using Xen as a VMM and various overlay network configura-
tions. First, we compare performance of NAS Parallel Benchmarks (NPB) on
Xen-based virtual cluster with the native cluster with the same hardware con-
figuration, consisting of up to 128 physical nodes. Next, we investigate the effect
of overlay networks to application performance using different overlay network
implementations.

These experimental studies show that the performance of Xen for MPI exe-
cution platform is comparable to native machines in terms of pure CPU perfor-
mance. The average performance degradation of virtual clusters was less than
20%. We also show that doubling the number of nodes from 32 to 64 by adding
another cluster cannot lead to speedups due to the bottleneck inter-cluster link.
Based on these results, we discuss how to mitigate such network bottlenecks and
the requirements to achieve high-performance MPI execution on virtual clusters.

2 Virtualization of Compute Hosts

We describe requirements on virtualization of compute hosts. First, the per-
formance overhead should be minimal. Second, it must support light-weight
dynamic VM migration. Third, it should not impose particular constraints to
user-level programs; In other words, off-the-shelf MPI implementations and its
applications should work with little adaptation.

With the recent advance in virtualization techniques, we see these require-
ments are achievable using available VMMs, such as Xen and VMWare ESX
Server [3]. For example, Xen is reported to migrate a VM within 60ms on a
LAN environment [4], with negligible CPU performance overhead [1]. Thus, we
choose to use existing implementations of VMMs. We describe our current in-
stance of this approach using Xen in Section 4.

3 Overlay Networks

We describe key requirements on underlying overlay networks where virtual com-
pute hosts are hosted, and our approach to them.

3.1 Requirements
We require the following four criteria to be satisfied.

Providing Constant IP Addresses To support migration of MPI processes,
hosts’ IP addresses need to be constant. The reason for this is that typical
MPI implementations do not allow IP addresses to change at run time. We
see this complexity should be handled by the overlay network layer, instead
of the virtual cluster user.

Low Overhead Since we intend virtual clusters as MPI execution platforms,
the overhead needs to be kept minimal.

Security To operate across WANs we need some level of security. At a mini-
mum, we require overlay networks to have standard secure authentication
mechanisms, such as SSL or SSH. Furthermore, since some user may require
encryption of messages in communication links, it is preferable to be able to
support message encryption.

Reachability of Compute Nodes Typical MPI, such as MPICH [5], make a
connection for each pair of participating processes, thus requiring that each
process is able to connect to every other process. Although this requirement
is not an issue on LAN clusters, such implementations cannot operate across
firewalls and NATs. Even so-called “grid-enabled” MPI implementations,
such as GridMPI [6] and MPICH-G2 [7], require each process to be globally
accessible. Therefore, overlay networks have to provide reachability across
firewalls and NATs even for compute nodes.

3.2 Approach

To achieve the requirements, we employ site-to-site VPNs as overlay networks.
As depicted in Figure 1, in a site-to-site VPN, the physical gateway for each site
establishes a secure connection to every other gateway. This achieves security
by requiring authentication and possibly encryption of messages. By assuming
the gateways are globally addressable with no firewalls, it provides reachability
of compute nodes across firewalls and NATs.

The expected performance of this approach is superior to other alternatives,
such as client-to-server VPNs, where each participating node connects to a single
VPN server. Since packets traverse the additional layer only when crossing a site
boundary, the expected performance overhead is less than that of the client-to-
server VPN approach. A downside of this approach is that since it is the gateway
of each LAN that makes a tunneling connection to every other gateway, it forces
even underlying physical networks to join the virtual network, resulting in a
significant change in the original network administration. We expect this is not
necessarily a limiting barrier in HPC cluster environments.

4 Components of the Prototype Virtual Cluster

To evaluate the feasibility and performance of virtual clusters, we construct
prototype virtual cluster environments using existing VMM and VPN imple-
mentations that satisfy our requirements.

-———— - -~ P -

’

e Network A Y veN ! Network B \
1 | tunneling :
1
| |cuestos| |Guest 0s _ Guest OS| |Guest OS !
1

1
: Host OS | | Host OS 1 1 HostOS | [HostOS |

U

e e ——-— . ‘s ____________ ,'

Fig. 1. Site-to-site VPN

As a VMM, we choose Xen for its performance and support of dynamic VM
migration (a.k.a., live migration [4]). It optimizes virtualization performance by
para-virtualization, and is reported that the downtime during VM migration is
as low as 60ms in a LAN environment [4].

Among existing implementations of overlay networks, we use OpenVPN, an
open-source VPN implementation [8], and PacketiX, a commercial product by
SoftEther Corporation [9], as sample implementations. Both implementations
provide a software-emulated virtual Ethernet over the standard TCP/IP net-
work. They support secure authentication and message encryption via SSL with
X.509 certificates. Providing constant IP addresses is also doable by configuring
a single-subnet site-to-site VPN. Although PacketiX employs performance op-
timization mechanisms, including parallel connections and automatic tuning of
its number, its performance for HPC applications is still unknown.

5 Experimental Studies

To evaluate performance implication of virtual clusters, we conduct several ex-
periments using our prototype virtual cluster. First, to examine the baseline
performance of Xen-based virtual clusters , we compare performance of MPI
applications on virtual compute nodes with native compute nodes. Note that
to observe the overhead caused by host virtualization, we do not used VPNs
for this experiment. Second, we evaluate the performance of virtual clusters on
multi-site environments. In this study, we do not deploy the virtual clusters on
real multi-site environments; rather we use software-emulated two-site clusters.

5.1 Experimental Setups

Our experimental platform consists of an x86 cluster, called Prestolll cluster,
a pair of VPN tunneling machines for each of OpenVPN and PacketiX, and a
NIST Net network emulator.

PrestolIIl: Base Evaluation Platform Prestolll cluster consists of 256 com-
pute hosts of dual AMD Opteron 242 1.6GHz with 2GB of RAM, running Linux
kernel v2.6.12.6. Each node has a gigabit Ethernet interface, connected to a 24-
port gigabit switch of Dell PowerConnect 5224. As depicted in Figure 2, the
entire cluster nodes are interconnected with twelve of the 24-port switches and

an 8-port gigabit switch of 3Com SuperStack3 3848. Each of the Dell PowerCon-
nect 5224 hosts 20 compute hosts, and is further connected to the 3Com switch
with four 1Gbps uplinks.

Virtual Machines Each of the Prestolll cluster nodes hosts a single VM
(a.k.a., DomU), using Xen v3.0.2 on Linux kernel v2.6.16 with the Xen patch ap-
plied. Each VM and its host OS (a.k.a., Dom0) are assigned 512MB and 128MB
of RAM, respectively.

Overlay Network Testbeds Three kinds of overlay network testbeds are used:
OpenVPN and PacketiX VPNs, and latency-inserted emulated two-site environ-
ments, as shown in Figure 3. To emulate a wide-area link, a software-implemented
network emulator called NIST Net [10] is used. It allows to insert configurable
amount of delay into a standard Linux packet router.

OpenVPN site-to-site VPN Two 32-node clusters are created using Prestolll
compute nodes, each of which is interconnected with a 48-port gigabit switch.
The switch is then connected to a VPN tunneling gateway implemented with
OpenVPN v2.0.7. Its encryption and compression options are disabled. Each
gateway runs on a node with the same configuration as the compute nodes
of Prestolll cluster, but with an additional gigabit NIC.

PacketiX site-to-site VPN The PacketiX site-to-site VPN testbed is orga-
nized in the same way as the OpenVPN site-to-site testbed, except for the
gateway machines. A pair of Windows XP machines with PacketiX v2.0 is
used. They run on Intel Pentium4 662 3.6GHz with 1GB RAM, and two
gigabit NICs. PacketiX’s encryption and compression options are disabled.

Emulated Two-Site Clusters using NIST Net This testbed differs from the
other testbeds only on the inter-cluster link. The two clusters are intercon-
nected by a linux router with NIST Net version 2.0.12b. It runs on AMD
Athlon MP 2000+ 1.6GHz with 1GB of RAM, running Linux kernel v.2.4.31.
It has two gigabit NICs, each of which is connected to one of the clusters via
a gigabit switch.

Network and MPI Benchmark Programs To evaluate latencies and band-
widths, NetPIPE v3.6.2 is used. For the studies of MPI performance, NPB v.3.1
with MPICH 1.2.7p1 is used.

5.2 Network Benchmark Results on Xen VMs

To evaluate the performance of network I/O on Xen VMs, we compare the
latency and bandwidth on Xen guest OSes with those on native and Xen host
OSes. On two of the Prestolll compute nodes, we used NetPIPE’s ping-pong
test, which bounces messages of increasing size between two processes.

The latencies on the Xen guest, Xen host, native OSes were 0.08ms, 0.05ms,
and 0.04ms, respectively. The bandwidths on the Xen guest, Xen host, native

or

PacketiX

or

4Gbps 4Gbps T OpenVPN o
DELL PowerConnect DELL PowerConnect

5224 /5%24\

1Gbps \D D/ leps E

N ——
20 nodes 20 nodes 32 nodes 32 nodes
256 nodes 64 nodes
Fig. 2. Prestolll Networking Fig. 3. Overlay Network Testbeds

OSes were 430Mbps, 883Mbps, and 896Mbps, respectively. Thus, the latency on
the Xen guest OS was about twice as long as the native OS, while the bandwidth
on the guest OS was about half of the native OS.

5.3 MPI Benchmark Results on Xen VMs

Figure 4 shows the performance of NPB CG, LU, EP, and BT class B on a cluster
of Xen VMs and another cluster of native machines. The x-axes represent the
number of processors used, while the y-axes the relative performance to the
experiment using four processors. The performance metric is MOPS (i.e., mega
operations per second).

Each graph in Figure 4 shows that the difference between the native and
VMs is small: less than 20%, and nearly 0% in the case of EP and LU.

5.4 Network Benchmark Results on the Overlay Network Testbeds

Table 1 shows latencies and bandwidths of the site-to-site VPN and emulated
two-site testbeds. We conducted the ping-pong tests over the OpenVPN and
PacketiX gateway machines as well as the NIST Net router. The graph named
“Native” in each figure shows the performance when no gateway or route is
interposed between the two switches.

As shown in Table 1, the latency overhead by OpenVPN and PacketiX was
0.11ms and 0.32ms, respectively; The bandwidth of OpenVPN was decreased by
a factor of three to five. To identify the reason of the low bandwidth, we mea-
sured the CPU usage of the OpenVPN gateway machines during the NetPIPE
experiments. We see that on each gateway, the CPU usage was always close to
100%. We predict that the bandwidths of the VPN gateways are bound by CPU
performance. Further analysis of the bottleneck remains to be conducted.

Relative Performan
Relative Perform:

Relative Perform;
Relative Performance

(c) EP (d) BT
Fig. 4. The relative performance of NPB class B benchmarks.

Table 1. Latencies and bandwidth of the overlay networks.

Latency (ms)|Bandwidth (Mbps)
Native 0.04 896
OpenVPN 0.15 290
PacketiX 0.36 170
Oms 0.12 700
0.1ms 0.28 636
0.5ms 0.65 392

5.5 MPI Benchmark Results on the Overlay Network Testbeds

Figure 5 shows the results of four MPI benchmarks on the OpenVPN and Pack-
etiX site-to-site VPN testbeds as well as emulated two-site testbeds. We con-
figure the NIST Net emulator to impose delays of Oms, 2.5ms, and 5.0ms. The
Oms-delay network gives the baseline performance using two clusters excluding
the effect of VPN overhead. We also present the performance when 64 nodes in
Prestolll are used without the overlay networks to show the ideal performance of
the 64-node cluster. The heights of the bars represent the relative performance of
each configuration against the configuration using 32 native machines in a single
cluster. The performance metric is MOPS. Note that the Y value greater than
1 means that its configuration achieves speedup by using 64 multi-site nodes
against 32 nodes.

2 M —

18
818 - i
S 14 - O 1-site 64
g 12 M M || | |O0ms
L% .1 = _ O 2.5ms
% 08 | | |®50ms
2 : | B OpenVPN
% 06 O Packetix
x 04

02

0 | | | | |
Native Xen Native Xen Native Xen Native Xen
CG LU BT EP

Fig. 5. Performance of the NPB benchmarks on the overlay networks.

On these results, we point out three remarks. First, as expected, the perfor-
mance of NPB EP is mostly irrelevant to underlying networks, and achieves a
linear speedup using two 32-node clusters. Second, we see that the native ma-
chines and the Xen VMs exhibit almost the same performance patterns with
respect to the variations in underlying networks. Third, the achieved speedups
using two 32-node clusters are less than 1 for most cases except for EP, while
those using a 64-node cluster are greater than 1.2 in both LU and BT. Thus, in
these configurations, using two 32-node clusters does not make the performance
better than a single 32-node cluster. On native machines, using OpenVPN de-
grades the performance of CG, LU, and BT, to 22%, 54%, and 28%, of the single
64-node cluster, respectively; the Oms-delay network does to 31%, 79%, and 41%.
These results suggest that the most significant source of overhead of site-to-site
VPNs comes from the inter-cluster link, not the VPN gateways.

6 Discussion and Future Directions

6.1 Performance Implications of using VMs for MPI

The experimental results of MPI on Xen-based VMs using a physical single clus-
ter shows that virtualization overhead ranges from 0% to 20% on 4-128-node
clusters. Within four benchmarks, CG, which is the most communication in-
tensive, exhibits the largest overhead. On the other hard, EP, which is mostly
compute-intensive, achieves nearly the same performance as that on native ma-
chines. Therefore, we see that major source of overhead in MPI execution comes
from its communication.

While some users would find 0-20% degradation unacceptable, we see that
the advantage of VMs would outweigh for other users. One of such advantages is
isolation of system environments. For example, virtual clusters allows the user to

customize environments without modifying underlying resources. Such isolation
is likely to be useful in resource-sharing environments such as computing centers.

6.2 Overlay Networks for MPI Execution

To improve the site-to-site VPN performance, we explore three directions. First,
we will investigate optimization of collective operations. As discussed in Sec-
tion 5.5, wide-area links are the most significant bottleneck in site-to-site VPNs.
Thus, MPI performance could be improved by optimizing its collective opera-
tions for multi-site execution, as proposed by Kielmann et al. [11].

Second direction is to schedule wide-area communication based on load im-
balance of parallel programs. Although load balancing is one of the research areas
that have been received the most attention, the problem still exists in a wide
variety of scientific programs. Our idea is to give a higher priority to the pro-
cesses that are predicted to reach a barrier point later than the other processes.
The VPN tunneling machine, in turn, could prioritize the messages to and from
those higher-priority processes. We expect this priority-based scheduling to hide
latencies of WANSs to some extent.

Third, we will explore more advanced alternatives such as parallel imple-
mentations that use available multiple processors and nodes. Although the main
bottleneck lies in wide-area links, we still expect there is a chance to improve
the MPI performance by increasing the performance of VPN gateways.

7 Related Work

Virtual Workspace [12] deploys VMs by extending Workspace Service of Global
Toolkit 4. Unlike our proposed virtual cluster vision, it does not do dynamic
VM migration. Besides, in Virtual Workspace, no mechanism is provided for
the reachability across NATs and firewalls. VioCluster [13] uses UML to vir-
tualize compute nodes, and VIOLIN [2] as underlying overlay networks. With
experimentation using HPL on a single-site VioCluster, they estimated the per-
formance overhead of VioCluster is at most 15%. They have not evaluated per-
formance of multi-site MPI executions.

There has been some work on MPI that extends the standard single-site MPI
execution model to multi-site execution, such as MPICH-G2 [7], GridMPI [6],
and MagPlIe [11]. Although none of the past work can achieve the potential
optimization through the VM migration, their optimized collective operations
for wide-area links would be beneficial in our virtual cluster environments.

8 Conclusion

We have discussed the motivation and requirements of virtual clusters, and pre-
sented our current approach to them. It consists of Xen for virtualization of
compute nodes, and site-to-site VPNs for overlay networks. The experimental

studies suggest that, while the overhead caused by Xen VMs is relatively small,
the underlying network can significantly degrade application performance. Fi-
nally, we discussed the possible strategies to mitigate the performance problem.

Our future work includes more elaborate performance studies as well as those
discussed in Section 6. In addition, based on the detailed performance studies, we
will explore the possibility of constructing performance models for MPI on vir-
tual clusters. With the performance models, we plan to study global scheduling
algorithms for virtual clusters on grids.

Acknowledgments

This work is supported in part by Japan Science and Technology Agency as a
CREST research program entitled “Mega-Scale Computing Based on Low-Power
Technology and Workload Modeling”, and in part by the Ministry of Education,
Culture, Sports, Science, and Technology, Grant-in-Aid for Scientific Research
on Priority Areas, 18049028, 2006.

References

1. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauery,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: SOSP, Bolton
Landing, New York (2003)

2. Jiang, X., Xu, D.: Violin: Virtual internetworking on overlay infrastructure. In:
Department of Computer Sciences Technical Report CSD TR, 03-027, Purdue Uni-
versity (2003)

3. VMWare: Esx server architecture and performance implications. White Paper
(2005)

4. Clark, C., Fraser, K., Hand, S., Hanseny, J.G., July, E., Limpach, C., Pratt, L.,
Warfield, A.: Live migration of virtual machines. In: NSDI. (2005)

5. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable im-
plementation of the MPI message passing interface standard. Parallel Computing
22(6) (1996) 789-828

6. GridMPI: Gridmpi project. http://www.gridmpi.org/ (2006)

7. Karonis, N.T., Toonen, B., Foster, I.: MPICH-G2: A grid-enabled implementation
of the message passing interface. Journal of Parallel and Distributed Computing
(JPDC) 63(5) (2003) 551-563

8. OpenVPN Solutions LLC: Openvpn. http://openvpn.net/ (2006)

9. SoftEther Corp.: Packetix. http://www.softether.comn/ (2006)

10. Carson, M., Santay, D.: NIST Net: A linux-based network emulation tool. SIG-
COMM Comput. Commun. Rev. 33(3) (2003) 111—126

11. Kielmann, T., Hofman, R.F.H., Bal, H.E., Plaat, A., Bhoedjang, R.A.F.: Magpie:
Mpi’s collective communication operations for clustered wide area systems. In:
PPoPP, Atlanta, GA (1999) 131-140

12. Foster, 1., Freeman, T., Keahey, K., Cheftner, D., Sotomayor, B., Zhang, X.: Virtual
clusters for grid communities. In: CCGRID. (2006) 513-520

13. Ruth, P., McGachey, P., Xu, D.: Viocluster: Virtualization for dynamic computa-
tional domains. In: IEEE International Conference on Cluster Computing, Boston,
MA (2005)

