
A Peer-to-Peer Infrastructure for Autonomous Grid Monitoring

Laurent Baduel and Satoshi Matsuoka

TOKYO INSTITUTE OF TECHNOLOGY, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
Email: baduel@smg.is.titech.ac.jp and matsu@is.titech.ac.jp

Abstract

Modern grids have become very complex by their size
and their heterogeneity. It makes the deployment and main-
tenance of systems a difficult task requiring lots of efforts
from administrators and programmers. Our goal is to in-
vestigate the concepts that underlie autonomic computing
systems, especially for grid environment. We believe that
peer-to-peer overlay networks are a valuable basis to sup-
port some of the main issues of autonomic computing in the
particular case of grids.

This article presents the construction of an autonomous,
decentralized, scalable, and efficient grid monitoring sys-
tem. The components of this application negotiate through
a peer-to-peer network in order to provide autonomic be-
haviors and exchange data. We present a solution based on
a gossip broadcast protocol upon a hierarchical, directed,
and acyclic graph to rapidly diffuse information in the sys-
tem while limiting the number of messages. The software
architecture is detailed, and then the first results of its per-
formance are presented and analyzed.

1 Introduction

Today’s IT systems with its ever-growing communica-
tion infrastructures and computing applications are becom-
ing more and more large in scale, which results in exponen-
tial complexity in their engineering, operation, and mainte-
nance. Modern large scale systems do not allow anymore
centralized organizations, with hand deployment, configu-
ration, and administration. Automation of key operations
must be introduced in such systems in order to free the ad-
ministrators and programmers of many tiresome tasks.

We propose to address those challenges using an auto-
nomic computing architecture where communications are
achieved using a peer-to-peer overlay network. Peer-to-
peer systems have already proved their efficiency in many
aspects of distributed applications: embarrassingly parallel

1-4244-0910-1/07/$20.00 c©2007 IEEE.

computing, SETI@Home [4]; persistent and scalable stor-
age, OceanStore [14]; and especially in file sharing and dis-
semination, Napster [2], eMule [3], BitTorrent [1], etc. We
believe peer-to-peer networks also offer a valuable commu-
nication mechanism in grid environment thanks to scalabil-
ity, its resistance to faults, and its ability to cover different
administrative domains.

The contributions of this article are (1) the description
of the usage of hierarchically organized peer-to-peer over-
lay networks to provide an adapted communication layer for
the self-management of autonomic system in grids, and (2)
the conception of a decentralized and scalable grid mon-
itoring tool according to our principles. This application
demonstrates the viability of our approach. To overcome the
problem of fast information dissemination in a peer-to-peer
network, a gossip multicast protocol spreads the sensors’
information into the system. Efficiency of the protocol is
improved by the organization of the monitor’s components
in a directed acyclic graph. Time and number of exchanged
messages is reduced. The performance of this monitoring
tool is presented and discussed.

The rest of this article is organized as follow: Section 2
presents the autonomic systems and peer-to-peer overlay
networks to provide a valuable architecture for autonomous
operations in a grid. Section 3 describes the conception of a
grid monitoring system built following our principles, and
present early results. In Section 4 we discuss related works.
Finally, Section 5 concludes and presents our perspectives.

2 Context

Autonomic computing and peer-to-peer overlay network
can be combined to offer an efficient framework to build
large grid applications.

2.1 Autonomic systems

Autonomic computing designates large and complex
self-managed systems in which elements (themselves self-
managed) interact with each others in order to organize
themselves and obtain a satisfactory general behavior. Mod-
ern large-scale computing systems widely distributed across



multiple administrative domains have reached an unbeliev-
able complexity. Autonomic computing offers to solve this
problem through a smart and increased automation, freeing
system administrators of many burdensome activities.

As presented in [12] self-management falls in four cate-
gories: (1) the self-deployment configures automatically the
system; (2) the self-optimization tunes the system to obtain
the best performance; (3) the self-healing detects, diagnos-
tics, and fixes malfunctions; (4) the self-protection defends
the system against malicious attacks and cascading failures.

Each element of an autonomic system is responsible
for managing its own internal state and behavior and for
managing its interactions with an environment that consists
largely of signals and messages from other elements and the
external world. In the first step of its life cycle, a component
has to enter into the system by registering itself into a direc-
tory service and request connections to services providers.
Then it becomes operational and enters into its main activ-
ity. In addition to a regular functional behavior, autonomic
management requires a component to provide monitoring in
order to observe and so be able to optimize its activity.

The communication between components in a self-
managed system becomes extremely important, not only
regarding the messages exchanged to accomplish the func-
tional task of the component but also regarding the mes-
sages exchanged for self-management purposes. The auto-
nomic components continuously interact together from the
time of their configuration and deployment to the end of
their activity. Such a behavior induces a concern about the
communication mechanisms between components.

2.2 A peer-to-peer architecture

The concept of autonomic computing has appeared in or-
der to help administrator to manage large and sophisticated
system. Grids fall precisely in this category. Grids impose
specific constraints and requirements especially about com-
munication. One of the latest and popular ways to achieve
communication in grid is to use peer-to-peer networks.

Grids and peer-to-peer have both an identical approach
to the accomplishment of their goal: the use of overlay
structures. However we can make an important distinction
between the approaches of grids and peer-to-peer:

• Grids provide a large amount of services to moderated-
sized communities with a generally high quality of ser-
vice. Because of their hierarchical and static organiza-
tions grids are vulnerable to faults.

• In contrast peer-to-peer systems provide limited and
specialized services to a very large amount of users.
Peer-to-peer systems are strongly resistant to failure as
a whole, but they do not provide a high quality of ser-
vice. This limitation results from the fact the services

Peer to peer overlay network

Applications and Grid Services

ComponentComponentComponentComponent

Figure 1. System architecture

are of nature as being provided in mass, and thus lead
to various problems such as the node volatility, the best
effort performance provided by the Internet, etc.

According to [8] the complementary nature of the
strengths and weakness of the two approaches suggests that
the interests of the two communities are likely to grow
closer to each other. The main goals of current grids ar-
chitecture are to increase their scalability and to provide a
better handling of failures. Symmetrically peer-to-peer sys-
tems aim at improving the range of services they propose.

The communication mechanisms required by the self-
management of an autonomic component have to fit with
the environment in which it evolves. Current grids’ in-
tern system component communication infrastructures are
fragile mainly because of their static organization and the
absence of alternate paths of communication. They need
to be sustained by suitable overlays that are scalable and
fault resilient. Peer-to-peer libraries are the first stone to
answers those concerns of communication in grid environ-
ment. With addition of specific behaviors such as auto-
nomic management, peer-to-peer networks become an ef-
fective solution. Figure 1 presents the way we propose to
build application for grids: a peer-to-peer layer achieves the
communication between autonomic components, and so al-
lows them to interact efficiently on a grid.

3 A grid monitoring system

Monitoring a system consists of observing events and
communicating them to who are interested in that infor-
mation. There are commonly two systems on a grid. Ac-
cording to [20], a grid monitoring system manages rapidly
changing status information, such as the load of a CPU or
the throughput of a network link. The high dynamicity
of data that a grid monitoring system must handle makes
it different from a grid information system which handles
more static data, for instance the hardware configuration of
a node. Although grid infrastructures can benefit a lot from
a unified system that handles both roles. The global knowl-
edge provided by a unified grid monitoring system helps

2



resource scheduling, allocation and usage: reservation tools
can be plugged in order to distribute resources and guaran-
tee quality of service.

Monitoring dedicated to grids is subject to a growing in-
terest. The recent large grids do not support anymore effi-
ciently the existing monitoring tools. Most of existing so-
lutions are adaptations of cluster oriented monitoring tools,
and then lay to scalability and robustness issues. As detailed
further in Section 4, the Network Weather Service is built
around a centralized controller, and the Globus Monitoring
and Discovery System suffers performance and scalability
issues due to its LDAP architecture. On the contrary, the
grid monitoring system we propose is adapted to the grid
thanks to its scalability and fault tolerance ability, and also
thank to its autonomous management.

3.1 The Grid Monitoring Architecture

The Global Grid Forum has introduced the Grid Moni-
toring Architecture (GMA) [16] which offers scalability and
flexibility required by a grid monitoring system. This archi-
tecture simply identifies three kinds of component as shown
in Figure 2:

• the producers retrieve various information of a device
and make them available to other GMA components;
for instance a sensor reporting the CPU load of a com-
puting node.

• the consumers request monitored information for
which they have interest; for instance a resource broker
that wants to locate suitable computing nodes.

• the directory service supports information publication
and discovery of components as well as monitored in-
formation. A directory service is a place where pro-
ducers advertise their data, and consumers advertise
their needs.

In addition to those three basic components, the GMA lets
room for intermediate components. Those components con-
sist of both a consumer and a producer. They allow aggre-
gation, filtering, forwarding, or broadcasting of the infor-
mation received by other producers. Often monitoring tools
use aggregator components. Those components help at the
scalability of the system by avoiding communication bottle-
necks between the producers and the directory service: the
number of exchanged messages is reduced.

Scalability of the GMA is assured by the separation of
the publication, discovery, and query tasks. The GMA does
not specify the way the components communicate among
each others (message content or network protocol) or the
format used by the directory service to store the informa-
tion. Because of its flexibility and scalability we based our
autonomic grid monitoring system on the GMA.

Send information

Consumer

Directory Service

Producer

Lookup

Register

Figure 2. Grid Monitoring Architecture com-
ponents

3.2 Model’s description

The main issue of current monitoring systems is their
centralized and static organization (see Section 4). Central-
ization introduces weakness in a system because of the sin-
gle point of failure problem. Moreover centralization of-
ten leads to scalability issues by introducing bottleneck. A
static organization makes the maintenance of a large system
specially challenging for the administrators.

As the GMA model does not specify communication
mechanism for data transfer, we choose to use peer-to-
peer oriented communications, for the same reason we
chose peer-to-peer communications for self-management
purposes. Figure 3 presents the structure of a monitoring
system using peer-to-peer interconnections. The producers
are in contact with aggregators. With regard to fast spread-
ing of the information and fault-tolerance, every producer
keeps a contact with several aggregators (more details be-
low). Similarly, the aggregators communicate with the di-
rectory service. The directory service is made of compo-
nents that store information about the producers and the val-
ues they have produced. We name those components global
storage. For the same reasons as one producer keeps con-
tact with several aggregators, one aggregator keeps contact
with several global storages. Finally the consumers contact
the directory service (i.e. the global storages) to get the in-
formation it is interested in. A consumer may ask for the
location of the producer of a particular kind of event, and
then contact the producer in order to be directly notified of
the information produced. A consumer may also ask for the
values stored in the global storage.

By introducing distribution, and indirect communication
through a peer-to-peer network, we have to be careful re-
garding performance. The major challenge of our grid mon-
itoring system is to disseminate the information coming
from the producers as fast as possible to the global stor-
ages. Outdated information is useless since it is no more
relevant of the current node’s status that may have radically
changed. The monitoring system has to be low resources
consuming. Monitoring activities must not impact the exe-
cution of other applications in the grid. CPU and bandwidth
consumptions have to be significantly low.

3



Prod.

LA Local
Aggregator

Producer Interrogation to
global storage

Direct connection
to producer

GS

Cons.

Global
Storage

Consumer

Cons.

GS

LA

LA

Prod.

Prod.

Prod.

Prod.

Prod.

Prod.

Prod.

Cons.

GS

LA

Prod.

Figure 3. Infrastructure

Following the main recommendations of [18], the four
properties of a self-managed system presented in Sec-
tion 2.1 are handled as follow:

Self-configuration When a new component wants to en-
ter the system it has to follow some steps. First the com-
ponent must enter into the peer-to-peer network. Then the
component may download some codes it wants to run from
other components already in activity in the system. Finally
the component tries to locate the more suitable and efficient
components with which it needs to communicate.

Let’s illustrate this procedure with the example of a new
producer entering into the monitoring system. First the pro-
ducer looks for joining the peer-to-peer overlay network.
The system offers two ways to discover this network: (1)
by broadcasting on the local network (often provided by
the peer-to-peer library), or (2) assuming the existence of
a bootstrap group, composed of nodes expected to be al-
ways online. Their addresses are registered under a single
name, using DNS. This second mechanism is necessary for
a new peer belonging to a private network in which no node
is currently involved in the peer-to-peer network to reach
the peer-to-peer network. The bootstrapping issue occurs in
all non-centralized peer-to-peer systems.

Any device to be observed need not necessarily to im-
plement its own sensors but can retrieve it from somewhere
else in the grid. For instance, the sensors of computational
nodes are quite the same in all the different administrative
areas of the grid: it provides information about CPU load,
network throughput, system, etc. Thanks to the ability of
some peer-to-peer systems to discover and download pub-
lished code in the network, the producer can automatically
recover a sensor code from another producer.

Finally, the new producer looks for the components
which with it has to communicate: the aggregators (through
which it communicates to the global storage). The producer
asks the peer-to-peer network to find an arbitrary amount

of aggregators defined by the administrator. Then the pro-
ducers automatically check the round trip time (RTT) with
those aggregators. We use RTT as metric to express prox-
imity of two peers: our supposition is that a low RTT means
the two belong to a same cluster, a high RTT means the two
peers are distant, probably on two different domains of the
grid. The producer keeps contact only with a subset of those
aggregators: (1) with the “close” aggregators (smallest RTT
values) in order to communicate efficiently, but also (2) with
some of the aggregators of higher RTT values in order to
best spread the information of the producer to “far” areas.
Thus the producer component is automatically configured
to efficiently disseminate its information in the all grid.

Self-optimization A basic policy of self-optimization is
the dynamic dimensioning of the “service’s size” depending
on the variation of its load. It means the increase or decrease
of the elements involved in the grid service in accordance
with the increase or decrease of the service’s load. When
a component becomes overloaded it must redirect some of
its work to another already running and underloaded com-
ponent, or take the initiative to create a new component to
answer the need of additional processing.

The aggregator and global storage are an example of
such mechanism. An aggregator (or global storage) be-
comes overloaded when it receives more messages than it
can process. The component detects this overload when its
message queue reaches a threshold and continues to grow.
At this time, the component looks for an underloaded simi-
lar component by a search in the peer-to-peer network. If its
search is a success, it notifies some of the producers com-
municating with it to reference this new component. If the
component fails to find an underloaded component, it takes
the decision to create a new component. This new compo-
nent is instantiated on a host found by a search in the peer-
to-peer network and satisfying some requirements such as
enough memory, CPU, and bandwidth free. Half of the pro-
ducers connected to the overloaded component, which have
the smaller RTT with the new component, are chosen to be
redirected to the new component.

Another aspect of the self-optimization consists of the
regular observation of the system’s performance. If this
performance does not obey to constraints set by the admin-
istrator, the system may decide to take some measure. For
instance, if the communication time between an aggregator
and a global storage exceed a specified time, the aggrega-
tor may be migrated in a location where this constraint can
be respected. Another example can be the momentary re-
duction of a component communication frequency in order
to eliminate network congestions. If network sensors warn
congestion in a part of the network, the components of this
network part should double the period of time between their
communications until the congestion disappear.

4



Self-healing In a similar way, a basic policy of self-
healing can consist of the automatic detection of compo-
nent’s failure and the dynamic replacement of the failing
component with the guaranty the system remains globally
coherent. We can distinguish two cases: the producers, and,
the aggregators and global storages. When a producer fails
to execute or terminates unexpectedly, the system tries to re-
execute the component. If the component fails again after
repeated trial, the host node is considered as a failed node.

When an aggregator or a global storage fails, the failure
is detected by the producers. If a producer does not succeed
to communicate with a component, a failure is suspected.
The producer broadcasts a message in the peer-to-peer net-
work indicating the suspicion of a component failure, with
the identity of the component. If one or more other produc-
ers confirm the failure of this component, an election mech-
anism decides where to restart the failed component. The
election mechanism basically looks by a peer-to-peer search
for the free host providing the more bandwidth, memory,
and CPU power. If a failed component is not detected, the
self-optimization mechanism may observe the overload of
one component and decide the creation of a new one.

Self-protection To make the system resistant to cascade
failure we utilize the robust communication mechanism
of some peer-to-peer networks that are able to re-route
messages if a communication link falls and address peers
that may have been disconnected during a while. We also
rely on the replication of all aggregator and global storage
components.

The communication model of our monitoring has to be
scalable and low resource consuming. It is unacceptable
that a producer sends several times its information into the
system; however this information has to be disseminated as
fast as possible in the entire system. Our solution is to use a
gossip protocol [11] in order to broadcast the information.

A pure gossip protocol takes place in rounds where in
each round a participating process selects randomly another
process and share information with it. There are a num-
ber of variations on how this is done. In “push” gossip the
process that initiates the gossip “infects” the selected tar-
get with information. It has been shown that in a group of
n machines if one machine starts out with a novel piece of
information it takes O(log n) rounds for every machine to
become aware with that information [13].

Figure 4 presents the dissemination of the information
from one node to an entire population (20 experiments for
each size of population). We observe that even in very large
scale (1,000,000 nodes) the entire population is notified of
the new information in less than 30 rounds. Moreover, near
90% of the population is already informed at the 22nd round.
Gossip-based multicast is an effective tool for providing

 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25  30

pe
rc

en
ta

ge
 o

f i
nf

or
m

ed
 n

od
es

round

    100 nodes
   1000 nodes

  10000 nodes
 100000 nodes

1000000 nodes

Figure 4. Gossip broadcast

highly reliable and scalable message dissemination.
In our system, the gossip protocol is modified. All the

nodes need not to get the information, but only the global
storages. Thereby, the gossiping is performed only from
producers to aggregators, from aggregators to global stor-
ages, and from global storages to global storages. This hier-
archical structure, that is a directed acyclic graph, provides
a double benefit: by reducing the number of nodes to be
informed it increases the scalability and reduces time and
amount of messages required for all those nodes to be in-
formed. As explained before, one of the challenges of our
system is to spread information from one producer to all the
global storages in the shortest time.

3.3 Model’s performance

We built a simulator in order to evaluate the capabilities
of our monitoring system in very large environments. This
simulator allows having a global view of the entire system,
and so observing the dissemination of information.

In our first experiment, we want to observe the adapta-
tion of the number of aggregator when the amount of pro-
ducers increases. From a 100 producers system, we add 10
new producers each iteration, until the system reaches a size
of 1,000 producers. For the simulation, an aggregator is de-
clared overloaded when it receives 100 or more information
during one iteration. In that case a new aggregator is cre-
ated and inherits half of the producers communicating with
the overloaded aggregator.

Figure 5 presents the number of aggregators and pro-
ducers (by hundred), along the experiment. The curves
remain close; it attests the quantity of aggregators increases
in the same proportion as the producers. The ratio between
aggregators and producers stays approximately the same
over the time (average: 1 aggregator for 84.78 producers).

5



 0

 2

 4

 6

 8

 10

 12

 0  20  40  60  80  100

N
um

be
r 

of
 c

om
po

ne
nt

s

Iteration

x100 producers
aggregators

Figure 5. Adaptation to the system size

 0

 20

 40

 60

 80

 100

 0  1  2  3  4  5  6  7  8  9  10

P
er

ce
nt

ag
e 

of
 th

e 
pr

od
uc

er
s 

kn
ow

n 
by

 o
ne

 g
lo

ba
l s

to
ra

ge
 (

av
er

ag
e)

Iteration

    100 nodes
   1000 nodes

  10000 nodes
 100000 nodes

1000000 nodes

Figure 6. Knowledge of the system in the
global storages

The second experiment consists of observing the time re-
quired by the global storages to be informed of the presence
of the producer nodes. It means the time required by the
global storages to receive at least one information from each
producer in the system. The time is expressed by iterations.
During one iteration, each producer gossips to one aggre-
gator, each aggregator gossips to one global storage, each
global storage gossips to another global storage. The graph
of components is already formed as follows. The ratios are
arbitrarily set to 1 local aggregator for 100 producers and
1 global storage for 5 aggregators. Each producer is linked
to 10 randomly chosen aggregators using a uniform distri-
bution, each local aggregator is linked to 10 global storages
(randomly chosen), and each global storage is linked to 5
other global storages (randomly chosen). There is no as-
sumption about what could be a real heterogeneous con-
nectivity. Figure 6 presents the results. The curves plot the
average percentage of system knowledge in all the global
storages of the system.

In a 100,000 producers system, it takes 10 iterations for

 0

 1

 2

 3

 4

 5

 6

 7

 8

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10  0

P
er

ce
nt

ag
e 

of
 th

e 
in

fo
rm

at
io

n 
in

 th
e 

gl
ob

al
 s

to
ra

ge
s

Iteration  (before the last iteration)

Figure 7. Age of the information in the system

all producers to be known by every global storage. In a
1,000,000 producers system, after 10 iterations 94.64% of
the producers are known by the global storage. The dis-
semination of information is much faster than in the stan-
dard gossip multicast shown in Figure 4. A first obvious
reason is that one iteration corresponds to three rounds be-
cause one information is actually relayed three times: from
a producer to an aggregator, then in an aggregated form with
other information from the aggregator to a global storage,
and finally once again from the global storage to another
global storage. Another reason is that our system does not
“broadcast” but “multicast” since only a subgroup of ele-
ments finally receives the information through the hierar-
chical architecture: the global storages. Indeed the total
dissemination of information is considered as over when all
the global storages have received the information, not all
the other components as specified in a “classical” gossip
protocol. In that way we can define our gossip protocol as
directed since it directs the information from the producers
to the global storages.

The third experiment consists of evaluating the age of the
information in a global storage. Because consumers may di-
rectly ask the global storages for produced information, it is
important the answered information is not outdated. The
conditions of this experiment are similar as the previous
one. The only difference is that this system was running
for more than 1,000 iterations before being observed. Fig-
ure 7 presents the average age of information in the global
storages of a 100,000 producers system. The instant of the
observation is noted iteration 0.

Information in global storage is recent. The curve shows
a peak around iteration -2 (maximum value with 7.46%).
52.26% of the information is younger than 7 iterations,
80.97% younger than 16 iterations, and 95.79% younger
than 30 iterations. If we consider that in real conditions one
iteration is about 20 or 30 seconds to 1 minute, our system

6



is well responsive. Let’s say that producers, aggregators,
and global storages communicate every 30 seconds the av-
erage age of the information of a 100,000 producers system
is approximately 5 minutes old (10.18 iterations old) which
is very satisfactory for a such large system.

3.4 Implementation

Our implementation lets the possibility to use any peer-
to-peer protocol. However we chose JXTA as default pro-
tocol. We present here the library and motivate this choice.

JXTA [10, 17] is a set of open and generalized peer-to-
peer protocols that allow any connected device on the net-
work to communicate and collaborate as peers. The JXTA
protocols are independent of any programming language,
and multiple implementations (called bindings) exist for
different environments. JXTA is well adapted to the het-
erogeneous environments that compose a grid.

JXTA has its own independent naming and addressing
mechanism: a peer can move around the network, changes
its transport protocol and network addresses, even being
temporarily disconnected, and still addressable by other
peers. This capability allows being resistant to the volatility
of nodes in a grid. Moreover JXTA provides secure com-
munication and access to resources following a role-based
trust model. It provides also the possibility to cross firewall
under the condition peers support HTTP. Such features are
valuable in the context of grids.

Modules are an abstraction to represent pieces of code.
Every peers, groups, services, and modules are represented
by advertisements: XML documents representing meta-
data. The discovery service refers to advertisement in order
to find JXTA components. In our monitoring system, the
sensors are packaged as modules and can be automatically
searched on the network, downloaded, and run.

Using JXTA as communication layer in a high perfor-
mance computing architecture is not suitable to provide
high performance. The reasons are (1) because of impos-
sibility to select the computing nodes, the resulting hetero-
geneity of the computational power and bandwidth capacity
creates unbalance in the system, and (2) the latency of JXTA
communications is too high [5]. However, in an application
with lower demands on performance the heterogeneity and
the higher latencies are not real issues. Grid monitoring sys-
tems fall in this category of less demanding applications.

Our prototype application will be soon deployed on
grids. In its current status only a Java version has been de-
veloped. The monitored data are limited to computational
nodes’ CPU, memory, and operating system information.

4 Related work

This section presents a survey about grid monitoring sys-
tems and their potential autonomous mechanisms for con-
figuration and adaptation.

Network Weather Service (NWS) The Network Weather
Service [19] is a distributed system that periodically mon-
itors and dynamically forecasts the performance that vari-
ous network and computational resources can deliver over
a given time interval. The components of a NWS resource
monitoring system are: a name server: a centralized con-
troller that keeps a registry of all components and monitor-
ing activities; sensors that produce resource observations;
memories that store resource observations; and forecasters
that process resource observations. Limits of the NWS ar-
chitecture come from the presence of the name server. It
introduces bottleneck, single point of failure, and does not
embed security mechanism. Moreover the connections be-
tween sensors and the name server are manually managed
by the administrator before starting the system. NWS is
hardly applicable to a grid scale, mostly because of the ab-
sence of a real database.

[15] presents an autonomous framework for grid moni-
toring built on top of NWS. This work features automatic
configuration of the NWS’ “clique” groups by measuring
the proximity of two nodes according to round trip time. In
NWS, a clique group represents a set of nodes in which only
one is chosen as representative for all the other to monitor
bandwidth. Without clique group, the complexity to mea-
sure bandwidth grows to the square of the grid’s size.

Globus Monitoring and Discovery System (MDS) The
Monitoring and Discovery System (MDS) [7] is the infor-
mation services component of the Globus Toolkit and pro-
vides information about the available resources on the grid
and their status. MDS is based on the Lightweight Direc-
tory Access Protocol (LDAP). The distributed nature of the
LDAP architecture is appealing: information is organized
hierarchically, and the resulting tree might be distributed
over different servers. In a grid perspective, the hierarchy
often reflects the organization of the grid: from continental
networks to national networks to local networks. Leaves are
single resource, like cluster of computers, single computer
or storage element.

However, the LDAP architecture is appropriate to store
static information, like the number of processors in a clus-
ter, or the size of a disk partition. When data are more fre-
quently changing, the LDAP architecture is a wrong choice:
it is unsuitable to support frequent write operations. Un-
der that condition LDAP architecture suffers serious perfor-
mance and scalability problems.

7



Relational Grid Monitoring Architecture (R-GMA)
The Structured Query Language (SQL) provides a relational
database. Several implementations of this database are de-
signed for extremely demanding applications. They offer
a good compromise between the distributiveness, and the
cost of query operations. In particular the database can be
replicated in order to improve scalability and fault toler-
ance. The R-GMA [6] was developed to address those prob-
lems. The scalability of the architecture is improved by in-
troducing components that combine data from the database
and cache the results. R-GMA is an implementation of the
GGF’s GMA model and is now developed as part of the En-
abling Grids for E-science in Europe (EGEE) project. A
strength of R-GMA is its ability to support queries which
combine information across objects of different class (a join
operation).

5 Conclusion and perspectives

We proposed a solution to achieve autonomous manage-
ment in grid environment. Our approach is based on the
usage of a peer-to-peer overlay network in order to pro-
vide scalable and fail-resistant communications between the
components of an application. We detailed the construc-
tion of an autonomous grid monitoring system, based on
the GGF’s GMA model. This system uses the peer-to-peer
communication for its components interaction but also for
data transfer. Each aspect of self-management is discussed,
and then scalability and performance are evaluated.

We may consider to integrating this monitoring service
with the Open Grid Software Architecture (OGSA) [9]
which is more likely to become the standard way to access
grid services. Another major improvement would be to use
relational database in the global storages. Like in R-GMA
our system would be able to answer to more complex re-
quests involving several fields of search.

As a future work, we must focus on the security con-
cerns. At this time we relay on the security mechanism pro-
vided by the communication layer: the peer-to-peer library.
A secure system must be aware of authentication, trust, and
data integrity in order to prevent malicious attacks.

References

[1] BitTorrent. http://www.bittorrent.com.
[2] Napster. http://www.napster.com.
[3] The eMule Project. http://www.emule-project.net.
[4] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and

D. Werthimer. SETI@home: An Experiment in Public-
Resource Computing. Communications of the ACM,
45(11):56–61, Nov. 2002.

[5] G. Antoniu, M. Jan, and D. A. Noblet. Enabling the P2P
JXTA Platform for High-Performance Networking Grid In-

frastructures. In Proceedings of High Performance Comput-
ing and Communications (HPCC), volume 3276 of LNCS,
pages 429–439, Sorrento, Italy, Sept. 2005.

[6] A. W. Cooke and al. The Relational Grid Monitoring Archi-
tecture: Mediating Information about the Grid. Journal of
Grid Computing, 2(4):323–339, Dec. 2004.

[7] K. Czajkowskiy, S. Fitzgeraldz, I. Foster, and C. Kessel-
many. Grid Information Services for Distributed Resource
Sharing. In Proceedings of the 10th international sympo-
sium on High Performance Distributed Computing, pages
181–194, San Francisco, California, USA, Aug. 2001.

[8] I. Foster and A. Iamnitchi. On Death, Taxes, and the Conver-
gence of Peer-to-Peer and Grid Computing. In Proceedings
of the 2nd International Workshop on Peer-to-Peer Systems
(IPTPS), Berkeley, California, USA, Feb. 2003.

[9] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. Grid
Computing, Making the Global Infrastructure a Reality,
chapter The physiology of the Grid, pages 217–249. John
Wiley & Sons, 2003.

[10] L. Gong. Project JXTA: A Technology Overview. Technical
report, Sun Microsystem, Inc., Oct. 2002.

[11] K. Jenkins, K. Hopkinson, and K. Birman. A Gossip Proto-
col for Subgroup Multicast. In Proceedings of the 21st In-
ternational Conference on Distributed Computing Systems
(ICDCS), Phoenix, Arizona, USA, Apr. 2001.

[12] J. O. Kephart and D. M. Chess. The Vision of Autonomic
Computing. IEEE Computer, 36(1):41–52, Jan. 2003.

[13] B. Pittel. On Spreading a Rumor. SIAM Journal of Applied
Mathematics, 47(1):213–223, Mar. 1987.

[14] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and
J. Kubiatowicz. Pond: the OceanStore Prototype. In Pro-
ceedings of the 2nd USENIX Conference on File and Storage
Technologies, San Francisco, California, USA, Mar. 2003.

[15] K. Shirose, S. Matsuoka, H. Nakada, and H. Ogawa. Au-
tonomous Configuration of Grid Monitoring Systems. In
Proceedings of the international Symposium on Applications
and the Internet (SAINT Workshop), pages 651–657, Tokyo,
Japan, Jan. 2004.

[16] B. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swany, V. Tay-
lor, and R. Wolski. A Grid Monitoring Architecture. Tech-
nical report, Global Grid Forum, Jan. 2002.

[17] B. Traversat, A. Arora, M. Abdelaziz, M. Duigou, C. Hay-
wood, J. Hugly, E. Pouyoul, and B. Yeager. Project JXTA
2.0 Super-Peer Virtual Network. Technical report, Sun Mi-
crosystem, Inc., May 2003.

[18] S. R. White, J. E. Hanson, I. Whalley, D. M. Chess, and J. O.
Kephart. An Architectural Approach to Autonomic Com-
puting. In Proceedings of the 1st International Conference
on Autonomic Computing, pages 2–9, New York, New York,
USA, May 2004.

[19] R. Wolski, N. Spring, and J. Hayes. The Network Weather
Service: A Distributed Resource Performance Forecasting
Service for Metacomputing. Journal of Future Generation
Computing Systems, 15(5–6):757–758, Oct. 1999.

[20] S. Zanikolas and R. Sakellariou. A Taxonomy of Grid
Monitoring Systems. Future Generation Computer Systems,
21(1):163–188, Jan. 2005.

8


