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Abstract. The limiting factor for efficiency of sparse linear solvers is the
memory bandwidth. In this work, we utilize GPU’s high memory band-
width for implementation of a sparse iterative solver for unstructured
problems. We describe a fast Conjugate Gradient solver, which runs on
multiple GPUs installed on a single mainboard. The solver achieves dou-
ble precision accuracy with single precision GPUs, using a mixed preci-
sion iterative refinement algorithm. To achieve high computation speed,
we propose a fast sparse matrix-vector multiplication algorithm, which
is the core operation of iterative solvers. The proposed multiplication
algorithm efficiently utilizes GPU resources via caching, coalesced mem-
ory accesses and load balance between running threads. Experiments on
wide range of matrices show that our matrix-vector multiplication algo-
rithm achieves up to 9.9 Gflops on single GeForce 8800 GTS card and
CG implementation achieves up to 22.6 Gflops with four GPUs.

1 Introduction

Recently, GPUs have attracted HPC community, because of their peak com-
pute capability and high memory bandwidth, compared to conventional CPUs.
Moreover, today’s GPUs achieve relatively small cost and power consumption vs.
their performance. APIs developed by manufacturers like CTM [1] and CUDA [2]
made GPUs easy to program as a highly parallel multi-core coprocessor, not only
for graphic applications but also for non-graphic applications.

There have been several attempts to solve unstructured sparse linear sys-
tems utilizing GPUs [4, 5, 8]. Several advantages of GPU computing is mentioned
above. On the other hand, it is not easy to achieve high utilization of GPU
resources. The performance of the sparse matrix-vector multiplication (MxV),
which is in the core of sparse linear iterative solvers, is limited by the mem-
ory bandwidth rather than peak computation power. Although new generation
GPUs are capable of being programmed for general purpose computations, they
are originally optimized for graphics applications. Therefore, to achieve high per-
formance for computations over irregularly sparse matrices, thread level paral-
lelism and memory access methods on a set of streaming multi-processors should
be carefully thought.

Another drawback of GPUs is, for most of them, lack of double precision
support for floating point operations. Hence, solvers without CPU support suffer
from loss of accuracy in solution. In order to achieve double precision accuracy,
we adopt a mixed precision iterative refinement algorithm [6].

In this work, we implement a fast Conjugate Gradient (CG) solver with multi-
GPU support. To the best of our knowledge, this is the first multi-GPU solver



for unstructured sparse systems. All basic operations of the single precision CG
solver are implemented on GPUs. We propose a fast MxV algorithm.Proposed
MxV algorithm achieves high utilization of GPU resources by coalesced memory
accesses, caching, and load balancing between working threads.

We evaluate performance of the proposed algorithms over a wide range of
well-known matrices. We compare the performance of our MxV algorithm on
the GPU with CPU implementations and several näıve GPU implementations.
Experiments confirm that our algorithm on the GPU is several times faster
than other implementations. Performance of the parallel solver degrades to some
extent due to the communication between GPUs and the CPU in each iteration.
Still, we achieve average speedup of 2.47 over single GPU on 4 GPUs for big
matrices in the dataset. Although we have reported results only for CG algorithm
in this work, our approaches can be efficiently applied for other sparse linear
methods with GPU support.

2 Background

2.1 Sparse Matrix Storage Formats

Since many of the entries in sparse matrices are zero, there is no need to explicitly
store them. There are many compressed storage formats for sparse matrices [19].
In this section, we only mention two of them related to our work.

Compressed Storage by Rows (CSR) stores nonzeros of the matrices in row
order. For indexing nonzeros, two arrays are used. The elements in the row
pointer array point the first nonzero in each row. There are number of rows + 1
elements in this array where the last element is kept for indicating boundary of
the last row. The other array stores the column indices of the nonzeros in row
order. Fig. 1 depicts the pseudocode of MxV (y = Ax) for a CSR-stored matrix
A with n rows. In the example, row ptr and col ind stand for row pointers and
column indices, respectively.

JDS format is not as straightforward as CSR. It can result with better perfor-
mance for MxV on vector processors. In order to store a matrix in JDS format,
matrix rows are reordered according to the number of nonzeros in each row in de-
creasing order. Then, all nonzeros of the matrix are shifted to the left. Columns
of the new compressed matrix are called jagged diagonals. Nonzero values of the
compressed matrix are stored in an array in column order. Corresponding col-
umn indices of each nonzero in the original matrix are written in another array.
One more array is kept to point the beginning indices of each jagged diagonal.
Finally row permutation is stored in an array, where elements of the array that
correspond to the rows of the compressed matrix, point the row number in the
original matrix. Fig. 2 depicts the pseudocode for MxV of JDS-stored matri-
ces. In the figure, perm, jd ptr and col ind respectively stand for permutation,

for i ← 0 to n − 1 do
y[i] ← 0
for j ← row ptr[i] to row ptr[i + 1] − 1 do

y[i] ← y[i] + values[j] × x[col ind[j]]

Fig. 1. Pseudocode of MxV for CSR-stored matrices



for i ← 0 to max nz − 1 do
for j ← jd ptr[i] to jd ptr[i + 1] − 1 do

r ← j − jd ptr[i]
y[perm[r]] ← y[perm[r]] + values[j] × x[col ind[j]]

Fig. 2. Pseudocode of MxV for JDS-stored matrices

jagged diagonal pointer and column index arrays. max nz is the maximum of
the number of nonzeros of each row.

2.2 Mixed Precision Iterative Refinement for Conjugate Gradients

Conjugate Gradient method is used to solve linear systems Ax = b, where ma-
trix A is symmetric and positive definite. Since generally GPUs do not support
double precision floating point operations, solvers on GPUs suffer from loss of
accuracy in the result. Therefore, in this work we adopt a mixed precision it-
erative refinement algorithm for CG [6] which is based on inner-outer iteration
method [9]. The algorithm explained in [6] is tested on conventional processors,
but reported to be applicable on GPUs, also. Authors report that the mixed
precision algorithm achieves faster solution of the same or even better accuracy
compared to the full double precision solver.

Basically, mixed precision algorithm runs the preconditioned CG. However,
instead of using a fixed preconditioner, preconditioner is solved using a single
precision sparse iterative method, in each iteration. Operations other than the
inner solver run in double precision. Single precision inner solver may also use
preconditioned CG method if a preconditioner is available or any other iterative
method that result in symmetric and positive definite operations. Inner solver
runs for a predetermined number of iterations and takes most of the time of the
overall solution.

2.3 General Purpose Computation on GPUs and CUDA

New generation GPUs can be thought as many-core stream-processing units.
Taking into account the superiority of peak performance over conventional CPUs,
GPUs are great resources not only for graphics processing, but also for data-
parallel computing. Using GPUs for non-graphics applications is not a new idea,
but with development of new APIs that hide the graphics-related interface and
drastic increase in hardware performance, usability and popularity of general
purpose computing on GPUs increased significantly [7].

Compute Unified Device Architecture (CUDA) is NVIDIAs new generation
GPU architecture. It is also the name of the software for programming this
architecture. A CUDA GPU contains number of SIMD multiprocessors. GPU
has a device memory that is accessible by all processors. Each multiprocessor
contains its own shared memory and read-only constant and texture caches that
are accessible by all processors within the multiprocessor. CUDA API supports
programming different memory types.

CUDA GPU devices are capable of running high number of threads in paral-
lel. Threads are grouped together as thread blocks, so that each block of threads



are executed on the same multiprocessor. As a result, threads in the same block
can communicate through fast shared memory.

Threads in different blocks can communicate through device memory. How-
ever, access to the device memory is very slow compared to the shared mem-
ory. Hence, device memory accesses should be refrained as possible and accesses
should be coalesced to attain high performance. If memory access is organized in
the right pattern, half of the threads that are scheduled to execute instructions
in the same time and in the same block can access to the device memory in a
single coalesced read or write instead of many simultaneous accesses. Coalescing
is possible if threads access consecutive memory addresses of 4, 8 or 16 bytes
and base address for coalesced access should be multiple of 16 times size of the
memory type accessed by each thread.

CUDA supports single precision floating point operations based on IEEE 754
standard, with some deviations [2].

2.4 Sparse Iterative Solvers on GPU

GPU memory can be efficiently utilized for solvers where the matrix has a regular
structure [10,11]. In this work, our target is to solve systems with irregular
sparsity.

Bolz et al. [4] propose a Conjugate Gradient solver for unstructured ma-
trices. They use two textures to store the matrix, one for diagonal and one
for off-diagonal entries of the sparse matrix stored by CSR. To utilize memory
bandwidth, blocked CSR (BCSR) is used in [5] instead of CSR. BCSR decreases
number of memory fetches from the device memory to some extent, however
number of elements to be multiplied increases. They achieve 1 to 6.5 Gflops CG
performance on QuadroFX 5600 card with a limited dataset of 5 matrices.

Both of the above-mentioned works solve systems in single precision floating
point. Göddeke et al. propose mixed precision solutions for FEM simulations on
banded matrices [10, 11]. They extend the multi-grid solver to run on a GPU-
enhanced cluster in [12]. Georgescu and Okuda [8] use an iterative refinement
algorithm [15] to obtain double precision accuracy, for general matrices. They do
not make considerable afford for faster kernel operations, instead prefer a näıve
implementation based on CSR format.

3 GPU-Enhanced Conjugate Gradient Solver

We implement the mixed precision algorithm explained in [6] and summarized
in Section 2.2. Core operations of single precision inner solver run on the GPU,
while double precision refinement iterations run on the CPU. We implement CG
for inner solver, assuming that we have no preconditioner readily available.

CG consists of several kernel operations: MxV, SAXPY, vector dot prod-
uct, norm and scalar operations. Since MxV dominates the running time, fast
implementation of MxV is required for faster CG.

3.1 Efficient Sparse Matrix-Vector Multiplies on GPU
We propose an efficient MxV algorithm on GPUs based on JDS storage and
CSR-like multiplication. The matrix is stored in JDS format to achieve coalesced



mult ← 0
for i ← 0 to nz count[t] − 1 do

j ← jd ptr[i] + t
mult ← mult + values[j] × x[col ind[j]]

done
y[perm[t]] ← mult

Fig. 3. CSR-like multiplication of JDS-stored matrix.

reads from the device memory. Each GPU thread multiplies one row of the
matrix and computes one output vector element. The proposed MxV procedure
for each GPU thread t is depicted in Fig. 3. Note that, for each thread to realize
multiplication we need to have one more array (called nz count in the figure) to
store number of nonzeros of each row.

In this multiplication scheme, consecutive threads access to the consecutive
indices in arrays values, col ind, nz count and perm. So, reads from these arrays
can be coalesced, instead of many simultaneous reads. Note that, as mentioned
in Section 2.3, to achieve coalescing base addresses of coalesced reads should be
multiple of 16 times size of the data type to be read. Namely, elements of jd ptr
should be multiple of 16. We pad zeros to arrays values and col ind for each
jagged diagonal to have multiple of 16 entries.

Unfortunately, writing to the output vector y cannot be coalesced because of
the irregular access caused by perm array. Still, unlike JDS multiplication given
in Fig. 2, CSR-like multiplication has an advantage of writing the output vector
only once.

Since in JDS format matrix rows are sorted according to their nonzero count
in decreasing order, better computational load balance is naturally obtained. The
variation of nonzero counts between threads within the same block is smallest.

In JDS format, row indices are not consecutively ordered. To access values
in row t, indices should be calculated using jd ptr array. Many accesses to this
array may be costly if it is deployed to the device memory. We place this array
to read-only constant cache to avoid slow reads. Reading from constant cache
is as fast as reading from registers, if active threads in the same block read the
same address. In case of cache miss, cost of reading from constant memory is
equal to reading from device memory. Size of the cached array jd ptr is equal
to the maximum of the number of nonzeros of rows. For all of our experimental
data, this array completely fits into constant cache, hence no cache miss occurs.

We bind x array to the texture cache in our implementation.

3.2 Other Operations
Not only MxV, but all operations of the inner CG solver other than scalar
division operation are efficiently implemented on the GPU. Dot products and
norms are implemented as in the parallel reduction example of NVIDIA’s CUDA
SDK [13], in logn steps, where n is the size of the vectors in computations. Each
output element of SAXPY operation is calculated by a different thread.

3.3 Multi-GPU Algorithm

CUDA supports multiple GPUs run together for an application. Compared to
main memory, GPUs have limited device memory. For applications which require



a lot of storage, device memory limitations may be a bottleneck for GPUs. For
this reason, sometimes running algorithms on multiple GPUs is not only required
for faster applications but to overcome memory bottleneck.

We propose a data-parallel CG algorithm to run on multiple GPUs and a
CPU located on the same board. Rows of the matrix and corresponding vector
entries are distributed amongst GPUs. Since MxV takes most of the iteration
time, we assign nonzeros of the matrix equally to each GPU, so that loads of
MxV is balanced amongst GPUs.

CPU creates a thread for each GPU and coordinates the communication
amongst them. In every iteration, each GPU communicates with the CPU for
them to exchange input vector entries of the matrix-vector multiply. Host CPU
holds a global array, where each GPU writes to and reads from for communi-
cating vector entries. When inner solver terminates, solution vector computed
by the inner solver is copied to the CPU and refinement iteration on the CPU
begins.

Other than above-mentioned communications, scalars are communicated be-
tween GPUs and the CPU to compute global results of the locally computed
values. In the resulting algorithm, threads synchronize in three points: once
before MxV to exchange input vector of the multiplication, and two times to
compute scalars.

4 Experimental Results

We evaluate performance of proposed MxV and CG methods on single and
multiple GPUs. In our experiments, an AMD Phenom 9850 2.5 GHz Quad-Core
processor, 4 GB main memory and four GeForce 8800 GTS 512 GPU cards are
used in the hardware platform. CUDA version 1.1 is used for coding on Linux
2.6.23 OS. Pthread library on C language is used for CPU threading.

42 matrices that are symmetric and positive definite with real value entries
from Sparse Matrix Collection of University of Florida [3] are used for perfor-
mance evaluation. Matrix dimensions vary from 1,440 to 1,585,478 and number
of nonzeros vary from 46,270 to 55,468,422.

4.1 MxV Performance

We compare performance of the proposed algorithm with CSR implementations
on the CPU and one SMP node of the TSUBAME supercomputer [16]. To make
fair comparisons with the quad-core CPU, we implement CSR multiplication
on the CPU using 4 threads. One node of TSUBAME has 8 AMD 2.4 GHz
Opteron dual core processors, hence we use 16 threads in our implementation
on the SMP node. To demonstrate the validity of the algorithmic improvements,
we also compare our algorithm with basic JDS and CSR implementations on the
GPU. Each thread block contains 32 threads for all implementation on the GPU.
In the CSR implementation, each GPU thread multiplies one row of the matrix.
For JDS implementation, each thread computes one element of the matrix and
we pad zeros to matrices to achieve coalescing, as explained in Section 3.1. Since
output vector y is accessed number of nonzero times for basic JDS multiplication,



accesses on this array in irregular order drastically degrades the performance.
Hence, we let each thread t multiplying a nonzero in row r to write rth index of a
temporary array y temp. By this way, writes on y temp can be coalesced. In the
end of the multiplication, y temp is reordered into y, using the row permutation
array.

Comparison results are given in Gflops in Fig. 4. Matrices on x axis are sorted
according to the number of nonzeros they contain. GPU-Proposed stands for our
proposed multiplication algorithm based on JDS storage and row multiplication.
GPU-CSR and GPU-JDS stand for CSR and JDS implementations on GPU,
respectively. TSUBAME-1 node stands for 16 core SMP implementation on one
TSUBAME node and Quad core CPU stands for our single CPU implementation.

During MxV, for each nonzero, one multiplication and one addition opera-
tion is executed. Therefore, we calculate flops by dividing two times number of
nonzeros by execution time. SMP, quad core CPU, CSR-based GPU, JDS-based
GPU and our algorithm respectively achieve 0.84, 1.16, 1.37, 2.7 and 6.52 Gflops,
on average for matrices in the dataset.

Variation of the performance of our algorithm and JDS-based implementation
on test matrices is greater than other implementations. Utilization of GPU re-
sources is lower for smaller matrices, hence the algorithm is slower. This is more
obvious for JDS-based implementation. On the contrary, with the increase in
matrix size, SMP implementation becomes slower, due to the insufficient cache
for matrix data. Dramatically low performance of the SMP node of 16 cores
indicates the importance of memory bandwidth utilization for MxV.

Matrix structure greatly affects our algorithm’s performance. For sparser ma-
trices such as G3 circuit and thermal2 (4.8 and 7 nonzeros per row, respectively),
and denser matrices such as exdata 1 and nd24k (378.2 and 398.8 nonzeros per
row, respectively), algorithm is slower than the average. The algorithm is also
slower for matrices whose nonzeros are distributed over the whole matrix, such
as F1. This is due to the large number of cache misses on the input vector of
multiplication. On the other hand, algorithm is faster for matrices whose con-
secutive rows (columns) share many columns (rows). For instance, s3dkq4m2,
whose nonzeros are ordered around the diagonal, is the fastest in our dataset.

Note that the main reason behind the outstanding performance of our algo-
rithm is memory coalescing. In our experiments, we found out that CSR imple-

Fig. 4. MxV performance comparison of the proposed algorithm.



mentation on GPU performs slightly better than our algorithm, if we do not pad
0s to jagged diagonals hence coalesced memory reads do not occur.

Effective memory bandwidth of the proposed MxV algorithm is 38.9 GB/s for
matrices in the dataset, on average. The GPU used in experiments has maximum
memory bandwidth of 64 GB/s, that is, bandwidth utilization of our algorithm
is 61%.

4.2 CG Performance

In this section, we evaluate the performance of single and multiple GPU CG
algorithms and CG on the CPU. Performance of inner CG solver iterations of the
mixed precision algorithm is given in flops. We do not make convergence analysis
of the mixed precision algorithm, since exclusive analysis is already done in [6]
and the algorithm is shown to be faster than double precision CG on conventional
CPUs while not sacrificing accuracy of the solution. Also, we do not observe any
increase in number of iterations for GPU-enhanced algorithms to achieve same
accuracy with CPU implementation of both inner and outer solver. Since double
precision operations occupy only a small portion of the overall execution time,
the performance of the mixed precision algorithm increases speeding up the
single precision inner solver. We implement double precision outer iterations on
the CPU. On average, one iteration of double precision CG achieves 1.42 Gflops
for matrices in the dataset.

Performance of the inner CG solver on different platforms is given in Fig. 5.
The chart on the left depicts CG performance in Gflops and the chart on the right
depicts the speedups of the multi-GPU algorithm over single GPU algorithm.
For smaller matrices in the dataset, communication cost between CPU and GPU
dominates the overall execution time of multi-GPU algorithm, hence employing
more GPUs do not increase performance of the solver. For this reason, in the
figure, we omit results for matrices that have less than 5 million nonzeros. CG
performance is 6.02, 9.58 and 14.84 Gflops with single GPU, 2 GPUs and 4
GPUs, respectively, on average. This means that 2 GPUs speeds up single GPU
algorithm by 1.59 and 4 GPUs by 2.47.

It is interesting to observe the big variation on the speedups. We observe
speed down for some matrices, while for one matrix we observe superlinear
speedup. The most important factor affecting the performance of the multi-
GPU algorithm is number of communicating input vector entries between the
CPU and GPUs. Some of the other factors affecting the performance are the
balance of vector sizes between processors and the cache affect.

Fig. 5. CG (inner solver) performance. Left: comparison of single and multi-GPU al-
gorithms with CPU implementation Right: Multi-GPU speedups over single GPU



For the densest matrix in the dataset, nd24k, we observe superlinear speedups,
while for the sparsest matrix, G3 circuit, we cannot observe any speedup. The
imbalance of vector sizes of nd24k on 4 GPUs is 24%. Maximum sending GPU
sends 86 KB to the CPU and maximum receiving GPU receives 166 KB from
the CPU. Since MxV dominates the total CG time, imbalance of vector sizes
become negligible. On the other hand, for the sparsest matrix G3 circuit imbal-
ance of vector sizes is 6%, maximum sending GPU sends 730 KB and maximum
receiving GPU receives 732 KB, for 4 GPUs. Here, GPU communication dra-
matically affects the performance, since computation count per communicating
data is very low. For crankseg 2, where we do not observe any speedups for this
matrix on 4 GPUs, the imbalance of vector sizes is 35%, maximum sending GPU
sends 86 KB and maximum receiving GPU receives 207 KB receives almost all
vector entries that it does not compute. The density and number of nonzeros
of this matrix is about half of nd24k. Still, we cannot explain the performance
difference between these two matrices by just the communication and vector
imbalance. The speed down of the other crankseg matrix implies that matrix
structure also affects the performance difference among matrices. We found out
that the variation of number of jagged diagonals across matrices assigned to dif-
ferent GPUs is incomparably high for crankseg matrices, where for nd24k, there
is almost no variation. Sparsity patterns of distributed matrices across GPUs are
too different for crankseg matrices, so that even we assume no communication,
ideal speedup is impossible due to the difference in cache utilization of parallel
GPUs. For these types of matrices, a clever row distribution algorithm emerges.

5 Conclusion and Future Work

In this work, we have demonstrated efficient utilization of GPUs for solution
of general sparse symmetric linear systems with double precision solution ac-
curacy. We have implemented a mixed precision CG solver on multiple GPUs
and evaluated its performance on a wide range of matrices. The performance of
the proposed algorithm reveals that stream processing on modern GPUs can be
useful for increasing memory bandwidth utilization for sparse linear solvers. The
proposed MxV algorithm, which is the most time-consuming operation of the CG
solver, utilizes constant and texture caches, as well as coalesced memory reads
from the device memory. As a result, we achieve the fastest MxV implementation
for unstructured sparse matrices on the GPU, to the best of our knowledge.

Number of cache misses on input vector considerably affects the run time of
MxV. It is very difficult to find algorithms to increase the cache utilization for
input vector. There are some works dedicated to decrease the number of cache
misses for CSR multiplication, which is an NP-complete problem [17, 18]. We
plan to study on better cache utilization for the input vector of the proposed
MxV algorithm in future.

Our multi-GPU algorithm achieves 14.8 Gflops for CG on 4 GPUs, on av-
erage. Communication between GPUs and the CPU significantly degrades the
performance of the multi-GPU algorithm. Performance of the multi-GPU algo-
rithm can be further increased by direct GPU to GPU communication. We await



CUDA support for direct inter-GPU communication instead of communication
through the CPU.

In the future, we plan to study on scalable implementation of the parallel
algorithm to run on a GPU cluster. Although we demonstrate results only for
the CG solver in this work, proposed techniques can also be applicable for other
symmetric or asymmetric iterative solvers.
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