
A Decentralized, Scalable, and Autonomous

Grid Monitoring System

Laurent Baduel 1 and Satoshi Matsuoka 1,2

1 Tokyo Institute of Technology,
2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan

2 National Institut of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430, Japan

baduel@smg.is.titech.ac.jp matsu@is.titech.ac.jp

Abstract. Grid monitoring systems collect a substantial amount of in-
formation on the infrastructure’s status in order to perform various tasks,
more commonly to provide a better use of the grid’s entities. Mod-
ern computational and data grids have become very complex by their
size, their heterogeneity, their interconnection. Monitoring systems as
any other grid’s tools have to adapt to this evolution.

In this paper we present a decentralized, scalable, and autonomous grid
monitoring system able to tackle the growths of scale and complexity.
System’s components communications are hierarchically organized on a
peer-to-peer overlay network. Fresh information is efficiently propagated
thanks to an directed gossip protocol that limits the number of message.
Automation of key management operations eases system administration
and maintenance. This approach provides scalability and adaptability.
The main properties of our application are presented and discussed. Per-
formance measurements confirm the efficiency of our system.

1 Introduction

Grid platforms with their ever-growing communication infrastructures and com-
puting applications become larger and larger, which results in an exponential
complexity in their engineering and maintenance operations. To efficiently han-
dle such large and complex systems monitoring is necessary. By providing a
global view of the system monitoring tools allow identifying performance prob-
lems and assisting in resources scheduling. Modern large scale systems do not
allow anymore centralized organizations, with hand deployment, configuration,
and administration. Automation of key operations must be introduced in such
systems to free the administrators and programmers of many tiresome tasks.

After presenting related work, we propose a grid monitoring system built
to address these challenges. It provides a scalable and portable monitoring of a
wide range of entities connected in distributed systems. This decentralized tool
achieves its communications thanks to a peer-to-peer overlay network. Peer-to-
peer has become a popular way to communicate on grid thanks to its scalability,

2 A Decentralized, Scalable, and Autonomous Grid Monitoring System

its decentralization, and its resistance to faults. It has already proved their effi-
ciency in many aspects of distributed applications such as embarrassingly parallel
computing, persistent and scalable storage, and especially in file sharing and dis-
semination. We use a gossip protocol to quickly spread information in the entire
system. Components of the system are organized as a directed acyclic graph
to guide information from their source to the bases storing the entire system
state. This, combined to over-aged information filtering, reduces the amount of
exchanged messages. Finally we have deployed a first implementation on a real
grid and evaluated performance of our system.

In summary the contributions of this article are (1) the details of the con-
ception of a decentralized and scalable grid monitoring system in which compo-
nents are hierarchically organized through a directed acyclic graph on a peer-
to-peer overlay network that provides a valuable communication layer thanks to
a gossip multicast protocol, assures good performance on grids, and allows self-
management of the system; (2) a performance evaluation of this system driven
in a real large-sized grid. Speed of information dissemination, age of recorded
information, impact of messages limitation, and dynamic adaptability are ex-
amined and discussed. This paper rather focuses on the fast and decentralized
dissemination of information than on other aspects of monitoring such as sensors
implementation or database organization.

The rest of this article is organized as follow: Section 2 describes the general
properties of a monitoring system and insists on the specific requirements for
grid environments. Then it presents related work. Section 3 introduces the archi-
tecture for monitoring system on which we based our implementation. Section 4
presents our original communication scheme based on peer-to-peer and what we
name a directed gossip protocol. Then Section 5 details self-management mech-
anisms introduced in the system to help scalability and maintenance. Section 6
details the implementation and presents performance evaluations of the applica-
tion. Finally Section 7 concludes the article and presents expected future works.

2 Grid Monitoring Systems

The activity of measuring significant resources parameters allows analyzing the
usage, the behavior, and the performance of a cluster or a grid. It also provides
Grid monitoring systems to collect a substantial amount of information on the
infrastructure’s status in order to perform various tasks, more commonly to
provide a better use of the grid’s entities.

Monitoring a system consists of observing events and communicating them
to who are interested in that information. There are commonly two systems on
a grid. According to [1], a grid monitoring system manages rapidly changing
status information, such as the load of a CPU or the throughput of a network
link. The high dynamicity of data that a grid monitoring system must handle
makes it different from a grid information system which handles more static
data, for instance the hardware configuration of a node. Although grid infras-
tructures can benefit a lot from a unified system that handles both roles. The

A Decentralized, Scalable, and Autonomous Grid Monitoring System 3

global knowledge provided by a unified grid monitoring system helps resource
scheduling, allocation and usage: reservation tools can be plugged in order to
distribute resources and guarantee quality of service.

Monitoring dedicated to grids is subject to a growing interest. The recent
large grids do not support anymore efficiently the existing monitoring tools.
Most of existing solutions are adaptations of cluster oriented monitoring tools,
and then lay to scalability and robustness issues. As detailed further the Net-
work Weather Service is built around a centralized controller, and the Globus
Monitoring and Discovery System suffers performance and scalability issues due
to its LDAP architecture. On the contrary, the grid monitoring system we pro-
pose is adapted to the grid thanks to its scalability and fault tolerance ability,
and also thank to its autonomous management.

The rest of this section presents a survey about grid monitoring systems and
their potential autonomous mechanisms for configuration and adaptation.

2.1 Network Weather Service (NWS)

The Network Weather Service [2] is a distributed system that periodically mon-
itors and dynamically forecasts the performance that various network and com-
putational resources can deliver over a given time interval. The components of
a NWS resource monitoring system are: a name server : a centralized controller
that keeps a registry of all components and monitoring activities; sensors that
produce resource observations; memories that store resource observations; and
forecasters that process resource observations. Limits of the NWS architecture
come from the presence of the name server. It introduces bottleneck, single point
of failure, and does not embed security mechanism. Moreover the connections
between sensors and the name server are manually managed by the administra-
tor before starting the system. NWS is hardly applicable to a grid scale, mostly
because of the absence of a real database.

2.2 Globus Monitoring and Discovery System (MDS)

The Monitoring and Discovery System [3] is the information services component
of the Globus Toolkit and provides information about the available resources on
the grid and their status. MDS is based on the Lightweight Directory Access
Protocol (LDAP). The distributed nature of the LDAP architecture is appeal-
ing: information is organized hierarchically, and the resulting tree might be dis-
tributed over different servers. In a grid perspective, the hierarchy often reflects
the organization of the grid: from continental networks to national networks
to local networks. Leaves are single resource, like cluster of computers, single
computer or storage element.

However, the LDAP architecture is appropriate to store static information,
like the number of processors in a cluster, or the size of a disk partition. When
data are more frequently changing, the LDAP architecture is a wrong choice:
it is unsuitable to support frequent write operations. Indeed the LDAP Client
Update Protocol is based on the assumption that “data changes, renames, and

4 A Decentralized, Scalable, and Autonomous Grid Monitoring System

deletions of large subtrees are very infrequent” [4]. Under that condition LDAP
architecture suffers serious performance and scalability problems.

2.3 Relational Grid Monitoring Architecture (R-GMA)

The Structured Query Language (SQL) allows manipulation of a relational
database. Several implementations of this database are designed for extremely
demanding applications. They offer a good compromise between the distribu-
tiveness, and the cost of query operations. In particular the database can be
replicated in order to improve scalability and fault tolerance. The R-GMA [5]
was developed to address those problems. The scalability of the architecture is
improved by introducing components that combine data from the database and
cache the results. R-GMA is an implementation of the GGF’s GMA model (see
Section 3) and is now developed as part of the Enabling Grids for E-science in
Europe (EGEE) project. A strength of R-GMA is its ability to support queries
which combine information across objects of different class (a join operation).

R-GMA focuses on the way data are stored, i.e. the relational database that is
actually implemented by a virtual database distributed and accessible by hidden
component named mediator. Concerns of easy deployment and adaptability are
not the main issues of R-GMA.

2.4 Ganglia

Ganglia [6] is a scalable distributed monitoring system for high-performance
computing systems such as clusters and Grids. It is based on a hierarchical de-
sign targeted at federations of clusters. It widely uses technologies such as XML
for data representation, XDR3 [7] for compact and portable data transport, and
RRDtool4 [8] for data storage and visualization. It uses carefully engineered data
structures and algorithms to achieve low per-node overheads and high concur-
rency. The implementation has been ported to a large set of operating systems
and processor architectures, and is currently in use on thousands of clusters
around the world. It has been used to link clusters across university campuses
and around the world and can scale to handle clusters with 2000 nodes.

Ganglia’s implementation consists in the collaboration of two daemons. gmond
running on every node provides local network monitoring by recording and com-
municating with multicast primitives. gmeta offers local networks federation by
taking in charge the communication with other remote gmeta daemon. Ganglia
is efficient and easy to deploy on small or medium sized clusters. However the
copy on each node of the entire local network status may lead to scalability
problem. Moreover some equipment with limited resources that may be present
in a grid (such as personal digital assistant or various scientific equipments)
may not be able to host a gmond daemon and its database. Finally the deploy-
ment and maintenance of double system gmond/gmeta require expertise from the
administrators.
3 XDR stands for eXternal Data Representation.
4 RRD stands for Round Robin Database.

A Decentralized, Scalable, and Autonomous Grid Monitoring System 5

3 The Grid Monitoring Architecture

The Global Grid Forum (now known as Open Grid Forum) has introduced the
Grid Monitoring Architecture (GMA) [9] which offers scalability and flexibility
required by a grid monitoring system. This architecture simply identifies three
kinds of component:

– the producers retrieve various information of a device and make them avail-
able to other GMA components; for instance a sensor reporting the CPU
load of a computing node.

– the consumers request monitored information for which they have interest;
for instance a resource broker that wants to locate suitable computing nodes.

– the directory service supports information publication and discovery of com-
ponents as well as monitored information. A directory service is a place
where producers advertise their data, and consumers advertise their needs.

In addition to those three basic components, the GMA lets room for intermedi-
ate components. Those components consist of both a consumer and a producer.
They allow aggregation, filtering, forwarding, or broadcasting of the information
received by other producers. Often monitoring tools use aggregator components.
Those components help at the scalability of the system by avoiding communi-
cation bottlenecks between the producers and the directory service: the number
of exchanged messages is reduced.

Scalability is assured by the separation of the publication, discovery, and
query tasks. The GMA does not specify the way the components communicate
among each others (message content or network protocol) or the format used
by the directory service to store the information. Because of its flexibility and
scalability we based our autonomic grid monitoring system on the GMA.

4 Decentralized and Scalable Communication Scheme

The priorities when building a grid tool is to ensure scalability and fault toler-
ance. Peer-to-peer networks and Gossip protocols scale very well thanks to their
very decentralized organization. The decentralization of those systems also pro-
vides a good tolerance to faults by providing alternate paths of communication
and replication of data.

4.1 A peer-to-peer architecture

Grids and peer-to-peer have both an identical approach to the accomplishment
of their goal: the use of overlay structures. However we can make an important
distinction between the approaches of grids and peer-to-peer:

– Grids provide a large amount of services to moderated-sized communities
with a generally high quality of service. Because of their hierarchical and
static organizations grids are vulnerable to faults.

6 A Decentralized, Scalable, and Autonomous Grid Monitoring System

– In contrast peer-to-peer systems provide limited and specialized services to
a very large amount of users. Peer-to-peer systems are strongly resistant to
failure as a whole, but they do not provide a high quality of service. This
limitation results from the fact the services are of nature as being provided
in mass, and thus lead to various problems such as the node volatility, the
best effort performance provided by the Internet, etc.

According to [10] the complementary nature of the strengths and weakness
of the two approaches suggests that the interests of the two communities are
likely to grow closer to each other. The main goals of current grids architecture
are to increase their scalability and to provide a better handling of failures.
Symmetrically peer-to-peer systems aim at improving the range of their services.

Current grids’ component communications are fragile mainly because of static
organizations and the absence of alternate paths of communication. They need
to be sustained by suitable overlays that are scalable and fault resilient. Peer-
to-peer libraries are the first stone to answers those concerns. As mentioned
in Section 2 the main issue of current monitoring systems is their centralized
and static organization. Centralization introduces weakness in a system because
of the single point of failure problem and often leads to scalability issues by
introducing bottleneck. A static organization makes the maintenance of a large
system specially challenging for the administrators.

As the GMA model does not specify communication mechanism for data
transfer, we decided to use peer-to-peer oriented communications. Figure 1 presents
the structure of a monitoring system using peer-to-peer interconnections. The
producers are in contact with aggregators. With regard to fast spreading of the
information and fault-tolerance, every producer keeps a contact with several ag-
gregators (more details below). Similarly, the aggregators communicate with the
directory service. The directory service is made of components that store infor-
mation about the producers and the values they have produced. We name those
components global storages. For the same reasons as one producer keeps contact
with several aggregators, one aggregator keeps contact with several global stor-
ages. Finally the consumers contact the directory service (i.e. the global storages)
to get the information it is interested in. A consumer may ask for the location
of the producer of a particular kind of event, and then contact the producer in
order to be directly notified of the information produced. A consumer may also
ask for the values stored in the global storage.

By introducing distribution, and indirect communication through a peer-to-
peer network, we have to be careful regarding performance. The major challenge
of our grid monitoring system is to disseminate the information coming from
the producers as fast as possible to the global storages. Outdated information is
useless since it is no more relevant of the current node’s status that may have
radically changed. The monitoring system has to be low resources consuming.
Monitoring activities must not impact the execution of other applications in the
grid. CPU and bandwidth consumptions have to be significantly low.

A Decentralized, Scalable, and Autonomous Grid Monitoring System 7

LocalLA

Prod. Producer

Storage
Global

Cons.

GS

Consumer

global storage
Interrogation to

to producer
Direct connection

Prod.

LA

GS

Cons.

Prod.

Prod.

Prod.

Prod.

Prod.

Prod.

Prod.

LA

LA

GS

Cons.

Aggregator

Fig. 1. Infrastructure

4.2 A Directed Gossip Protocol

The growth of large scale distributed applications is driving the need for scalable
and reliable communications. Many network-level reliable multicast protocols
are based on IP Multicast that is not widely deployed, resulting in a need for
application-level broadcast protocol.

The communication model of our monitoring has to be scalable and low re-
source consuming. The system must spread the data as fast as possible in the
entire system to ensure reactivity. On the other hand it is necessary to save
bandwidth resource, for instance by avoiding multiple sending of the same data.
We can not accept any component of the system emits several times the same
info. Our solution is to use a gossip protocol [11] in order to broadcast the in-
formation. A pure gossip protocol takes place in rounds where in each round
a participating process selects randomly another process and share information
with it. In “push” gossip the process that initiates the gossip communicate its
information to the selected target. It has been shown that in a group of n ma-
chines if one machine starts out with a new piece of information it takes O(log
n) rounds for every machine to become aware with that information [12].

The interest for using Gossip protocols on top peer-to-peer networks comes
from two main points. (1) As mentioned before gossip protocols are very effi-
cient to propagate information in large systems, like peer-to-peer systems. (2)
Similarly to peer-to-peer systems, gossip protocols are totally decentralized and
thus perfectly scalable.

In our system, we slightly modified the gossip protocol. All the nodes need
not to get the information, but only the global storages. Thereby, the gossiping
is performed only from producers to aggregators, from aggregators to global
storages, and from global storages to global storages. This hierarchical structure,
that is a directed acyclic graph from producers to global storages, provides a
double benefit: by reducing the number of nodes to be informed it increases
the scalability and reduces time and amount of messages required for all those
nodes to be informed. As explained before, a challenge of our system is to spread
information from one producer to all the global storages in the shortest time.

8 A Decentralized, Scalable, and Autonomous Grid Monitoring System

5 An Autonomous Monitoring System

Autonomic computing designates complex self-managed systems in which ele-
ments interact with each others in order to organize themselves and obtain a
satisfactory general behavior. Modern large-scale computing systems widely dis-
tributed across multiple administrative domains have reached an unbelievable
complexity. Autonomic computing offers to solve this problem through a smart
and increased automation, freeing system administrators of many burdensome
activities. Indeed, in modern large scale and distributed environments, and par-
ticularly grids, main difficulties has moved from application programming to
configuration and maintenance.

As presented in [13] self-management falls in four categories: the self-deployment
configures automatically the system; the self-optimization tunes the system to
obtain the best performance; the self-healing detects, diagnostics, and fixes mal-
functions; the self-protection defends the system against malicious attacks and
cascading failures. In [14] we have presented the interests of using autonomic
computing and how automatic behaviors can be implemented thanks to a peer-
to-peer overlay network. The implementation of the four aspects of self-managed
systems is based on the properties of peer-to-peer libraries, particularly the abil-
ity to dynamically find resources.

Self-configuration When a new component enters into the system it has firstly
to connect to the peer-to-peer network, then it may automatically retrieve some
codes from other components in activity in the system, and finally it locates the
components with which it will communicate. We will illustrate this procedure
thanks to the producer component. A new producer firstly joins the peer-to-peer
overlay network by searching for peers on the local network (broadcast) or by
contacting a bootstrap group composed of nodes expected to be always online.
Then as sensor’s implementation for computational nodes may be quite similar,
the producer may download the sensor’s code from another producer already in
activity. Finally the producer establishes contacts with a number of aggregators
defined by the administrator. Those aggregators are selected regarding to the
round trip time (RTT) that is the metric we use to express distance. A panel of
aggregators with all RTTs is kept in order to uniformly spread information to
“close” and “far” area of the network.

Self-optimization Our policy for self-optimization is the dynamic dimensioning
of the system size (number of components) according on the variation of its
load. The size should be increase when the system gets overloaded and decrease
in case of underload. In our system, the aggregators (and the global storages)
have to adapt to the number of producer. Those components becomes overloaded
when they receive more messages than they can handle or when they use more
resources than they are supposed to do. An overloaded component takes the ini-
tiative to redirect some its producers to another component or, if no acceptable
component is found, to create a new component. We consider an aggregator un-
derloaded if during three successive evaluations the aggregator has received less

A Decentralized, Scalable, and Autonomous Grid Monitoring System 9

than a fixed number of messages. The three evaluations allows smoothing the
adaptation of the system and avoiding over-reactivity. We may also consider to
observe the throughput, memory, or CPU usage of the component. Overtaking a
certain threshold actions may be taken. Another aspect of the self-optimization
may consist in regular observations of the system’s performance. If the perfor-
mance does not obey to constraints set by the administrator, the system may
decide to take some measure. An example can be the momentary reduction of a
communication frequency in order to eliminate network congestions.

Self-healing A basic policy for self-healing can consist of the automatic detection
of component’s failure and the dynamic replacement of the failing component
with the guaranty the system remains globally coherent. When an aggregator
or a global storage fails, the failure is detected by the producers. If a producer
does not succeed to communicate with a component, a failure is suspected. The
producer broadcasts a message in the peer-to-peer network indicating the suspi-
cion of a component failure, with the identity of the component. If one or more
other producers confirm the failure of this component, an election mechanism
decides where to restart the failed component. The election mechanism basically
looks by a peer-to-peer search for the free host providing the more bandwidth,
memory, and CPU power. In the case a failed component is not detected, the
self-optimization mechanism may observe the overload of one component and
decide the creation of a new one (c.f. self-optimization mechanism).

Self-protection To make the system resistant to cascade failure we utilize the
robust communication mechanism of some peer-to-peer networks that are able
to re-route messages if a communication link falls and address peers that may
have been disconnected during a while. We also rely on the replication of all
aggregator and global storage components. The information aged x in one of
those components is also present in another component with an age y, x and y
beeing very similar. De facto there is no need to actively maintain consistency
between those components.

6 Experimentations

This section presents some details of the implementation such as the peer-to-peer
library we used and its particular features. Then it introduced the grid platform
on which we performed experimentations. Relevant performance measurements
are presented and discussed, proving the qualities of our monitoring in term of
efficiency, scalability, and adaptability.

6.1 Implementation Details

JXTA [15] is a set of open and generalized peer-to-peer protocols that allow any
connected device on the network to communicate and collaborate as peers. The
JXTA protocols are independent of any programming language, and multiple

10 A Decentralized, Scalable, and Autonomous Grid Monitoring System

implementations (called bindings) exist for different environments thus it is well
adapted to the heterogeneous environments that compose a grid. JXTA has its
own independent naming and addressing mechanism: a peer can move around
the network, changes its transport protocol and network addresses, even being
temporarily disconnected, and still addressable by other peers. This capability
allows being resistant to the volatility of nodes in a grid. Moreover JXTA pro-
vides secure communication and access to resources following a role-based trust
model. It provides also the possibility to cross firewall under the condition peers
support HTTP. Rendezvous peers maintains a cache of advertissements and for-
ward discovery requests to help other peers discover resources. Each rendezvous
peer is like any other peer but keeps a list of other known rendezvous peers and
a list of the peers that are using it as a rendezvous. Relay peers maintains infor-
mation about the paths to other peers and routes messages to peers. They also
forward messages on the behalf of peers that cannot directly address another
peer (NAT environments). We configured those peers in order to connect peers
from different sub-networks that compose a grid.

JXTA provides three levels of communication: (1) the endpoint service pro-
viding asynchronous, unidirectional, and unreliable static point-to-point com-
munications; (2) the pipes providing asynchronous, unidirectional, and unre-
liable dynamic communications; and (3) the JXTA sockets adding reliability.
We base our system on BiDiPipes that are pipes enhanced with bidirectional
and (optinal) reliable communication. As exposed in [16] pipes provides better
performance than sockets, moreover C/C++ implementation of JXTA does not
provide the socket API. Indeed sockets are not part of the core specification of
JXTA. In one direction bidipipes transport information from producer to ag-
gregator, then to global storage; in the other direction the pipe is used to relay
control signals for autonomic purposes. Control signals are for instance RTT Re-
quest and Reply, Ping, Component failure suspicion, New component available
(for acquaintenances redirection), etc.

6.2 Performance Measures and Optimization

The Grid’5000 project aims at building an experimental Grid platform gathering
9 sites geographically distributed in France combining up to 5000 processors. The
plans are to assemble a physical platform featuring 16 clusters, each with an
hundred to a thousand computers, connected by Renater the French Education
and Research Network. Most sites are connected to Renater at 10 Gb/s (few of
them still at 2.5 Gb/s). This high collaborative research effort is funded by the
French ministry of education and research, INRIA, CNRS, the universities of all
sites and several regional councils. Clusters composing the Grid’5000 platform
are heterogeneous. To lead our experiments we used from 200 to 620 nodes
(the number of nodes we used did not impact on the performance we observed
cause each node was able to run the entire set of components we assigned to
it). Multiple components were instanced on a same node, but for scalability
reasons they were hosted in a unique Java Virtual Machine process. The collected
information was limited to CPU and memory load.

A Decentralized, Scalable, and Autonomous Grid Monitoring System 11

The major point of interest in our system is to know how fresh the informa-
tion in the global storages is, so our first experiment consists of observing the age
of the information in a global storage. Each component gossips every 30 seconds.
Our system being totally asynchronous we have no concern about possible time
divergence between components: each component acts autonomously. At the be-
ginning of the experiment the graph of components is already formed as follows.
The ratios are arbitrarily set to 1 local aggregator for 100 producers and 1 global
storage for 10 aggregators. Each producer is linked to 10 aggregators, each local
aggregator is linked to 10 global storages, and each global storage is linked to 10
other global storages. The system ran one hour before being observed. Figure 2
presents the age of information in the global storages sorted by age. The instant
of the observation is age 0.

 0

 1

 2

 3

 4

 5

 6

 7

 8

-30 -25 -20 -15 -10 -5 0

P
er

ce
nt

ag
e

of
 th

e
in

fo
rm

at
io

n
in

 a
 g

lo
ba

l s
to

ra
ge

Age in minutes (before the observation)

 20000 producers
 40000 producers
 60000 producers
 80000 producers

100000 producers

Fig. 2. Distribution of information by age

Information in global storage is recent. The curves show peaks near the time
of the observation. In a 20,000 producers system the peak is at -1.5 minute
with 7.179% of the total information. In a 100,000 producers system the highest
amount of information is aged 4.5 minutes with 3.697%. The average age of
information is given in the following table (the size of the system is exposed in
producers and age is exposed in minutes).

System size 20K 40K 60K 80K 100K
Average age 5.226 6.249 7.292 8.537 9.753

From Figure 2 we observe that half of the information, the older part, may
be considered as useless. Indeed it is unnecessary to relay “old” information.
Moreover it allows saving 50% of aggregators and storages’ messages size. Fig-
ure 3 presents the age of information in the global storages sorted by age. In

12 A Decentralized, Scalable, and Autonomous Grid Monitoring System

this experiment aggregators and storages only gossips the younger half of their
information.

 0

 2

 4

 6

 8

 10

 12

 14

 16

-30 -25 -20 -15 -10 -5 0

P
er

ce
nt

ag
e

of
 th

e
in

fo
rm

at
io

n
in

 th
e

gl
ob

al
 s

to
ra

ge
s

Age in minutes (before the observation)

 20000 producers
 40000 producers
 60000 producers
 80000 producers
100000 producers

Fig. 3. Distribution of information by age with filtering of old information (50%)

We observe a reduction of the amount of older information, resulting in a
higher percentage of younger information. The message reduction of course does
not improve the efficiency of the system, it role is to reduce by almost half the
amount of data transferred on the network.

Efficiency of the system seems to be very slightly impacted by the reduction
of messages. Thanks to that observation we can imagine a dynamic adaptation of
the age of information communicated each iteration in order to obtain the best
trade-off between efficiency and bandwidth consumption. The following table
shows the average age of information in the storage is reduced thanks to the
reduction of old information transmissions.

System size 20K 40K 60K 80K 100K
Average age 2.105 2.846 3.539 4.171 4.902

The second experiment consists of observing the time required by a new pro-
ducer entering the system to be known by all the global storages. It means the
propagation time required by all global storages to receive at least one informa-
tion from the new producer. Figure 4 presents the results. The curves plot the
average percentage of global storages in the system that already got at least one
information from a new producer. The new producer is introduced at time 0 into
a system running for several minutes.

In less than 4 minutes 92.0% of the global storages of a 100,001 producers
system (i.e. 100 global storages according to the conditions of our experiment)
have been informed of the new producers. Considering the abscence of point of

A Decentralized, Scalable, and Autonomous Grid Monitoring System 13

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6

P
er

ce
nt

ag
e

of
 g

lo
ba

l s
to

ra
ge

s
kn

ow
in

g
th

e
ne

w
 p

ro
du

ce
r

Time in minutes

 20000 producers
 40000 producers
 60000 producers
 80000 producers
100000 producers

Fig. 4. Knowledge of a new producer in the entire system (i.e. all global storages)

centralization we consider the spreading of new information is very fast thanks
to the gossip protocol. A first reason is that during one round the information
is actually relayed three times: first from the producer to an aggregator, then
in an aggregated form with other information from the aggregator to a global
storage, and finally once again from the global storage to another global stor-
age. Another reason is that our directed gossip protocol does not “broadcast”
but “multicast” since only a subgroup of elements (the global storages) finally
receives the information through the hierarchical architecture.

In our last experiment, we observe the adaptation of the number of aggregator
regarding variation of producers in the system. From a 100 producers system, we
add 10 new producers every 30 seconds, until the system reaches a size of 1,000
producers. Then number of producers remains stable for 7.5 minutes before
we remove them gradually, 10 every 30 seconds. Producers cleanly exit: they
notify their aggregators when they leave the system. During this experiment, we
arbitrarily chose to declare an aggregator overloaded when it receives more than
100 information from the producers during three successive iterations. Similarly
it is considered as underloaded if during three of its iterations it receives less
than 80 information.

Figure 5 presents the number of aggregators and producers (by hundred),
along the experiment. The curves remain close; it attests the quantity of ag-
gregators increases in the same proportion as the producers. The ratio between
aggregators and producers stays approximately the same over the time (average:
1 aggregator for 82.79 producers). The very fast growth of aggregators in the
first minutes of the experiment results from the fact the system was already
overloaded in its initial settings.

14 A Decentralized, Scalable, and Autonomous Grid Monitoring System

 0

 10

 20

 30

 40

 50

 0 100 200 300 400 500

N
um

be
r

of
 c

om
po

ne
nt

s

Minutes

x100 producers
aggregators

Fig. 5. Adaptation to the system size

7 Conclusion and perspectives

We presented a decentralized, scalable, and autonomous grid monitoring system
able to tackle the growths of scale and complexity. The system’s components
are hierarchically organized on a peer-to-peer overlay network. A directed gossip
protocol ensures efficient propagation of fresh information. Overproduction of
messages is avoided by the organization of communication paths in DAG and by
filtering on information depending on its age. Autonomic behaviors guarantee
easy deployment and adaptability at runtime. The implementation was detailed
as well as performance measurements that confirm the efficiency of our system.
At this time the main advantages of our system are (1) its ability to be quickly
and easily deploy; (2) its capacity to self-adapt; and (3) its fault-tolerance by
information replication and alternative paths of communication. On the other
hand, a drawback is to provide only “statistically” good quality of service: small
probabilities remain to return a bad (too old) information.

To address this problem we will organize the global storages into a peer-group
and access them all as a single distributed entity. The point is to make them
communicating with each others to collaborate answering a consumer request.
One of the global storages necessarily contains the freshest value of searched
information, so by comparing the age of their information they can return the
freshest one. This peer-group service guarantees to obtain the freshest informa-
tion and make possible to distribute the global storages’ information base leading
to an improved scalability and a new reduction of messages on the network.

Our next consideration is to integrate our monitoring service with the Open
Grid Software Architecture (OGSA) [17] which is more likely to become the
standard way to access grid services. Also in order to solve more complex requests
involving several fields of search, as R-GMA does, we think to deploy relational
database in global storages.

A Decentralized, Scalable, and Autonomous Grid Monitoring System 15

Finally the security concerns must be taken in consideration. Our current
implementation only rely on the security mechanism provided by the communi-
cation layer: the peer-to-peer library. A secure system must be aware of authen-
tication, trust, and data integrity in order to prevent malicious attacks.

References

1. Zanikolas, S., Sakellariou, R.: A Taxonomy of Grid Monitoring Systems. Future
Generation Computer Systems 21(1) (January 2005) 163–188

2. Wolski, R., Spring, N., Hayes, J.: The Network Weather Service: A Distributed
Resource Performance Forecasting Service for Metacomputing. Journal of Future
Generation Computing Systems 15(5–6) (October 1999) 757–758

3. Czajkowskiy, K., Fitzgeraldz, S., Foster, I., Kesselmany, C.: Grid Information Ser-
vices for Distributed Resource Sharing. In: Proceedings of the 10th international
symposium on High Performance Distributed Computing, San Francisco, Califor-
nia, USA (August 2001) 181–194

4. Megginson, R., Smith, M., Natkovich, O., Parham, J.: Lightweight Directory Ac-
cess Protocol: Client Update Protocol. RFC3928, IETF (October 2004)

5. Cooke, A.W., al.: The Relational Grid Monitoring Architecture: Mediating Infor-
mation about the Grid. Journal of Grid Computing 2(4) (December 2004) 323–339

6. Massie, M.L., Chun, B.N., Culler, D.E.: The Ganglia Distributed Monitoring Sys-
tem: Design, Implementation, and Experience. Journal of Parallel Computing
30(7) (July 2004) 817–840

7. Sun Microsystems Inc.: XDR: External Data Representation Standard. RFC1014,
IETF (June 1987)

8. Oetiker, T., al.: RDDtool, logging and graphing. http://oss.oetiker.ch/rrdtool/
9. Tierney, B., Aydt, R., Gunter, D., Smith, W., Swany, M., Taylor, V., Wolski, R.:

A Grid Monitoring Architecture. Technical report, GGF (January 2002)
10. Foster, I., Iamnitchi, A.: On Death, Taxes, and the Convergence of Peer-to-Peer

and Grid Computing. In: Proceedings of the 2nd International Workshop on Peer-
to-Peer Systems (IPTPS), Berkeley, California, USA (February 2003)

11. Jenkins, K., Hopkinson, K., Birman, K.: A Gossip Protocol for Subgroup Multicast.
In: Proceedings of the 21st International Conference on Distributed Computing
Systems (ICDCS), Phoenix, Arizona, USA (April 2001)

12. Pittel, B.: On Spreading a Rumor. SIAM Journal of Applied Mathematics 47(1)
(March 1987) 213–223

13. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. IEEE Computer
36(1) (January 2003) 41–52

14. Baduel, L., Matsuoka, S.: A Peer-to-Peer Infrastructure for Autonomous Grid
Monitoring. In: Proceedings of the third International Workshop on Hot Topics in
Peer-to-Peer Systems, at IPDPS, Long Beach, California, USA (March 2007)

15. Gong, L.: Project JXTA: A Technology Overview. Technical report, Sun Microsys-
tem, Inc. (October 2002)

16. Antoniu, G., Jan, M., Noblet, D.A.: Enabling the P2P JXTA Platform for High-
Performance Networking Grid Infrastructures. In: Proceedings of High Perfor-
mance Computing and Communications (HPCC). Volume 3276 of LNCS., Sor-
rento, Italy (September 2005) 429–439

17. Foster, I., Kesselman, C., Nick, J.M., Tuecke, S.: The physiology of the Grid. In:
Grid Computing, Making the Global Infrastructure a Reality. John Wiley & Sons
(2003) 217–249

