
Software-Based ECC for GPUs
Naoya Maruyama and Akira Nukada

Tokyo Institute of Technology
JST CREST

Satoshi Matsuoka
Tokyo Institute of Technology

National Institute of Informatics
JST CREST

Abstract—Commodity off-the-shelf GPUs lack error
checking mechanisms for graphics memory, whereas con-
ventional HPC platforms have used hardware-based ECC
for DRAMs. To alleviate this reliability concern, we propose
a software-based ECC for GPGPU applications. We add
small program codes to normal CUDA programs that
compute ECCs for data residing in graphics memory
so that transient bit-flips can be detected or masked.
Preliminary performance studies with 3-D FFT and the
N-body problem show that error checking using ECC can
take 200% and 7% of overhead, respectively. We discuss
that performance overheads are derived from the cost of
ECC computation on GPUs.

I. I

General-purpose computing on graphics processing
units (GPGPU) has rapidly been recognized as a promis-
ing HPC technology because of GPUs’ much higher
peak floating-point processing power than conventional
CPUs. However, since GPUs have originally been de-
veloped for graphics applications, such as 3-D games,
where transient errors can be tolerable in many cases,
its reliability has not been given as much consideration
as in HPC communities. One notable example is the lack
of error checking in graphics memory systems. DRAMs
in conventional HPC platforms are usually equipped
with hardware-based error checking mechanisms, such
as Error Correcting Codes (ECC) that can detect double-
bit errors and correct single-bit errors. Since radiation-
induced soft errors, while the likelihood of occurrences
is very small, can manifest themselves as large devia-
tion in final execution results, such error protection is
essential in HPC applications, especially long-running
ones using a large number of GPUs. However, as far
as we know, none of the currently available GPUs
manufactured by both NVIDIA and ATI provides any
variants of error checking for graphics memory.

To safely exploit GPUs for accelerating HPC applica-
tion performance, we propose a software-based approach
to error checking for GPU memory. Although extreme
high-end cards for the professional market might adopt
hardware ECC in the future, it is very likely that main-
stream GPGPUs will not adopt ECC in any foreseeable
future, just as commodity PCs do not as well despite
their exponential growth in their performance and mem-
ory capacity. This extended abstract presents an overview

of our software-based approach with preliminary perfor-
mance evaluation.

II. O A

Memory errors such as bit flips can be detected and/or
corrected with error-checking codes, such as parity bits
and Hamming codes [1]. The most common case is
Error-Correcting Codes (ECC), which use both parity
bits and Hamming codes. ECC allows single-bit errors
to be corrected and double-bit errors to be detected
(SECDED). For example, typical ECC DRAMs reserve
an 8-bit code region 64 bits to store the code, where
seven bits are consumed by Hamming code and one
bit by parity. When a block of 64 bits being written to
DRAMs, the memory system writes its 8-bit ECC to the
code region as well; When the data being read, its code
is again generated and checked against the previously
generated code. When the two codes do not agree, there
must be bit flips in the data, which may or may not be
corrected depending on the number of flipped bits.

As an initial feasibility study, we realize the same
memory fault tolerance in GPGPUs by implementing
this error-checking scheme by software, thus allowing
commodity hardware with no built-in error checking
mechanisms to be reliably used for scientific computing.
More specifically, for each memory write, we embed a
small additional program code that calculates and saves
error-checking code of the value written. The additional
program code for read accesses uses the code to check
the correctness of reads from the memory.

Our current prototype implements this error checking
scheme as a library for NVIDIA CUDA [2]. CUDA
exposes several memory components to applications,
such as shared memory, global memory, and texture
memory. This preliminary study focuses on protecting
applications from errors in the global memory, which
typically has the largest capacity backed by off-chip
graphics memory (hundreds of mega bytes to a few
giga bytes in the current generation of GPUs). Errors
occurring in other areas remain a subject of further work.

Since the current approach is library-based, the pro-
cess of adding error checking is not completely auto-
matic, but rather requires manual modifications of user
programs. Specifically, a user program has to be mod-
ified so that it performs the following three additional



tasks. First, it needs to allocate separate memory for
storing ECCs of global memory. This is a relatively
simple task since global memory in CUDA has to be
explicitly allocated by calling cudaMalloc; the user can
simply add an additional call to cudaMalloc for each
global memory allocation site. Second, for each access
to global memory, it needs to compute the ECC of the
value accessed and to detect or correct errors if possible.
Our library provides functions for computing ECCs for
several data types, including integers and floating points
of various sizes. The user program needs to be modified
so that every memory read is followed by a call to its
corresponding error-checking function. Similarly, every
write access is modified to be followed by a library call
that generates and saves the code of the written data.
Third, since global memory can be copied to and from
CPU memory, it needs to generate codes of the data
on the CPU memory as well. For example, a typical
scenario of using global memory is that the user program
first allocates an area and initializes it with the data
residing in CPU memory. In that case, the CPU first
needs to generate the codes before transferring it to the
global memory. Our library provides several functions
for this purpose so that the user program can simply
call one of them to implement code generation on the
CPU.

The preliminary prototype has several limitations and
assumptions. First, it does not support race-free con-
current writes, but simply assumes that all the writes
touches separate regions. The CUDA API provides
atomic operations on global memory, allowing mutual
exclusion among concurrent multiple accesses to the
same region. However, its access granularity is limited
to only 32-bit data, so writes of original 32-bit data and
its code cannot be performed atomically, but must be
done by two separate transactions. Second, the current
prototype relies on the user so that she correctly manages
the mapping of protected data and its ECC. This can be
a trivial task when an application is simple and small
scale, such as matrix multiplication; however, in general,
indirect memory accesses through pointers could make
the management of mapping rather difficult and tedious.
We are now considering automating the mapping by
compiler-based analyses.

III. P E

As preliminary performance studies, we first evalu-
ate the basic throughputs of memory reads with the
software ECC to understand the overhead derived from
the software ECC. Next, we extend two application
kernels, an N-body problem and FFT [3], with ECC
to show application-level performance overheads. We
select the two kernels as representatives of compute-
intensive and bandwidth-intensive applications. All of
the measurements are done on three Nvidia GPUs:

0

20

40

60

80

100

120

140

160

GTX 285 S1070 8800 GTS

Th
ro
ug
hp

ut
 (G

B/
s)

Original
ECC

Fig. 1. Throughputs of memory reads w/ and w/o ECC.

GeForce GTX 285, Tesla S1070, and GeForce 8800
GTS 512 (abbreviated as GTX 285, S1070, and 8800
GTS). The former two GPUs are both based on the same
latest Nvidia GPU architecture (G200), but have different
memory capacities and speeds. The 8800 GTS is derived
from the older generation (G92). We use CUDA version
2.1 for the GTX 285 and GTS 8800 GPUs, and 2.0 for
the Telsa GPU.

Figure 1 compares the throughputs of memory reads
with and without ECC. The throughputs decreased to
24%, 40%, and 35% with GTX 285, S1070, and 8800
GTS, respectively. We speculate that this throughput
degradation can be explained by the ECC computation
cost. Our prototype takes 63 integer 32-bit logical oper-
ations to generate an ECC for a 64-bit datum, which
means that one byte of data approximately requires
eight integer operation. As shown in the blue bars in
the graph, the GTX 285 GPU achieves more than 140
GB/s. To keep up the memory throughput, the GPU need
to process 1120 giga operations per second (GOPS),
which is far beyond of its theoretical limit of 355
GOPS. In other words, the GPU can at most afford
44 GB/s throughputs. In addition, read accesses incur
other instructions, including the comparison of codes,
so the actual ECC throughputs is lower than the limit.
Thus, we believe that the performance of software ECC
is computation bottleneck. This analysis is consistent
with the fact that the ECC throughput of S1070 is
approximately the same as that of GTX 285: While the
latter achieves much higher throughput without ECC,
they have very similar processing power (355 GOPS
and 345 GOPS). The 8800 GTS GPU, whose processing
speed is 208 GOPS, shows the similar behavior.

As an example of computation-intensive kernels, Fig-
ure 2 compares the performance of the N-body problem
on the GTX 285 GPU with varying numbers of bodies.
Here, we use the sample N-body code that is shipped
with the CUDA SDK, which includes both a CPU ver-
sion and a GPU version. As a reference, we also measure
the CPU performance using a quad-core AMD Phenom



1

10

100

1000

1024 2048 4096 8192
Number of Bodies

Pe
rf
or
m
an
ce
 (G

FL
O
PS
)

GTX 285

GTX 285 w/ ECC

CPU

Fig. 2. Performance comparison of the N-body problem.

0
20
40
60
80
100
120
140
160

GTX 285 S1060 8800 GTS CPU

Pe
rf
or
m
an
ce
 (G

FL
O
PS
) Original

ECC

Fig. 3. Performance comparison of 3-D FFT of complex 2563 points.

9850 processor (2.5 GHz) equipped with 4 GB of
memory. The graph shows that the software ECC did not
incur much overhead: approximately 7% compared to
the original performance. This relatively small overhead
is because the N-body problem is mostly computation
dominant, so even if the memory throughputs degrade
as in the above results, the overall performance should
not be affected much.

As an example of bandwidth-intensive kernels, Fig-
ure 3 shows the performance overhead of software
ECC in 3-D FFT of 2563 complex numbers. The
evaluation uses a bandwidth-dominant kernel, which is
up to 3-times faster than the standard implementation
in CUFFT [3]. We also show performance of FFTW
executed on the CPU as in the N-body study. Each
of the ECC versions decreases its performance to ap-
proximately 36% (GTX 285 and 8800 GTS) or 40%
(S1070). These results reflect the throughput reduction
results since the performance of the underlying kernel is
bandwidth intensive.

In summary, the performance studies suggest that the
software ECC would be feasible with little performance
overhead when application kernels are compute inten-
sive, whereas bandwidth-intensive kernels can suffer sig-

nificant overheads by up to four times. Therefore, while
the current approach could be effective for compute
intensive kernels, lighter-weight techniques would be
necessary for the others.

IV. RW
Sheaffer et al. proposed a hardware extension for fault

tolerance in GPGPU [4]. The extension implements this
error checking for GPUs by executing pixel shading
multiple times. Note that while their technique requires
hardware changes, ours can be used with current off-
the-shelf GPUs. Also, the two techniques can be con-
sidered complementary because Sheaffer et al. assumes
that graphics memory is protected by ECC-based error
checking, for which our proposed technique can be used.

While we only consider errors in external DRAM
in GPUs, Dimitrov et al. presented cost evaluations of
complete redundant executions in GPUs, which indicate
two times performance overhead [5]. Specific protection
methods can be chosen depending on application sensi-
tivities to errors and error rates of GPU components.

V. S
We presented a brief overview and preliminary perfor-

mance results of our software-based ECC for memory-
fault tolerance in GPGPU. Our current approach realizes
ECC for CUDA global memory by requiring small
modifications to user programs so that each memory
access site is followed by a call to an appropriate error-
checking function in our library. Preliminary perfor-
mance evaluation indicated that software-based approach
can be performed with acceptable performance over-
heads for compute-intensive applications such as the
N-body problem; however, bandwidth-intensive applica-
tions require more efficient coding schemes. Our future
work includes more performance studies, investigation
of lighter-weight approaches, and fault-injection-based
recovery studies.

A
This work is supported in part by Microsoft Technical

Computing Initiative entitled “HPC-GPGPU”, and in
part by a JST CREST research program entitled “Ultra-
Low-Power HPC”.

R
[1] E. Fujiwara, Code Design for Dependable Systems: Theory and

Practical Applications. Wiley Interscience, 2006.
[2] “NVIDIA CUDA Programming Guide,” http://developer.nvidia.

com/object/cuda.html.
[3] A. Nukada, Y. Ogata, T. Endo, and S. Matsuoka, “Bandwidth

intensive 3-D FFT kernel for GPUs using CUDA,” in SC’08, Nov
2008.

[4] J. W. Sheaffer, D. P. Luebke, and K. Skadron, “A hardware redun-
dancy and recovery mechanism for reliable gpgpu,” in Graphics
Hardware 2007, Aug 2007, pp. 55–64.

[5] M. Dimitrov, M. Mantor, and H. Zhou, “Understanding software
approaches for gpgpu reliability,” in Proceedings of GPGPU-2,
2009, pp. 94–104.


