Virtual Clusters on the Fly — Fast, Scalable, and Flexible Installation

Hideo Nishimura’, Naoya Maruyama®, and Satoshi Matsuoka'*
T Department of Mathematical and Computing Sciences, Tokyo Institute of Technology
! National Institute of Informatics
nish@matsulab.is.titech.ac.jp, naoya.maruyama@is.titech.ac.jp, matsu @is.titech.ac.jp

Abstract

One of the advantages in virtualized computing clusters
compared to traditional shared HPC environments is their
ability to accommodate user-specific system customization.
However, past attempts to providing virtual clusters are not
scalable with increasing number of VMs, nor do they al-
low fine-grained customization of VMs, assuming that pre-
configured VM images are always available on the Grid.
We propose a new virtual cluster installation technique
that achieves efficiency and scalability, and yet simultane-
ously fine-grained customizability. It allows the user to cre-
ate VMs on the fly for fine-grained customization of VMs,
and pipelined data transfer for scalable installation with
increasing number of VMs. To achieve efficiency in the
presence of such full customization, it automatically caches
[frequently-constructed virtual disk images to save software
installation time in common cases. Our experimental stud-
ies using a prototype implementation show that installation
of a 190-node virtual cluster can be done in 40 seconds.
From this result along with a scalability study, we estimate
that installation of a 1000-node virtual cluster could be
done in less than two minutes.

1 Introduction

Virtual clusters are virtualized computing clusters that
consist of underlying multiple clusters on the Grid inter-
connected by physical or overlay networks. One of the
main advantages in such environments is their ability to ac-
commodate user-specific customization of system config-
urations without destructively interfering with underlying
hosts [7,11]. Possible customization ranges from difference
of version number of a particular application to selection of
different operating system kernels. To realize such a poten-
tial advantage, an automated installation system that creates
and configures a virtual cluster based on a given user re-
quest is necessary, since manual creation and configuration
would be time-consuming and error-prone, if being prag-

matic at all. Such a system should provide a simple yet
flexible installation and customization interface to the users,
as do typical cluster installers [14, 16]. Besides, to be used
as a transparent alternative to the traditional physical plat-
forms, a virtual cluster must be constructed and configured
instantly. Furthermore, such an installation system needs
to work at scale: virtual clusters consisting of hundreds to
thousands of VMs would not be exceptional but common-
place.

Some of the issues in the implementation of virtual clus-
ters have been addressed by Krsul [11] and Foster [7]. Kr-
sul et al. proposed a framework to create VMs and con-
figure them as specified in a DAG-based custom schema.
Dependency between each configuration, such as software
installation and network settings, is encoded as edges in the
specification DAG. A VM is instantiated by cloning a pre-
defined VM image and applying the configuration DAG to
the cloned VM. Foster et al. proposed a mechanism to de-
ploy user-specific computing environment on Grids by ex-
tending the Virtual Workspace Service [10]. It takes a VM
image with its configuration information as input and de-
ploys it to allocated physical resources requested by the
user. In these existing approaches, insufficient attention is
paid to the issue of how to prepare the VM images them-
selves, and instead they implicitly assume that for each user
request there is a VM image that can be adapted to the
request with little extra configuration. While such an as-
sumption might hold in computing environments for a small
number of users, it will not be the case in large-scale envi-
ronments shared by multiple organizations, where the user
requests can be significantly diverse. In addition, none of
the existing projects addresses the issue of scalable installa-
tion, as predefined images are typically distributed through
NFS, resulting in linear installation time [7]. Such poor
scalability is more problematic as the number of nodes in-
creases, since NFS is not likely to scale well for a large
number of clients.

We propose a new approach to virtual cluster manage-
ment that achieves flexible fully-customizable system in-
stallation by on-the-fly VM creation, rather than assuming

the existence of appropriate VM images. We employ an
existing cluster installer and extend it for virtual cluster in-
stallation. This design decision allows the user to express
software configuration of virtual clusters as easily as the
employed cluster installer. Furthermore, to reduce installa-
tion time, we propose an installation caching technique that
creates virtual disk caches, VD caches, where frequently-
requested software is already installed, yet not configured.
This technique specifically aims to reduce software installa-
tion time, which is the biggest bottleneck in typical installa-
tion scenarios (see Section 3.1). Unlike the offline-created
images assumed in previous work [10, 11], a VD cache is
automatically created upon user requests and is destroyed to
keep the total cache size within the given space in an LRU
fashion. We further reduce installation time by exploiting
a scalable pipelined data distribution technique for deploy-
ing install packages and VD caches [13]. Overall, our final
goal is that it will take less than 20 seconds for the user to
create a virtual cluster of thousands of VMs. That is to say,
it will take only 20 seconds from the time when the user is-
sues a request to create the cluster till the time when he has
exclusive access to the cluster to login and launch jobs.

The contributions of this paper are as follows:

e We present an architecture of virtual cluster installa-
tion system using three key techniques: a cluster in-
staller, pipelined data transfer, and VD caching. Our
VD caching algorithm automatically finds frequently-
used software combinations by using a statistical clus-
ter analysis technique [9]. We define dissimilarity be-
tween each user request and cluster them based on the
dissimilarity. For each identified cluster, we create a
VD cache where the common software in the cluster
is installed, yet not configured. As far as we know,
the application of cluster analysis to cache selection
has not been reported in literature. We believe that it
would also be applicable to other repetitive computing
tasks that support partial computation.

e We present preliminary performance results obtained
with a prototype implementation using a cluster in-
staller called Lucie [16], and show that the prototype
can setup a virtual cluster of 67 VMs of typical con-
figurations in 113 seconds in average without caching,
and 39 seconds with caching. We also demonstrate that
the prototype achieves near-O(1) installation time, in-
dicating that it will install 1000 virtual cluster nodes
in less than two minutes. These results indicate that
the speed of our installation system significantly out-
performs those of the previous work.

o] | (]
I

v
Virtual Cluster. . A=

Figure 1. Overview of the virtual cluster in-
stallation system.

2 Overview of the Virtual Cluster Installa-
tion System

In this section, we describe the high-level overview of
the virtual cluster installation system. Given an installation
request from the user, the system selects physical resources
to host a virtual cluster for the request, instantiates a set of
new VMs, and finally installs operating system and other re-
quested software to them. Figure 1 illustrates the overview
of the system architecture, which consists of three key com-
ponents install server, cluster installer, and site manager.

Note that, although the primary purpose of a virtual clus-
ter is to provide a job execution environment, we deliber-
ately skip the discussion of how a user job is shipped to
and executed on a virtual cluster; our focus in this paper is
creation of such execution environments. Other necessary
functions could be implemented, for example, with the in-
teroperable Grid services proposed in [10]. Also, to sched-
ule a requested virtual cluster to the appropriate hosting re-
sources, we need to collect hardware and usage statistics
of available physical resources distributed across wide-area
networks. For this purpose, existing monitoring middleware
for Grids, such as Network Weather Service [17], could be
used straightforwardly; we do not discuss resource monitor-
ing in the rest of this paper.

2.1 Install Request Submission

The user initiates a virtual cluster creation by sending a
request to the install server. The request consists of hard-
ware and software specifications, each of which describes
the requirements of either hardware or software. The hard-
ware specification includes CPU type and speed, RAM
amount, disk space, and the number of nodes, The software
specification describes OS kernel and other user-level pack-
ages to be installed. The structure of the software specifica-
tion depends on the particular cluster installer being used.

2.2 Virtual Cluster Creation for a User
Request

The install server initiates virtual cluster creation upon
receiving a user request. The scheduler contacts the re-
source monitor for physical resources that satisfy the hard-
ware specification in the user request. For each selected
host, the scheduler requests the site master to create a VM
on the host, and contacts the cluster installer to install the
requested software specified in the software specification to
the VMs. Note that, depending on a specific implemen-
tation, it could be necessary to extend the cluster installer
to be able to install machines distributed over multiple net-
work sites.

2.3 Software Installation to Virtual Clus-
ters

Installation of software is done by the cluster installer
with necessary extension for multi-site installation and the
specific VMM being used. For simplicity, we assume as
an installation model that the cluster installer installs soft-
ware using a package manager along with an extensive col-
lection of pre-compiled binary packages stored in package
repositories. A package manager supports package instal-
lation, deletion, and dependency resolution of packages.
Such an assumption is valid in one of the popular cluster
installers [14]; we believe that it is the case for most of
other such tools, given the fact that software installation and
maintenance with binary packages is a well accepted con-
vention in most Linux distributions.

Using a cluster installer, the packages requested by the
software specification are fetched from package reposito-
ries, and transferred to each VM. The packages are then
unpacked and copied to the VM and configured as specified
by the software specification.

3 Optimization of Package Installation Time

In this section, we discuss our package installation time
optimization technique. First, we show that the most domi-
nant bottleneck step in package installation time is the time
to extract software packages. Next, we present the VD
caching technique that aims to optimize the bottleneck step.
Finally, we show the overall virtual cluster installation al-
gorithms with the VD caching functionality.

3.1 Preliminary Analysis of Installation
Time

In the installation steps described in Section 2.3, princi-
pal part of the time to install packages for a virtual cluster
is divided into the following three sub-steps:

Table 1. Package installation time onto 67
VMs

Number of Size Total | Transfer Extraction Config.
packages (MB) sec [sec % sec % sec %

18 148 15.1 |36 24 110 73 0.5 3.6
33 31.8 223141 18 17.7 79 0.5 25
51 57.8 432149 11 378 87 05 13
94 90.6 703|159 84 638 91 0.5 0.8

Package transfer time The time to make the necessary
packages available on each cluster node.

Package extraction time The time to extract and copy the
contents of packages to the virtual disk, as well as to
check the dependency among the packages.

Package configuration time The time to configure the in-
stalled packages.

Table 1 shows the breakdown of the above steps in a pre-
liminary performance study installing several numbers of
packages onto a 64-node virtual cluster, using the same en-
vironment used in Section 5. The result indicates that the
most dominant factor in the installation steps is the package
extraction time.

3.2 Optimization Methodology

To optimize the package extraction time, we propose a
VD caching technique that is based on the assumption that
user requests exhibit time locality, i.e., recently-used pack-
ages are likely to be used again in the near future. A VD
cache is a virtual disk image where a frequently-requested
combination of packages is already installed, but not yet
configured. With VD caching, for each user request, the in-
stallation process first looks for the largest VD cache that
is a subset of the requested package set and uses a copy of
the VD cache as an initial disk image. It then resolves the
difference between the VD cache and the user request by
installing the remaining packages. By starting from a VD
cache instead of a scratch disk, it avoids the transfer and
extraction time of packages included in the VD cache.

In VD caching, a method to select the combinations of
packages for caching is a key to effectively reducing instal-
lation time. One could use a simple method that produces
only a single VD cache that only stores the common pack-
ages throughout the history of all requests. Such a naive
method, however, would achieve little installation time re-
duction when there was substantial diversity in the requests

issued by many users. In such a case, the size of the re-
sulting VD cache would in fact be quite small compared to
size of the individual request, thereby only reducing a small
fraction of the total installation time.

To automatically select optimal package combinations
for caching, we first identify groups of similar requests by
a hierarchical cluster analysis [9], as explained below. Each
cluster identified by the analysis is a possible caching can-
didate: a VD cache containing the commonality of the re-
quests in the cluster. Among the candidates, we select as
many clusters as the space available for VD caches allows.
To do so, we compute a ranking of each cluster that reflects
expected contribution to installation time reduction, and se-
lect the highest rankings within the given cache space.

3.2.1 Dissimilarity between User Requests

Given the above software installation model, we define the
dissimilarity between user requests such that it effectively
quantifies the sizes of the commonalities and dissimilarities
among multiple requests. Let r be a request, P(r) be the set
of packages that r specifies to install, and | P(r)| be the total
size of the packages. Then, we define the dissimilarity be-
tween requests 7 and o, d(r1, r2), as the inverse of the size
of the common packages: d(r1,72) = |P(r1) N P(r2)| L.
If the size of the common packages is 0, we define it as co.

For example, suppose that there are three user requests,
r1, T2, and r3: P(ry) is {Fortran, Python}, P(r2) is
{Python}, and P(r3) is {Fortran}. In the Debian Linux
distribution for the 1386 platform, the size of Fortran and
Python is 1.6MB and 3.4MB, respectively. Hence, d(r1, r2)
is calculated as 0.3, whereas d(r1, r3) is 0.63. Note that the
fact that d(rq,r2) is smaller than d(ry,r3) reflects that the
pair of r; and r7 has a larger common package (i.e., Python)
than that of 71 and r3 (i.e., Fortran).

3.2.2 Clustering User Request History

To find caching candidates, we apply hierarchical cluster
analysis to user request history [9]. Given the dissimilarity
metric, the analysis first finds the closest pair of requests,
and replaces the pair with a new cluster consisting of the
pair. The analysis then repeats the step until every request
is merged into a single cluster. Note that the dissimilarity
between clusters is defined as the inverse of the size of the
common packages of the clusters. The final result is a den-
drogram representing the clustering steps. Figure 2 depicts
the dendrogram of the clustering of the example requests
introduced in Section 3.2.1.

3.2.3 Selecting Caching Candidates

Our final step is to construct the ranking of each package
cluster for cache selection, and select as many caches as

Dissimilarity 9] L
r = {Fortran, Python}

r,= {Python} S

r.={Fortran}

Figure 2. An example dendrogram.

the available space for caches allows. For this purpose, we
compute a speedup score of each cluster that estimates the
impact on installation time reduction. We expect that the
more frequently a package cluster appears in the history of
user requests, the higher the probability of reappearance of
the cluster in the future will be. Furthermore, we estimate
that there is a linear relationship between the installation
time reduction and the total size of a package combination.
Therefore, we define the speedup score as a product of the
frequency of appearance of the cluster and the total size of
the packages in the cluster. As is the case with the dissim-
ilarity metric, the score is defined as co when there is no
common package in a cluster.

We compute the final ranking based on the speedup
scores of clusters. Let C be the set of clusters in the re-
sult of the cluster analysis in the previous step, and ¢; be a
cluster in C, where 1 < i < N — 1 and N is the number of
requests. Further, let D(c¢;) and A(c;) be the descendants
and ascendants of ¢; in the dendrogram, respectively. Then,
we perform an iterative analysis as follows, and select as
many caches as the available space allows:

1: Compute the speedup score of each cluster.

2: Give the next highest rank to the cluster of the highest
speedup score, ¢,,, and remove it from C'.

3: For each cluster in A(c,,), adjust the frequency by sub-
tracting the frequency of c,,.

4: For each cluster in D(c,,), adjust the size by subtract-
ing the size of ¢,,.

5: Continue the above steps until no cluster is left in C'.

3.3 Overall Installation Process

Figure 3 depicts the overall installation process, where
the cache manager is a component in each site that mon-
itors the user request history for the site. For every k re-
quests, it recomputes the caching candidates by the de-
scribed method, and recreates VD caches within the given
cache space. Each time a new request comes to the site
manager from the install server, the site manager queries
the status of caches to the cache manager. If the cache man-
ager holds a VD cache that contains a subset of the pack-
ages being installed, it transfers the cache to physical nodes
where the virtual cluster is going to be hosted unless the

Install R N
request i~ | Site Manager Site

> Package deployment with pipelined data transfer
kgJkatkg

Request
history

Cache

Manager
\s}
Cache |

Cache update with pipelined data transfer

]

—

Figure 3. Intra-site installation flow.

nodes already have the same cache. If the cache manager
holds multiple such caches, it selects the largest one so as
to maximize the installation time reduction.

The packages being installed are fetched from the near-
est package repository. In the case of using a VD cache,
the site manager only fetches the packages that are not con-
tained in the cache. The fetched packages are transferred to
each node with fault tolerant pipelined data transfer so that
the transfer time is nearly O(1) with respect to the number
of VMs. After the VD cache and remaining packages are
made available on each node, the new VM mounts the cache
and use the employed cluster installer to install the remain-
ing packages to the mounted VD cache and to configure the
installed system.

4 Prototype Implementation

To evaluate the proposed installation technique, we have
developed a prototype installer using Xen v3.0.2-2 [2] as a
VMM and Lucie v0.0.5 [16] as a cluster installer. Although
the prototype currently lacks some functionalities such as
resource monitoring, it allows the user to create a virtual
cluster in a fast, scalable manner with caching and pipelined
data distribution. In this section, we briefly introduce the
cluster installer, and describe the implementation details of
install requests, VD caches, and each step in the installa-
tion process. In principle, installers that allow fine-grained
specification of automatic installation of multiple packages
to constitute full Linux installations, such as Rocks [14],
can be used.

4.1 Lucie Cluster Installer

Lucie is a cluster installer for the Debian Linux dis-
tribution, which allows parallel installation of a cluster
of PCs. It uses the standard package management tools,
dpkg and apt, and provides an extended packaging mech-
anism called meta packages, which is designed for simpli-
fying cluster-specific configuration of packages being in-
stalled [16].

hardware specification
[Hardware]
NumberOfNodes: 32
CPUArch: x86

CPUSpeed: 3GHz

RAM: 2GB

Disk: 8GB

software specification
[Software]

User: root:labcdefgh$rVeRh. . .
User: john:labcdefgh$6DEi2. . .
Hostname: vc%02d

Network: 192.168.10.128/25
Packages: gcc mpich python ...

Figure 4. A sample install request to create a
32-node virtual cluster.

4.2 Install Request

An install request includes the hardware and software
specifications. The former is independent from a specific
cluster installer being used, but the latter is structured to be
given to the cluster installer. Figure 4 illustrates a sample
install request that specifies a virtual cluster of 32 nodes,
each of which runs on an x86 CPU of 3GHz or faster with
more than 2GB of RAM and more than 8GB of virtual disk.
The software specification part (written in a format specific
to Lucie in our prototype), describes user accounts, host
names, network address ranges, and package names.

4.3 VD Caches

The cache manager at each site runs the cluster analysis
on the user request history periodically in a user-specifiable
interval, and creates VD caches for clusters selected by the
method described in Section 3.2.3. It starts a VM and cre-
ates a virtual disk for the packages to be installed. Next, it
obtains and installs the packages in the package cluster to
the virtual disk using apt package manager. The virtual
disk is then saved as a VD cache, which is a standard vir-
tual disk image file in Xen. Installation of a VM on each
node mounts the VD cache and installs the other remaining
packages onto the mounted VD cache.

4.4 Installation Steps

VM Booting with Installer Kernel To boot each VM
with the installer kernel of Lucie, we create a suspended
VM image started with the installer kernel and paused at
a state just prior to starting the installation process. The
suspended VM is kept in memory when the node is idle or
saved to disk when in use. In this way, we reduce the boot
time of the installer kernel. To start installation to a VM on
the node, we resume from a copied image of the suspended
VM, change the memory amount as specified in the user
request, and continue the installation steps described below.

Package Installation An install request written by the
user is sent to the install server. The install server allocates
matching physical nodes to the request, and sends the soft-
ware specification to the cluster installer. The cluster in-
staller delegates installation of each VM to its site manager.
The site manager looks for a VD cache for the request as
described in Section 3.3, and, if found, distributes the cache
to each physical node using a fault tolerant, pipelined data
transfer tool called Dolly+ [13]. ! The remaining packages
are downloaded from the nearest package repository by the
site manager via HTTP proxy cache. The downloaded pack-
ages are also distributed to each node using Dolly+.

Final Configuration Upon finishing installation of each
VM, the cluster installer performs final configuration to the
new virtual cluster as specified in the user request, and
restarts each VM to boot with the installed system.

S Experimental Evaluation

To evaluate the effectiveness of VD caching and the scal-
ability with increasing number of VMs, we conduct two
performance studies using the prototype installer. In these
studies, we only evaluate performance to create single-site
virtual clusters; evaluation of multi-site installations is left
as future work, but in principle, with sufficiently fast WAN,
the results should not be greatly different.

Because we do not have real user request data at hand,
we generate synthetic request data as follows. First, based
on the assumption that typical users would run their applica-
tion using some cluster middleware, we select Condor [12]
and MPICH [8] as sample middleware, and bioinformatics
and numerical computing tools as sample applications. The
packages for bioinformatics and numerical computing tools
are determined based on the included packages in the Bio
and Numeric Rolls in the Rocks cluster installer [14]. Next,
with these four package sets, we create four combinations
as {Condor, Bio}, {Condor, Numeric}, {MPICH, Bio}, and
{MPICH, Numeric}. Finally, to add slight variations to the
requests, we select ten auxiliary packages that are not re-
lated to any of the four middleware and application pack-
ages. We create 19Cy pairs from the auxiliary packages,
and combine the four pairs of middleware and application
packages and the 45 pairs of the auxiliary ones, resulting in
180 different package combinations in total. We randomly
select one of the 180 combinations for each installation in
the following performance studies.

As an experimental environment, we use the Presto III
cluster in our laboratory consisting of 256 nodes, each of

!We have also considered using the broadcast implementation of
MPICH, which also works in a pipelined fashion; however, our preliminary
experiments with it exhibited significant fluctuation of transfer time. Thus,
this paper only reports the implementation and evaluation using Dolly+.

180
160 [, »
140
120
100 |

80 13
Rt 2 s ‘e .

60 w e -

0
L 3 * - -
4 ® . PP
0 v u&'o,ﬂ.:’_“w w. "’W W'

20

4 *+ i ¥ VD caches created
*

Installation time
(sec)

1 51 101 151
Installation trials

Figure 5. Installation time onto a 67-VM vir-
tual cluster.

which embodies a dual AMD Opteron 242 or 250 with 1GB
of RAM for Dom0 and 256MB for DomU, and a hard disk
drive of IDE or SATA, depending on the node. Each node
runs Linux kernel v2.6.16 with Xen v3.0.2-2 patch applied.
The site manager runs on a dual AMD Athlon 2000+ node
with 1GB of RAM, running Linux kernel v2.6.12.6. All the
nodes including the cluster nodes and the site manager node
are connected to 13 Gigabit Ethernet switches, which are
then connected to two Gigabit Ethernet switches with four
gigabit links. These two gigabit switches are interconnected
with eight gigabit links.

5.1 Installation Time Reduction by VD
Caching

To evaluate the effectiveness of VD caching, we per-
form installations 180 times using randomly-chosen re-
quests from the test data set. After every 50 installations,
the cache manager recomputes the cluster analysis of the
request history, and recreates appropriate VD caches within
the given cache space of 5GB, which takes 1472 seconds
in average. Since VD caches can be created in the back-
ground, we do not include the time to create the caches in
the following comparison.

Figure 5 shows the time to install a 67-VM virtual clus-
ter. Before the first cache creation point, the installation
time ranges from 38 seconds to 157 seconds. At each
cache creation point, eleven to twelve caches are created
within the given cache space of 5GB, resulting in 17 differ-
ent caches in total of the three cache creation points. The
size of each cache instance ranges from 189MB to 684MB,
476MB in average. With the VD caches, the average instal-
lation time is decreased from 70 seconds to 25 seconds.

Figure 6 compares, for one of the test request set, the
breakdown of installation time with and without its VD
cache. The average time while no cache is populated is
102 seconds, whereas that of remaining installations is 38
seconds, resulting in a 2.7-times speedup. After VD caches

90

80|
U
% 70 — O Restart
£ 60 — M Configuration
e 50 @ Pkg. Installation
.g 40 - # Pkg. Transfer
230 — 1|0 Pkg. Download
g 20 [||® Cache Selection
gt | |

1]

No cache With cache

Figure 6. Installation time breakdown.

|| —e&—Total time N

35 [- ® -Transfer

Installation time
(sec)

0 50 100 150 200
Number of VMs

Figure 7. Installation time of virtual clusters
from 21 VMs to 190 VMs.

are populated, several installations take over about 60 sec-
onds due to VD cache transfer; other installations reuse VD
caches already transferred to each node.

5.2 Scalability

To evaluate the scalability with increasing number of
VMs, we conducted installations varying the number of
VMs from 21 to 190, under the same configuration as Fig-
ure 6. Figure 7 shows that the installation time increased
from 24.8 seconds on 21 VMs to 40.0 seconds on 190 VMs.
Principal part of the linear increase is due to the packages
transfer time, shown as the dotted line in the graph. We
observe that the increase, despite of the pipelined transfer
technique, is because of some fixed implementation over-
head in Dolly. Note, however, that the current results do
indicate that the installation overhead per 100 VMs is 9 sec-
onds, resulting in installation time of less than 2 minutes for
1000 VMs.

6 Related Work

The focus of previous efforts in providing user-specific
computing environments on clusters and Grids include in-
teroperability with existing Grid services [7, 10], configu-

ration management [11, 14], and efficient environment de-
ployment [3,11]. In this section, we relate our contributions
to the past projects as well as several other instances of user-
specific computing environments [3-5].

In the current Grid environments, there are already a
number of established services for security, accounting,
and resource scheduling, typically realized with the Globus
toolkit [6]. Thus, interoperability with such existing ser-
vices is essential to apply virtualization technologies in real
Grid environments. Keahey et al. proposed the workspace
service that defines secure interfaces with existing services
in the context of the Globus toolkit [10]. Foster et al. pre-
sented a virtual cluster environment by aggregating multiple
workspaces [7]. Note that, although our current framework
lacks such interoperability, their work is orthogonal to ours;
we plan to implement our efficient and flexible virtual clus-
ter installation in such a context.

Past projects on configuration and customization of com-
puting environments for clusters and Grids include the work
of Krsul at al. [11] and Papadopoulos et al. [14]. Krsul
et al. proposed a VM creation and customization frame-
work called VMPlant [11] for virtual Grid environments
such as In-VIGO [1]. It provides a graph-based configu-
ration interface to the user, which encodes each configura-
tion as a node and dependency between each configuration
as directed edges. The package-based system installation in
our framework is similar to their graph-based configuration;
In essence, the package-dependency structure can be rep-
resented as a DAG. The differences between our approach
and theirs lie in two points. First, we exploit an existing
infrastructure for cluster configuration management and ex-
tend it for virtual clusters, whereas they rely on their own
custom configuration schema. Therefore, while our frame-
work requires the user to prepare only declarative configu-
ration files in most scenarios, they require the user and the
resource provider to provide actual implementation, typi-
cally written in scripts, of such configurations as well. Sec-
ond, they do not allow the user to create VMs on the fly;
rather they assume offline-created VM images available for
every user request. Such assumption is unlikely to be held
in multi-organization, multi-site, heterogeneous Grid envi-
ronments. Papadopoulos et al. presented their cluster in-
stallation and management tool called Rocks in [14]. Rocks
builds on a popular Linux distribution and its package man-
agement system, and provides a cluster-specific configura-
tion mechanism through extended packages called Rolls.
Although we use Lucie in the current prototype, we see no
limiting barrier to support Rocks as well.

Efficiency and scalability of installation has been an-
other important topic in providing user-specific environ-
ments since the scale of underlying physical clusters has
continued to increase. VMPlants support reuse of partially
configured VMs through partial graph matching [11]. Such

reuse is similar to our VD caching, which allows reuse of
virtual disks where frequently-requested packages are in-
stalled. Although both techniques aim to reduce system de-
ployment time, our advantage is that we automatically cre-
ate and destroy such partial images with the statistical clus-
ter analysis. Similar to our approach, system deployment in
Grid’5000 uses pipelined data transfer for scalability [3].
Examples of user-specific computing environments in-
clude Grid’5000 [3], COD projects [4], and Moab Workload
Manager [5]. Grid’5000, built on a large collection of com-
puting clusters distributed across WANs, provides an on-
demand physical testbed for Grid computing research [3].
COD aims to consolidate multiple clusters on a single phys-
ical cluster by dynamically reinstalls and reconfigures clus-
ter nodes. Although their contexts and ours differ since they
install and configure physical resources, our system installa-
tion techniques could be effective. A batch scheduler called
Moab Workload Manager allows to use VMs on each com-
pute node as a schedulable entity. Our on-the-fly VM cre-
ation would significantly simplify the management of VM
images in such VM-based job execution environments.

7 Conclusion

We proposed a new virtual cluster installation technique
that allows user-specific customization of VMs via the use
of cluster configuration tools, while achieving rapid instal-
lation turn-around by eliminating much of the overhead as-
sociated with installation of VMs. Experimental studies us-
ing a prototype implementation show that installation of a
190-node virtual cluster can be done in 40 seconds, indicat-
ing that installation of a 1000-VM cluster could be done in
less than two minutes.

Several issues are left as future work: further tuning
of installation time, interoperability with standard Grid
services, security, resource scheduling, and evaluation of
multi-site installation. We also plan to work on modeling of
installation time, which is necessary for accurate resource
accounting [15] and more efficient installation.

Acknowledgments

This work is supported in part by the Ministry of Ed-
ucation, Culture, Sports, Science, and Technology, Grant-
in-Aid for Scientific Research on Priority Areas, 18049028,
2006.

References

[1] S. Adabala, V. Chadha, P. Chawla, R. Figueiredo, J. Fortes,
I. Krsul, A. Matsunaga, M. Tsugawa, J. Zhang, M. Zhao,
L. Zhu, and X. Zhu. From virtualized resources to virtual

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

(13]

(14]

[15]

[16]

(17]

computing grids: the in-vigo system. Journal of Future Gen-
eration Computing Systems, 21(6):896-909, 2005.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauery, I. Pratt, and A. Warfield. Xen and
the art of virtualization. In SOSP, Bolton Landing, 2003.

F. Cappello, E. Caron, M. Dayde, F. Desprez, E. Jean-
not, Y. Jegou, S. Lanteri, J. Leduc, N. Melab, G. Mor-
net, R. Namyst, P. Primet, and O. Richard. Grid’5000:
a large scale, reconfigurable, controllable and monitorable
Grid platform. In International Workshop on Grid Comput-
ing, Seattle, USA, Nov 2005.

J. S. Chase, D. E. Irwin, L. E. Grit, J. D. Moore, and S. E.
Sprenkle. Dynamic virtual clusters in a grid site manager. In
Proceedings of the 12th IEEE International Symposium on
High Performance Distributed Computing, page 90, 2003.
Cluster Resources, Inc. Moab Work-
load Manager administrator’s guide.
http://www.clusterresources.com/products/mwm/docs/.

L. Foster. Globus toolkit version 4: Software for service-
oriented systems. In IFIP International Conference on Net-
work and Parallel Computing, LNCS, pages 2—13, 2005.

I. Foster, T. Freeman, K. Keahy, D. Scheftner, B. Sotomayer,
and X. Zhang. Virtual clusters for grid communities. In
CCGRID ’06, pages 513-520, Singapore, May 2006.

W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-
performance, portable implementation of the MPI message
passing interface standard. Parallel Computing, 22(6):789—
828, Sep 1996.

L. Kaufman and P. J. Rousseeuw. Finding Groups in Data:
An Introduction to Cluster Analysis. Wiley-Interscience,
1990.

K. Keahey, I. Foster, , T. Freeman, X. Zhang, and D. Galron.
Virtual workspaces in the grid. In Euro-Par, pages 421-431,
2005.

I. Krsul, A. Ganguly, J. Zhang, J. A. B. Fortes, and R. J.
Figueiredo. Vmplants: Providing and managing virtual ma-
chine execution environments for grid computing. In Pro-
ceedings of the 2004 ACM/IEEE conference on Supercom-
puting, pages 7-18, Pittsburgh, PA, November 2004.

M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of
idle workstations. In Proceedings of the 8th International
Conference of Distributed Computing Systems, June 1988.
A. Manabe. Disk cloning program ‘dolly+’ for system man-
agement of pc linux cluster. In Computing in High Energy
Physics and Nuclear Physics, 2001.

P. M. Papadopoulos, M. J. Katz, and G. Bruno. Npaci rocks:
Tools and techniques for easily deploying manageable linux
clusters. In Proceedings of the International Conference on
Cluster Computing, 2001.

B. Sotomayor, K. Keahey, and I. Foster. Overhead matters:
A model for virtual resource management. In First Interna-
tional Workshop on Virtualization Technology in Distributed
Computing, Nov 2006.

Y. Takamiya. Large-Scale Configuration Management and
Installation of Commodity Clusters. PhD thesis, Tokyo In-
stitute of Technology, March 2006.

R. Wolski, N. Spring, and J. Hayes. The network weather
service: a distributed resource performance forecasting ser-
vice for metacomputing. Journal of Future Generation
Computing Systems, 15(5-6):757-768, October 1999.

