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Web-Site-Based Partitioning Techniques for Efficient

Parallelization of the PageRank Computation
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The efficiency of the PageRank computation is important since the constantly evolving
nature of the Web requires this computation to be repeated many times. PageRank computa-
tion includes repeated iterative sparse matrix-vector multiplications. Due to the enourmous
size of the Web matrix to be multiplied, PageRank computations are usually carried out on
parallel systems. Graph and hypergraph partitioning techniques are widely used for efficient
parallelization of matrix-vector multiplications. These techniques suffer from high preprocess-
ing overhead for PageRank algorithm. In this work, we propose Web-site-based partitioning
techniques to reduce the preprocessing overhead of Parallel PageRank computation.

1. Introduction

PageRank computation is one of the most ef-
fective and widely used query independent way
of ranking pages by utilizing the Web graph
information. PageRank is first introduced by
Google’s founders Page and Brin at Stanford
University17). Many researchers proposed dif-
ferent acceleration techniques after the proposal
of the basic model. Algorithmic/numeric op-
timizations that try to reduce the number of
iterations11),12),14) and I/O efficient out-of-core
algorithms for reducing the disk swapping time
for single processor7),10) are some of the pro-
posed techniques for improving the PageRank
computation performance. PageRank should
be calculated repeatedly with the change of the
Web. Unfortunately, computing PageRank is
not an easy task for billions and even millions of
pages. It is expensive in both time and space.
Hence, it is inevitable to use efficient parallel
algorithms for PageRank calculation. Various
approaches are proposed on parallel and dis-
tributed PageRank computations8),16).

The focus of this work is on reducing the per
iteration time through parallelization. Among
several PageRank formulations11),12),14) widely
used formulation of Kamvar et al.11) is selected
for parallelization. In this formulation, which is
based on the power method, the kernel opera-
tions are sparse-matrix vector multiply and lin-
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ear vector operations. We are going to deal with
row-parallel19) implementation of the PageR-
ank algorithm.

Recently Bradley et al.2) utilized the
hypergraph-partitioning-based models proposed
by Catalyurek and Aykanat3),4) directly for
parallel PageRank computation. Unfortu-
nately, because of the huge size of the Web
graph, hypergraph-partitioning-based models
are not scalable, when applied directly over the
Web matrix. Even though the computations
reported in2) are fairly fast; the preprocessing
time for partitioning takes even longer than the
sequential PageRank computation. To avoid
this problem, Cevahir et al.6) suggested site-
based hypergraph partitioning models which re-
duces the sizes of the hypergraphs used in par-
titioning, considerably. In addition to reduced
preprocessing time, they offer parallelization of
the overall iterative algorithm including the lin-
ear vector operations and norm operations as
well as matrix-vector multiplications for load
balancing in the partitioning model, whereas
Bradley et al. only consider matrix-vector mul-
tiplies. The proposed site-based partitioning
scheme reduces the preprocessing time drasti-
cally compared to the page-based scheme while
producing better partitions in terms of commu-
nication volume.

In6), preprocessing time is reduced by par-
titioning site-to-page iteration matrix, instead
of partitioning page-to-page matrix. In this
work, we demonstrate that the preprocessing
time can be further decreased by compress-
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ing the transition matrix site-to-site. Unfor-
tunately, by partitioning the site-to-site com-
pressed iteration matrix, we are unable to min-
imize the correct metric for total communica-
tion volume of the PageRank iterations, but an
approximation. Nevertheless, our experiments
of both site-to-page and site-to-site compression
schemes on TSUBAME supercomputer demon-
strate that site-to-site partitioning is still vi-
able on parallel computers with high speed net-
works.

The rest of the paper is organized as follows.
In Section 2, background information is given
for PageRank algorithm. Section 3 explains the
parallel PageRank algorithm used. Site-based
partitioning models are explained in Section 4.
Experimental results are explained in Section 5.
Section 6 concludes the paper and make discus-
sions of some future work.

2. PageRank Algorithm

PageRank can be explained with a probabilis-
tic model, called random surfer model17). Con-
sider an Internet surfer randomly visiting pages
by following links within pages or jumping to a
random page. Let the surfer visit page i at a
particular time step. In the next time step, the
surfer chooses to visit one of the pages pointed
by the links of page i at random or visit a ran-
dom page within the Web. If page i is a dan-
gling page (a page without links), then the only
way for surfer to leave page i is to jump to a
random page. There is a fix probability of ran-
domly jumping to a page instead of following
the links within pages.

In the random surfer model, the PageRank
of page i can be considered as the (steady-
state) probability that the surfer is at page i
at some particular time step. In the Markov
chain induced by the random walk on the Web
containing m pages, states correspond to the
pages in the Web and the m×m transition ma-
trix P = (pij) is defined as pij = 1/deg(i), if
page i contains link(s) to page j, and 0, other-
wise. Here, deg(i) denotes the number of links
within page i.

A row-stochastic transition matrix P′ is con-
structed from P as P′ = P + dtT to handle
dangling pages according to the random surfer
model. Here, d = (di) and t = (ti) are col-
umn vectors of size m. d identifies dangling

PageRank(A, v)
1. p ← v
2. repeat
3. q ← dAp
4. γ ← ||p||1 − ||q||1
5. q ← q + γv
6. δ ← ||q − p||1
7. p ← q
8. until δ < ε
9. return p

Fig. 1 Power method solution for PageRank: A = PT

is the transition matrix, v is the teleportation
vector and ε is the convergence threshold.

pages, i.e., di = 1 if row i of P corresponds to
a dangling page, and 0, otherwise. t is the tele-
portation vector which denotes the probability
distribution of destination pages for a random
jump. Generally, uniform teleportation vector
t, where ti = 1/m for all i, is used for PageR-
ank computation. However, non-uniform tele-
portation vectors can be used for personalized
PageRank computation17).

Although P′ is row-stochastic, it may not be
irreducible. An irreducible Markov matrix P′′

is constructed as P′′ = αP′+(1−α)etT , where
e is a column vector of size m containing all
ones. Here, α represents the probability that
the surfer chooses to follow one of the links of
the current page, and (1 − α) represents the
probability that surfer makes a random jump
instead of following the links.

Given P′′, PageRank vector r can be deter-
mined by solving the equation (P′′)T r = r.
That is, by finding the principal eigenvector
of matrix P′′. Applying the power method di-
rectly for the solution of this eigenvector prob-
lem leads to a sequence of matrix-vector mul-
tiplies pk+1 = (P′′)T pk, where pk is the kth
iterate towards the PageRank vector r. How-
ever, matrix P′′ is completely dense, whereas
original P is sparse. Fortunately, by reformu-
lating dense matrix multiplication in terms of
sparse matrix computation, Kamvar et al.’s11)

algorithm given in Fig. 2 can efficiently com-
pute PageRank refraining any dense matrix op-
erations.

3. Parallel PageRank Algorithm

We consider the parallelization of the com-
putations of the PageRank algorithm given in
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Parallel-PageRank(Ak, vk)
1. pk ← vk

2. tk ← 0
3. repeat
4. (a) p ← Expand(pk)

(b) qk ← αAkp
5. (a) γk ← ‖pk‖1 − ‖qk‖1

(b) δk ← ‖pk − tk‖1

(c) 〈γ, δ〉 ← AllReduceSum(〈γk, δk〉)
6. tk ← pk

7. pk ← qk + γvk

8. until δ < ε
9. return pk

Fig. 2 Coarse-grain parallel PageRank algorithm
(pseudocode for processor Pk).

Fig. 2 through rowwise partitioning of the A
matrix as A = [AT

1 · · ·AT
k · · ·AT

K ]T , where pro-
cessor Pk stores row stripe Ak. All vectors (e.g.,
p and q) used in the algorithm are partitioned
conformably with the row partition of A to
avoid communication of the vector components
during linear vector operations. That is, the p
and q vectors are partitioned as [pT

1 · · ·pT
K ]T

and [qT
1 · · ·qT

K ]T , respectively. Processor Pk

is responsible for performing the local matrix-
vector multiply qk ← αAkp while holding pk.
Processor Pk is also responsible for the linear
vector operations on the kth blocks of the vec-
tors.

In this work, we are going to work on par-
titioning models for the parallel PageRank al-
gorithm given in 26). The algorithm is called
coarse-grain parallel PageRank algorithm, since
it reduces the number of global communica-
tion operations at each iteration from two to
one by rearranging the computations. Namely,
two global norms are accumulated at all pro-
cessors in a single all-to-all reduction operation
performed at step 5(c) in Fig. 2. Hence, the
proposed coarse-grain formulation halves the
latency overhead while keeping the communi-
cation volume the same. In Fig. 2, a super-
script k denotes the partial result computed by
processor Pk, e.g., γk is the partial result for
global scalar γ, where γ =

∑K
k=1 γk. Expand

is the multicast-like operation to exchange the
pk vector entries before the row-parallel sparse
matrix-vector multiplication19).

4. Partitioning Models

The objective in the parallelization is to find
a rowwise partition of A that minimizes the
volume of communication during each sparse
matrix-vector multiply while maintaining the
computational load balance during each itera-
tion.

Rowwise partitioning of irregularly sparse
matrices for the parallelization of matrix-vector
multiplies is formulated using the hypergraph-
partitioning model3),4). In the column-net
model proposed for rowwise partitioning3),4),
a given matrix is represented as a hypergraph
which contains a vertex for each row and a net
for each column. The net corresponding to a
column connects the vertices corresponding to
the rows that have a non-zero at that column.
Vertices are associated with weights which are
set equal to the number of non-zeros in the re-
spective rows. A K-way vertex partition on
the hypergraph is decoded as assigning the rows
corresponding to the vertices in each part of the
partition to a distinct processor. Partitioning
constraint on balancing the part weights cor-
responds to balancing the computational loads
of processors, whereas partitioning objective of
minimizing the cutsize corresponds to minimiz-
ing the total communication volume during a
parallel matrix-vector multiply.

Page-based and site-based hypergraph par-
titioning models, considering the whole itera-
tive PageRank algorithm, are discussed in6). It
is observed that partitioning site-to-page com-
pressed iteration matrix, instead of original
page-to-page matrix drastically reduces the pre-
processing time, while achieving better commu-
nication volume values.

In the site-based hypergraph model, a com-
pressed version, Ā, of the page-to-page matrix
A is partitioned. Site-to-page Ā matrix is gen-
erated exploiting the fact that Web sites form a
natural clustering of pages. In matrix Ā, rows
correspond to Web sites while columns corre-
sponds to pages. The union of the non-zeros
of the A-rows that correspond to the pages re-
siding in a site form the non-zeros of the Ā-
row corresponding to that site. Then, column-
net hypergraph partitioning model4) is applied
on Ā, and partition the site-based hypergraph
H(Ā) instead of H(A). In H(Ā), the number
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of vertices is equal to the number of sites and
the number of nets is equal to the number of
pages. To encapsulate the weight of the whole
iteration, the weight of a vertex j in H(Ā) cor-
responding to site j is set equal to∑

page i∈ site j

(2 × nnz(row i of [A])) + 7 × pj

where pj denotes the number of pages in site j.
Here, the first term accounts for the number

of flops of the matrix-vector multiplication and
the second term accounts for the vector opera-
tions.

The preprocessing time can be further im-
proved by compressing the matrix A in both
dimensions and partitioning this matrix. To
achieve this goal, we generate site-to-site matrix
¯̄A. The advantage of site-to-page compression
over site-to-site compression is, column-net hy-
pergraph partitioning model for the matrix Ā
correctly encapsulates the total communication
volume during PageRank computation. Since
the sparsity pattern of ¯̄A does not correctly
summarize the communication requirement of
the PageRank computation, advantage of the
hypergraph-partitioning models is lost for par-
titioning ¯̄A matrix. However, with the proper
edge costs, graph-partitioning model can be
adopted with the same approximation factor as
it achieves in the page-based partitioning. For
rowwise graph-partitioning, the weight of the
vertex j of the model graph G( ¯̄A) of site-to-site
matrix ¯̄A is the same as the vertex weight of the
vertex j of H(Ā). Edge cost of edge eij , which
is the edge corresponding to the edge between
vertex i and j, is computed as the sum of links
between site i and site j.

5. Experimental Results

Experimental results presented in6) prove
that hypergraph partitioning model for site-
to-page compressed matrix drastically reduces
the preprocessing time, so that preprocess-
ing takes time equal to only a few sequen-
tial PageRank iterations. Experiments pre-
sented in this section demonstrates that site-
to-site compression achieves less preprocess-
ing time with slightly bad total communica-
tion volume. Hence, site-to-site compression
is still viable with high speed networked su-
percomputers, such as TSUBAME. In our ex-

periments, two datasets with different sizes are
used. The Google☆ dataset is provided by
Google and includes .edu domain pages in the
US. The Balkan dataset is crawled by Larbin
crawler☆☆and includes pages from the Web of
Balkan countries. The properties of these
datasets are given in Table 1. The convergence
threshold is set to ε = 10−8 and the damping
factor α is set to 0.85.

Table 1 Properties of datasets.

Google In-2004

# of pages 913,569 771,895
# of sites 15,819 37,722
# of links 4,480,218 31,794,117

Direct K-way hypergraph partitioning tool
kPaToH1),5) is used, with default parameters
and an imbalance tolerance of 3%, for parti-
tioning the hypergraphs. Graph partitioning
tool MeTiS is used for partitioning graphs, with
default parameters.

Fig. 5 displays the variation of the prepro-
cessing times of site-to-page and site-to-site
compression schemes with increasing number of
processors. Preprocessing time involves both
compression and partitioning times. It has been
shown that site-based hypergraph partitioning
scheme achieve drastic reduction in the pre-
processing time compared to the page-based
scheme6). As seen in Fig. 5, partitioning site-
to-site compressed matrix achieves even bet-
ter preprocessing time compared to hypergraph
partitioning model for site-to-page compression
scheme. Per iteration time of sequential PageR-
ank algorithm is 85.5 ms for Google dataset and
273.5 ms for Balkan dataset. Hence, prepro-
cessing time required for site-to-page compres-
sion scheme is equal to only a few sequential
iterations, whereas it is less than two iterations
for site-to-site compression scheme.

Fig. 4 displays the quality of the partitions
obtained by the site-to-page and site-to-site ma-
trix partitioning schemes in terms of total com-
munication volume. As seen in the figure, the
partitions obtained by hypergraph partition-
ing model for site-to-page matrix incurs signif-
icantly less communication volume than those

☆ http://www.google.com/programming-contest/
☆☆ http://larbin.sourceforge.net/index-eng.html/
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Fig. 3 Preprocessing times in miliseconds.
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Fig. 5 Speedup curves.

of the graph partitioning model for site-to-site
matrix, for both of the datasets. Note that, it
was already observed that site-based partition-
ing achieves less total communication volumes
than page-based partitioning since sites consti-
tute natural clusters of pages6).

Paralel sparse matrix-vector multiplication li-
brary ParMxvLib18) is used for implementation
of the parallel PageRank algorithm. Exper-

iments are held using TSUBAME supercom-
puter in TITECH. TSUBAME includes 16 pro-
cessors for each computing node. Experiments
are held using one processor from each node.
Note that, we have given speedups upto 32 pro-
cessors. Load imbalance problem occurs with
greater number of processors, because of the
sites that contain large number of pages.

The speedup curves are given in Fig. 5. As
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seen in the figure, the site-to-page partitioning
scheme leads to slightly higher speedup values
than the site-to-site partitioning scheme, in ac-
cordance with the reduction in the communica-
tion volumes. TSUBAME has high speed in-
fiband communication network, therefore total
communication volume has less effect than it
has for megabit or gigabit PC clusters. There-
fore site-to-site compression scheme can be ap-
plied for matrix partitioning as an alterna-
tive for site-to-page partitioning scheme since it
achives less preprocessing time with the draw-
back of worse speedup values.

6. Conclusion and future work

In this work, we have compared performances
of partitioning site-to-page and site-to-site com-
pressed iteration matrices of PageRank algo-
rithm for efficient parallelization using TSUB-
AME supercomputer. Experimental results
confirm that site-based partitioning achieve
reasonable preprocessing time for PageRank.
Despite its worse performance in paralleliza-
tion, site-to-site compression is still valuable for
parallel systems with high speed networks, since
it achieves considerably less preprocessing time.

One disadvantage of the site-based schemes
is the load imbalance problem due to very large
sites. Actually, the datasets are relatively small
when compared to computation power of the
parallel system used. The algorithm is expected
to be more scalable with bigger datasets. How-
ever, load imbalance still remains to be a prob-
lem to be solved. We plan to attack this prob-
lem in future. Also, with the increasing num-
ber of processors, communication between pro-
cesses becomes a bottleneck. Developing scal-
able parallel algorithms for next generation su-
percomputers remains as another future work.
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