
Peer-to-Peer Scheduling System with Scalable Information Sharing Protocol

Norihiro Umeda
Tokyo Institute of Technology
norihiro.umeda@is.titech.ac.jp

Hidemoto Nakada
National Institute of Advanced

Industrial Science and Technology
hide-nakada@aist.go.jp

Satoshi Matsuoka
Tokyo Institute of Technology & NII

matsu@is.titech.ac.jp

Abstract

In traditional job scheduling systems for the Grid, a sin-
gle or a few machines handle information of all computing
resources and scheduling tasks. This centralized approach
is not scalable, since it introduces single point of failure and
bottleneck. Some decentralized scheduling systems have
been proposed to improve scalability. They avoid concen-
tration of scheduling costs by broadcasting job execution
requests in a peer-to-peer style. However, resource utiliza-
tion tends to be low, because most of them are not aware of
the dynamic states of computing resources before throwing
execution requests. This paper introduces a decentralized
scheduling system that improves resource utilization by us-
ing a Gossip-based multicast protocol. With this protocol,
peers can gather information of each other efficiently and
schedule jobs individually. The simulation shows that our
system is scalable and it handles many jobs efficiently in
large scale Grid environments.

1 Introduction

In Grid environment, job scheduling systems have been
widely used to manage computing resources and tasks.
Their function is to accumulate resources information such
as architecture, memory, disk storage, network bandwidth,
software and its owner’s policy and to assign submit-
ted tasks to suitable resources to achieve improvement
of utilization with referring these information Traditional
scheduling system has introduced centralized architecture
in resource allocation, hence there is single point of failure
and bottlenecks.

On the other hand some decentralized scheduling sys-
tems have been proposed aiming to avoid these concentra-
tion of scheduling processes. In these systems job execution

requests are announced by peer-to-peer network and peers
voluntary accept these request. Accordingly, job allocator
can not choose desirable peers to execute tasks efficiently.

Our proposed job scheduling system is that each peer
shares resources information with Gossip-based multicast
and can individually allocate resources for job execution,
thus it accomplishes both decentralized architecture and uti-
lization concurrently.

The rest of this paper is structured as follows. In Sec-
tion 2 we discuss the related works. In Section 3 we present
Gossip-based multicast. Section 4 presents that our decen-
tralized scheduling system. In Section 5 we show the result
of evaluation by simulation. Finally, Section 6 concludes
this paper and .

2 Related works

2.1 Centralized Job Scheduling System

There are centralized job scheduling systems in practical
use: Condor [6], Sun Grid Engine [4] and BOINC [2], etc.
In these centralized systems one or a few machines man-
age a lot of computing resources and management nodes
must be configured by system administrator. These system
have two defects: single point of failure and concentration
of management costs. If management nodes failed, all re-
sources would be unavailable. And the increase of com-
puting resources and tasks will cause the explosion of man-
agement cost. We consider these centralized job scheduling
systems lack scalability for large-scale Grid environments.

Condor is a job scheduling system developed at the Uni-
versity of Wisconsin and now has been used widely in the
Grid. In Condor, a set of computing resources is called Con-
dor Pool. Condor Pool consists of a Central Manager as re-
source manager and resources providers. Central Manager
is only one in a Condor pool and every resource provider

1



periodically sends its status to the Central Manager. These
information are expressed by ClassAd [7]. User submits
job with ClassAd which express the requirement of execu-
tion and a criterion of choosing adequate resource. Central
Manager decides resource allocation by using Matchmak-
ing [8] with stored ClassAds. ClassAd and MatchMaking
enable to improve efficiency of job execution and resources
utilization.

Central Manager can have spare nodes recovering failure
of original one. But there is only one Central Manager in
Condor Pool at a time, hence concentration of management
duty is unavoidable.

2.2 Peer-to-Peer Based Job Scheduling
System

To recover defects of centralized systems, some decen-
tralized systems like P3 [9] and Zorilla [3] have been pro-
posed. Peers in these systems can behave resource provider
and consumer simultaneously.

When a task is submitted to a peer by user, the peer
broadcasts its execution request to other peers by using a
overlay network. A request contains resource requirements
to execute the job. When a peer receives a request message,
it checks that whether it satisfies the requirements of the re-
quest. If its resources satisfy all of the requirements, the
peer will start to execute the task.

However, job allocation peer is not aware of resource in-
formation, so can not choose resources from the viewpoint
of efficiency and utilization.

3 Network Multicast Protocol for Large-
Scale System

Gossip [1, 5] is a multicast protocol and provides highly
reliable and scalable message dissemination.

Each peer selects randomly neighbor peers to send mes-
sage at regular intervals. When a peer receives unknown
message, it also starts Gossip process. Thus the number of
peers having message grows exponentially with rounds. If
the number of neighbors that have already received message
is much enough, the peer will stop to send it.

Since a path of message is changed dynamically, fault
of partial peers and network connections is automatically
evaded and does not affect the whole of message propaga-
tion.

The shortcoming of Gossip-based multicast is that it
is not guaranteed that the messages reach all members of
the group certainly because its behavior is probabilistic.
Nonetheless, the scalability and robustness are desirable
properties to large-scale Grid which consists of enormous
computing resources.

Figure 1. Overview of our system

4 Our Job Scheduling System with Gossip-
based Multicast

To avoid concentration and single point of failure, we in-
troduce peer-to-peer approach; each peer in computing re-
source pool acts as a resource provider and scheduler.

4.1 Overview

We describe how our proposed system works here. Fig-
ure 1 shows the overview of our system. Each peer in re-
source pools works as a scheduler which allocate tasks to
other peers as well as worker to provide its computing re-
sources. Resource information is shared among peers in the
Grid, therefore there is no centralized element. A peer uses
Gossip protocol to broadcast its status and owner’s policies
and stores other status. When one peer accepts job sub-
mission from users, it makes a pair of the task and ma-
chine referring to stored resource information like a Con-
dor’s MatchMaking.

4.2 Broadcasting Computing Resource
Information

When a peer joins the Grid, it sends its resource infor-
mation to arbitrary neighbor peer and receives resources in-
formation of others such as architecture, utilization of CPU,
memory and disk, etc. This joining message is broadcasted
with Gossip, hence new peer is quickly recognized by oth-
ers. A peer in the Grid advertises its information with Gos-
sip periodically or when its status change. Every resource
information has a timestamp, so peers remove expired infor-
mation. Consequently, dead peer is automatically excluded
in resource lists of other peers.

2



Table 1. Composition of Peers
Relative Performance 0.6 0.8 1.0 1.2 1.4

Rate 0.2 0.2 0.2 0.2 0.2

Table 2. Parameters of Application

Number of Tasks 1 ∗ 106

Average Process Time of
Task in Standard Machine

10 minutes

Rate Parameter of
Exponential Distribution

1

Scheduling Cost Per Task 15 sec * Number of Resources

4.3 Distributed Task Allocation

In our system, a user can submit tasks to arbitrary peers
in the Grid. When a peer receives tasks from the user, it al-
locates a peer as worker referring to accumulated resource
information. If allocated peer is not already available state,
immediately scheduler chooses another peer again. Each
peer which tries to allocate jobs works independently, there-
fore the larger the number of job submission points are, the
more collision of resource allocation will occur. But a real-
location time is enough short, so this overhead will be neg-
ligible except when the job execution time is short.

5 Performance Evaluation

In this section, we describe the performance of our de-
centralized scheduling system. We implemented a simula-
tor as a evaluation environment. It can simulate network
communication, task allocation and execution.

5.1 Simulation Setup

We supposed a baseline reference machine whose perfor-
mance value was 1 and every machine’s performance was
presented by relative value based on the reference. If a ma-
chine has 1.2 performance value, the task that the baseline
finishes in60 minutes will be processed in60/1.2 = 50
minutes. Composition of resources in the experiments are
described in Table 1.

The sizes of tasks follows an exponential distribution.
These parameters about submitted application are described
in Table 2. This scheduling cost is based on our measure-
ment result of Condor.

Figure 2. Gossip Interval

5.2 Evaluation Results

5.2.1 Gossip Interval

Firstly, we evaluated that the effect of Gossip interval. We
designated gossip process interval ton(n = 15, 30, 60, 90)
seconds and submit the tasks to one peer. Figure 2 shows
the results. As one can observe, the decrease of interval
makes progress of resource utilization. However, excessly
frequent gossiping consumes the network bandwidth. Since
difference between the utilization of 15 seconds and 30 sec-
onds was enough small, we chose 30 seconds as Gossip in-
terval in the following experiments.

5.2.2 Number of Peers

Now we compare our proposed system and the centralized
system similar to Condor. Table 3 shows the summary of
results. The centralized system works effectively in small
environments because the load of collecting information is
modest and the overhead of Gossip-based multicast is rel-
atively large in small group. But our system attains higher
utilization than centralized in large system.

Figure 3 shows the detail of utilization in 10000 peers.
At the begining, the centrarized system achieves high effi-
ciency, but afterwards concentration of collecting resource
information causes the decline of utilization. In contrast,
our system constantly accomplishs good utilization.

5.2.3 Multiple submission points

We evaluated that how the numbers of submission peers
effect the performance of the our system. We divided the
tasks described in Table 2 evenly intom(m = 1, 4, 16) and
submitted them tom different peers. Figure 4 presents the
time required to process the tasks. The result shows that
the larger the number of submission point gets, the more
utilization improved. This experiment proves the overhead

3



Table 3. Job Execution Speed and Utilization
Centralized Our System

Finished Time Finished Time
100 12941 14109
500 2607.2 2687.0
1000 1342.2 1303.0
2500 450.3 428.8
5000 294.2 268.0
7500 210.3 176.7
10000 170.4 138.9

Figure 3. Utilization of 10000 Peers

of collision presented in Section 4.3 is enough minimal.
Furthermore the increase of submission points improves the
utilization because it reduces probabilities that no submis-
sion point is received the resources information.

6 Conclusions

We have proposed a peer-to-peer job scheduling system
that allows every peer to allocate jobs to other peers as com-
puting resource according to shared resource information
using Gossip-based multicast. We evaluated our proposed
system and the result showed that our system worked well
with reasonable Gossip interval and it was more scalable
than the centralized system with 1000 peers or more. And
we examined the submission tasks from multiple point, the
result showed the penalties of collision presented in Section
4.3 is negligible and the weakness of Gossip-based multi-
cast is reduced.

For future work, we will introduce more parameters such
as dependencies of tasks and failures of peers/networks into
our simulation. And also we plan to implement job schedul-
ing with our proposal and prove the feasibility in actual en-
vironment and applications.

Figure 4. The Effects of Multiple Submission
Points

References

[1] D. Agrawal, A. E. Abbadi, and R. C. Steinke. Epidemic algo-
rithms in replicated databases (extended abstract). InPODS
’97: Proceedings of the sixteenth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems, pages
161–172, New York, NY, USA, 1997. ACM Press.

[2] BOINC. Berkeley open infrastructure for network computing.
http://boinc.berkeley.edu/.

[3] N. Drost, R. V. van Nieuwpoort, and H. Bal. Simple locality-
aware co-allocation in peer-to-peer supercomputing. InPro-
ceedings of the Sixth IEEE International Symposium on Clus-
ter Computing and the Grid, page 14, Washington, DC, USA,
2006. IEEE Computer Society.

[4] W. Gentzsch. Sun grid engine: Towards creating a compute
power grid. InProceedings of the 1st International Sympo-
sium on Cluster Computing and the Grid, page 35, Washing-
ton, DC, USA, 2001. IEEE Computer Society.

[5] K. Jenkins, K. Hopkinson, and K. Birman. A Gossip Protocol
for Subgroup Multicast. InInternational Workshop on Ap-
plied Reliable Group Communication (WARGC 2001), Apr.
2001.

[6] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor - a
hunter of idle workstations. InProceedings of the 8th In-
ternational Conference on Distributed Computing Systems
(ICDCS), pages 104–111, Washington, DC, 1988. IEEE
Computer Society.

[7] M. Livny, J. Basney, R. Raman, and T. Tannenbaum. Mech-
anisms for high throughput computing.SPEEDUP Journal,
11(1), June 1997.

[8] R. Raman, M. Livny, and M. Solomon. Matchmaking: Dis-
tributed resource management for high throughput comput-
ing. InProceedings of the Seventh IEEE International Sympo-
sium on High Performance Distributed Computing (HPDC7),
Chicago, IL, July 1998.

[9] K. Shudo, Y. Tanaka, and S. Sekiguchi. P3: P2p-based mid-
dleware enabling transfer and aggregation of computational
resources. InProceedings of Cluster Computing and Grid
2005 (CCGrid 2005), 2005.

4


