Performance Evaluation of Parallel Applications
on Next Generation Memory Architecture with Power-Aware Paging Method

Yuto HosogayaT’*, Toshio Endo’*, and Satoshi Matsuoka®*
T Tokyo Institute of Technology
! National Institute of Informatics
* JST, CREST
{hosogaya, endo } @matsulab.is.titech.ac.jp, matsu @is.titech.ac.jp

Abstract

With increasing demand for low power high perfor-
mance computing,reducing power of not only CPUs but
also memory is becoming important. In typical general-
purpose HPC environments, DRAM is installed in an over-
provisioned fashion to avoid swapping, although in most
cases not all such memory is used, leading to unnecessary
and excessive power consumption, even in a standby state.
We propose a next generation low power memory system
that reduces required DRAM capacity while minimizing ap-
plication performance degradation. In this system, both
DRAM and MRAM, fast non-volatile memory, are used as
main memory, while flash memory is used as a swap device.
Our profile-based paging algorithm optimizes memory ac-
cesses by using faster memory as much as possible, reduc-
ing accesses to slower memory. Simulated results of our ar-
chitecture show that the overall energy consumption of the
memory system can be reduced to 25% by in the best case
by reducing DRAM capacity, with only 17% performance
loss in application benchmarks.

1 Introduction

In recent years, power consumption of HPC systems
have been on the rise, and its reduction has become one of
the major concerns in its design and management. Most
previous work had focused on reducing energy for pro-
cessors, biggest power consuming part of system in many
cases, with dynamic voltage scaling (DVS)[8]. However,
due to higher capacity of memory chips and correspond-
ing decrease in price, recent HPC systems are equipped
with substantially larger memory, which is quickly becom-
ing the major source of power consumption. Recent energy
breakdown study measured on a real server shows that main
memory consumes 41% of the total energy and it is 50%
larger than processors[7].

One may argue that such large memory footprint is nec-

essary for HPC, but for many applications such capacity is
overkill. Principally, there is a strong belief that parallel
HPC applications should not swap that would be fatal to
performance, and therefore memory is typically overpro-
visioned up to any foreseeable application with maximum
memory usage, and as a result, in real systems memory us-
age over time is usually low[2].

Now DRAM, being volatile, usually incurs large standby
power. Since main memory size of some HPC applications
are on the increase as performance increase of CPUs, such
overprovisioning of memory results in significant waste in
power and energy. We propose to challenge to reduce such
DRAM over capacity with the following approach.

We replace a part of DRAM with next generation mem-
ory MRAM, which has high speed and low power, albeit at
a higher system cost compared to DRAM. By placing fre-
quently accessed data onto MRAM and reducing DRAM
capacity at the same time, we can reduce power consump-
tion while speeding up memory accesses. Moreover, for
application that requires higher memory usage, we first use
the DRAM portion, and then selectively swap to FLASH
memory, which has significantly lower latency and power
than HDDs. In order to best utilize this revised hybrid mem-
ory hierarchy we devise a low power paging algorithm that
accounts for such usage frequency and power characteris-
tics. In order to evaluate above system, we create a model
to predict execution time of applications and energy con-
sumption of memory system, with which we parameterize
our simulator. Results from several applications show that
the energy consumption of memory chips can be reduced up
to 25% or only 1/4 of the original, with only marginal 17%
performance loss. Although not applicable to all applica-
tion cases, the most interesting aspect of our finding is that,
the lowest overall energy consumption is actually observed
when swaps occur, for applications such as NAS CG and
HPL (High Performance Linpack) that exhibit some amount
of locality, with only mild speed downs. Such a result is
important for future systems where reducing the amount of
DRAMSs without substantial performance sacrifices would
be tantamount to large system scaling.

2 Background: Non-Volatile Memory—
FLASH and MRAM

Non-volatile memory is in high demand for low power
embedded computing. FLASH memory is in widespread
use in many embedded and consumer devices, and now
for mainstream PCs and servers such as Solid State
Disks(SSDs) and HHDDs(Hybrid Hard Disc Drives) as al-
ternative to classic HDDs. Fusion-io is a FLASH stor-
age device connected by PCI Expresses and can read at
800MB/s with 8KB sequential access speed, far outpacing
HDD I/O performances. Windows Ready-Boost in Win-
dows Vista uses USB FLASH memory as I/O cache de-
vices. Future capacity increase looks promising with con-
tinued expansion of application areas, with implementa-
tions of MLC (Multi Level Cell) and 3-D structures. How-
ever, use of FLASH devices has received little attention in
the HPC space, especially in relation to lowering power
consumption as we propose here, due to its substantially
slower write speed and slower access latency compared to
DRAM, as well as significantly limited life in the number
(approximately 100,000) of writes making it infeasible as
direct main memory substitutes.

There are several non-volatile memory technologies that
can serve as main memory developed in the recent years.
They are, for example, Magnetoresistive RAM (MRAM)
[15], Phase-change RAM (PRAM), and Ferroelectric RAM
(FeRAM). Out of these, MRAM is ideal in that it exhibits
higher access speed and lower power than DRAM; there
are currently (circa 2007) small capacity (a few Megabits)
chips already available from companies such as FreeScale.
Compared to DRAM that holds volatile states as electrical
charges in a capacitor, MRAM maintains its non-volatile
state by the polarity of two ferromagnetic plates. Although
MRAM may incur higher write energy, overall it is lower
power than DRAM since the state is non-volatile.

However, the biggest problem with MRAM is its ex-
tremely high cost-per-bit due to limited production. Until
massive production is seen in a not-so-near future, the price
of MRAMSs will be at least an order of magnitude more ex-
pensive than DRAMs at the same capacity. As such, most
expectation is that MRAM will be used in a sparing, small-
scale fashion primarily in the embedded space, where small
memory is feasible, and non-volatility and lower power
consumption could be considered as premium, whereas for
HPC, memory capacity/price metric precludes its use.

3 Our Proposal—Hybrid Memory Architec-
ture and Power Aware Swapping

In order to achieve substantially lower power consump-
tion in memory without significant loss in performance, we
propose hybrid usage of next-generation memory technolo-
gies so as to compose a much more sophisticated memory
hierarchy than previous HPC systems, so as to reduce the
overall amount of DRAM in the system. Later on, we show

HOTTER PAGE
== I

COLDER PAGE

w1
BERERE DOOCEUHU

FLASH SWAP SWA WA WAF>

0 [D 000 D"D”D

Figure 1. Overview of Our Proposed Low
Power Memory Architecture

DRAM\

that we can achieve significant reduction in DRAM capac-
ity and thus power savings with moderate speed penalties
for certain applications.

More specifically, our next generation low power mem-
ory architecture makes parallel use of both MRAM and
DRAM as main memory, and FLASH as fast random-access
swap device, to which both MRAM and DRAM pages
are swapped in/out directly. An overview of our architec-
ture is shown in Figurel; here, notice that faster-but-lower-
capacity MRAM is not used as a cache to DRAM as one
would expect, but rather in parallel with DRAM compris-
ing main memory. This is because 1) differences between
MRAM and DRAM speeds are much less significant com-
pared to SRAM/DRAM combinations, 2) despite the higher
cost, MRAM can still be much larger than CPU caches eco-
nomically, and 3) larger transfer granularity precludes the
use of MRAM as exclusive cache, and thus does not help to
reduce DRAM capacity, which is our original objective.

Merely replacing DRAM with MRAM will not provi-
sion for datasets that overflows main memory. In fact, we
would like to investigate the possibility of whether swaps
can be done efficiently for such situations, counter to the
traditional wisdom that “HPC apps shall never swap”; in
fact we would want to investigate the possibility of whether
swapping actually entails lower energy cost. For this pur-
pose, we resort to FLASH memory as a swap device with
significantly faster random access read speed, and observe
the energy consumption differences.

3.1 Low-Power Paging Algorithm

The proposed architecture cannot work without low-
power paging algorithm, which we also propose and imple-
ment here. As a general observation, MRAMs should have
prioritized usage since it has higher performance and lower
power, while swaps should be done in a much more strate-
gic fashion than standard LRU paging. For this purpose, we
profile the application memory access, and come up with
optimal strategies for MRAM/DRAM/FLASH usage.

More specifically, we first claim that LRU or its approx-
imation would not serve well, as the information conveyed
in the LRU scheme does not necessarily select the “hottest”,
i.e., the set of pages that are accessed the most frequently
throughout the course of the execution, not just within a
given timeframe. Since our energy minimization is global
rather than local, we need much more finer-grained control
of page placement.

For this purpose, we assume that the algorithm can ob-
tain, possibly through profiling, the per-page memory ac-
cess frequency of a given application throughout its execu-
tion. Pages that experience large number of accesses are
called hot pages, and others called cold pages. Moreover
we also assume that the algorithm can know access count
on DRAM and MRAM at any given point in time from start
of an application. Both can be obtained in various ways via
pre-execution trial runs, or through selective sampling with
hardware assists.

Given such information, our first simple algorithm works
as follows: we pin down the hottest pages so that they
are never swapped out and allocated onto MRAM (called
MRAM fixed pages). For this, we allocate the pages with
the most frequent accesses in a descending fashion onto the
(non-swapped) MRAM region until we run out of MRAM
pages. The remaining pages are allocated onto DRAM and
are subject to LRU-based swapping with flash memory.

However, we were surprised to find that, this simple
algorithm in some cases increased application execution
time by nearly a factor of two compared to simple LRU.
Upon profiling the situation, we found the reason: the phe-
nomenon was especially observed for applications that have
relatively lower memory access locality, i.e., the difference
between the high and low page access counts were small. In
such a case, pages with only minor access differences were
pinned down while effectively we were faced with great re-
ductions in the total amount of DRAM memory, causing ex-
cessive swaps, slowing down the application considerably.

To resolve this situation, we extend our algorithm by in-
troduce a metric called MRAM hit rate and its threshold,
so that applications exhibiting lower locality may use both
MRAM and DRAM as swappable main memory. MRAM
hit rate is a dynamic value that indicates the ratio of the
access counts onto MRAM versus memory accesses to all
the memory at each point in execution time. If the ratio is
large, then we can decide that accesses to MRAM has suf-
ficient locality such that pages should be pinned down. On
the other hand, if the ratio is small, the application lacks lo-
cality and thus the entire main memory should be seen as
swappable. More concretely, we define the following met-
ric:

Thr =ax MRAM SIZE/TOTAL_SIZE

In the above equation, MRAM_SIZE and TOTAL_SIZE in-
dicate the total MRAM capacity and sum of MRAM and
DRAM capacities, respectively; « (=1) is a configurable
parameter to be used to determine the threshold. Several

Allocate Hot Pages -
‘ on MRAM HProfllmg Result

Application Running

L2 Cache Miss

MRAM Hit Rate
<— MRAM Hit / Memory Access

MRAM Hit++

Memory Access++

Swap Out the Last
Recently Used
Page on DRAM

Swap Out the Last
Recently Used Page
on DRAM or MRAM

Figure 2. Algorithmic Flow of Our Proposed
Paging Algorithm

preliminary experiments have shown that a threshold value
of 0.9 seems to work for the NAS and other HPC applica-
tions we have tried, although further performance analysis
will be required to precisely determine this value to be op-
timal.

There are further optimizations specific to FLASH mem-
ory: for example, if there is a replica of a page in main
memory within the FLASH swap device, we need not write
back the clean page. Although such optimization is well
known[11], it has major advantages for FLASH-based swap
device because writes to FLASH are slower than HDDs, and
that the number of writes to FLASH have limited lifetime
as mentioned.

We show the overall algorithmic flow of our proposed
method in Figure 2.

3.2 Performance Modeling of Time and
Energy Consumption

We estimate application executing time and energy con-
sumption of our proposed memory by using run-time pro-
filing of actual execution of applications, instantiated with
the performance models of time and energy consumptions.

We first run our application execution and obtain a com-
plete trace of memory accesses. Then, total memory access
delays are determined as a product of memory access delay
by the total memory access count, and energy consumption
in a similar fashion. The delay and energy per access is dif-
ferent depending on type of memory (MRAM or DRAM)
and access granularity. When page swapping occurs, both
reads and writes occur at page granularity with associated
time and energy consumptions, but there are a few excep-
tional cases. In one case, if the swapped out page is a clean
page, the write operation is nullified. In another case, the
time delay for reading and writing main memory is hidden
by access delay to FLASH and excluded from total memory
access delays. Contrastingly, energy consumption cannot

naturally be hidden away in the latter case, and thus prop-
erly accumulated as dynamic energy consumption.

Overall, the application execution time is determined to
be the sum of these memory access delays and computation
time independent from memory accesses, and the total en-
ergy consumption of memory chips are determined to be the
sum of dynamic energy consumption and the static energy
consumption as defined by each memory technology.

4 Evaluation
4.1 Architecture Parameters

We evaluate our architecture by simulation, since our
architecture includes next generation memory architecture
and fast MRAM chips are not available yet. Table 1 shows
parameters of cache and memory pages in the simulated
environment. Table 2 shows those of memory modules:
DRAM, MRAM and FLASH. It shows the delay and en-
ergy per access unit, which is an L2 cache line of 64 bytes
in DRAM and MRAM, and a page of 4096 bytes in FLASH.

The parameters of DRAM are derived from performance
of typical 64MB DDR3 chips. For parameters of FLASH
memory, we take the performance of existing SSD prod-
ucts from Samsung as a baseline, which have 58MB/sec
read speed, 32MB/sec write speed, and 0.4W active power.
With an expectation of improvement on cell integration, we
have determined FLASH parameters by doubling the speed
and reduce the power to 50%. To make model simpler, we
assume sufficiently large capacity for FLASH and standby
power per bit is negligible.

It is more difficult to set parameters for MRAM mod-
ules, because it is emerging and currently available ones are
slower than DRAM. Recently, NEC has developed MRAM
chips whose speed is similar to SRAM. Thus we let ac-
cess delay of MRAM be 1.5 times faster than DRAM. To
determine read/write energies, we take MRAM chips from
FreeScale, whose read power is 182mW and write power
is 346mW (typical cases). And we expect they will be im-
proved in a few years, and reduced to 50%. By multiplying
the reduced powers and access delays above, we have deter-
mined read/write energies in the table. We estimate standby
power by using the following assumptions. First, standby
power per FreeScale MRAM chip (currently 60mW) will
be reduced to 50% again. Next, capacity of MRAM chips
will become equal to that of DRAM chips, although there
is a large gap currently (0.5MB versus 64MB). It is difficult
to say whether these assumptions will be realistic in a few
years, and we will reconsider parameters as non-volatile
memory technology proceeds.

4.2 Evaluation Method

With the above architecture parameters, we conduct sim-
ulation to evaluate the performance and energy consump-
tion of several application benchmarks, for various MRAM

Table 1. Simulated Memory System

L2 cache size 1MB
block size 64B
associative size 1
page size 4KB

Table 2. Parameters of Memory Modules
y | DRAM | MRAM [FLASH |

access size(Byte) 64 64 4096
READ delay(ns) 22.5 15 35000
WRITE delay(ns) 22.5 15 64000
READ energy(nJ) 6.24 1.36 7000
WRITE energy(nJ) 6.24 2.60 12800
standby power (uW/MB) 867 469 0

size, DRAM size, and paging method. The benchmarks are
CG (class B), MG (class A) and SP (class B) from NAS
Parallel Benchmark 3.2[1] and HPL[13], all of which have
been executed on a single node. To reduce the size of trace
files and simulation time, we have adjusted the problem
sizes; the number of iterations is five in NPB benchmarks,
and matrix size in HPL is 8192. With these configurations,
we have observed that the memory sizes used by CG, MG,
SP and HPL are 412MB, 448MB, 344MB and 544MB, re-
spectively.

As the first step of simulation, we make a trace file of
memory accesses in each application benchmark by using
the Valgrind profiling tool[3]. For each memory access that
incurs L2 cache miss, we collect memory address and op-
eration types (read or write). A trace file also includes pro-
filing results, which are access counts on all the memory
pages.

With the trace files, we replay behavior of application
with our event-driven simulator. It can simulate our paging
methods, LRU, MRAM-fixed and our low-power algorithm
on various sizes of DRAM and MRAM. It maintains the
number of memory accesses and page swapping to calculate
the total access energy and the total access delay, which are
used in the model described in Section 3.2.

4.3 Evaluation of Paging Method

We evaluate effects of paging methods to application per-
formance. Figure 3 illustrates execution times of CG and
MG for various DRAM capacities. Here, MRAM capacity
is fixed to 128MB. The lines in the graphs correspond to
paging methods: Simple-LRU, MRAM-fixed and our low-
power algorithm (Proposed in the graph), respectively.

In both benchmarks, we see our proposed method
achieves the best performance in almost all cases. It is
sometimes inferior to MRAM-fixed in MG, but the differ-

Execution Time (sec)
o o o oo & 8 & &8 & 8

CG

| | —o— Simple LRU
[| ==~ MRAM fixed
| | —A—Proposed

o

100 200 300 400 500 600
Installed Main Memory Capacity (MB)

Execution time (sec)

MG

N
o
o

©w

<

o
T

©w

o

o
T

N

(2]

[=]
T

N

o

o
T

—_

(32

o
T

-
o
o

o
=}
I

| | —&— Simple LRU

—— MRAM fixed

—A— Proposed

o

0 100 200 300 400 500 600
Installed Main Memory Capacity (MB)

Figure 3. Evaluation of Paging Methods with 128MB MRAM

ence is small. In CG, MRAM-fixed and Proposed are faster
than Simple LRU, which means that they successfully allo-
cate hot pages on MRAM. The gain of the methods is up to
15% in this application.

On the other hand, we see a large difference between
MRAM-fixed and Proposed; the former fixed can be 60%
slower than Simple-LRU. To discuss this difference, we
have examined locality of memory accesses in each applica-
tion. Figure 4 shows how accesses concentrate to hot pages.
For example, we see that about 98% of accesses concentrate
to 40% of used memory pages in CG, thus we can say it has
high locality. Also, HPL shows similar tendency. On the
other hand, such tendency is much weaker in MG and SP,
and all the pages are accessed at similar frequency. We con-
sider this difference is the reason why MRAM-fixed does
not work well in MG. On the other hand, our low-power
algorithm, which adapts to locality of application dynami-
cally, is efficient in both types of applications.

4.4 Evaluation of Application Perfor-
mance

Graphs in Figure 5 show execution time of applications
for various DRAM and MRAM capacities. The X-axis cor-
responds to capacity of the total main memory of DRAM
and MRAM, and each line corresponds to that of MRAM:
no MRAM, 64MB, 128MB and 256MB. All the cases use
our low-power paging method.

In all applications, the execution time gets longer as main
memory decreases, because of swapping cost. However, ef-
fects of swapping heavily depend on applications; while the
performance of MG and SP notably suffers from swapping,
the effects are much milder in CG and HPL. For example, in
CG with 256MB main memory (DRAM only), the increase
of execution time caused by swapping is limited to 20%.
However, if memory capacity gets smaller than a certain

100

90
80

2
§g 70
[}

<8 60

el ,

oo J L

g3 % B

=5 .

52 40 /

26 30! H

5 | / ca
20 - —MG
10 |- "oSPoY

— — HPL
0 ‘
0 20 40 60 80 100

Persentage of Hotter Pages(%)

Figure 4. Memory Access Locality of Applica-
tion Benchmarks

point (192MB in CG and 64MB in HPL), the performance
gets heavily worse even in CG and HPL.

We consider that this difference comes from access lo-
cality of applications, as discussed above. According to
Figure 4, 98% of memory accesses in CG are targeted for
40% of used memory space, whose size is about 165MB in
this case. Similarly, 65% accesses in HPL are for about 3%
of memory (16MB). This property explains the above be-
havior fairly well. On the other hand, in MG and SP, since
all the pages are accessed almost equally, even a small lack
of main memory incurs large swapping costs.

4.5 Evaluation of Energy consumption

Figure 6 shows energy consumption by our memory ar-
chitecture during execution of each application. First, we

Execution Time (sec)
w
8
T

20 | —<— DRAM only
—=—64MB
10 [—A—128MB
—¢—256MB
0 .
0 200 400 600 800 1000
Installed Main Memory Capacity (MB)
SP
300
<X —4&—DRAM only
250 —=—64MB H
% —A—128MB
200 & —>—256MB [l

Execution Time (sec)
I
o
:

400 600 800
Installed Main Memory Capacity (MB)

MG

250 |
200
i
8
-E 150
[
c
.8
5 100 [A
3 —o—DRAM only
x
w —=—64MB
%0 | _a—128MB
—¢256MB
0
0 200 400 600 800 1000
Installed Main Memory Capacity (MB)
HPL
500
450
400
\gj 350
-E 300
=
250
e
"g’ 200
5 150 H —©—DRAM only
—=—64MB
100 [
—A—128MB
50 1 ¢ 256MB
0 ;
0 200 400 600 1000

800
Installed Main Memory Capacity (MB)

Figure 5. Transit of Execution Time of Applications

see that too large capacity and too small capacity heavily
increases energy consumption. Too large capacity increases
static energy consumption by standby power, which is pro-
portional to memory capacity. On the other hand, when
memory capacity is smaller, we suffer from two factors,
both of which are due to swapping. First, since the ex-
ecution time gets longer by swapping, static energy con-
sumption increases. Next, accesses to FLASH memory for
swapping also consume energy.

In addition to this general tendency, we observe an in-
teresting property in three graphs except in SP; each graph
has two notches, where energy is at local minimum. Obvi-
ously the right notch is due to the total memory size required
by each application. On the other hand, the left one corre-
sponds to capacity of hot pages, which is discussed above.
We see that not only CG and HPL, but MG has the second
notch. However, relationship between notches is different;
in CG and HPL, the left notch is more energy-effective even
with swapping, while the right is better in MG.

These results provide us a new observation on mem-
ory capacity; in HPC applications with sufficient locality,

reducing DRAM capacity aggressively can reduce energy
consumption, even with swapping. Then the next question
is, how can we distinguish applications with good locality
from others? And how can we find the best capacity (where
are the notches)? We will challenge these issues in the fu-
ture.

Next, we discuss the capacity of MRAM. In all applica-
tions, increasing MRAM instead of DRAM reduces energy,
while its effect depends on applications. In CG, we see dif-
ference between "DRAM only” and "64MB” is larger than
other cases. Especially in this case, using MRAM is energy-
effective even if its capacity is small. We are currently in-
vestigating reasons for the difference between applications.

Finally, we compare performance of proposed architec-
ture with “typical” design of HPC systems. In typical sys-
tems, memory consumption tends to be 30-50% [2]. Since
our applications require 344 to 544MB memory, it is rather
natural to execute them on a machine with 1IGB DRAM.
On such a typical architecture, CG consumes 33J (Figure
6). Instead, when we install 128MB MRAM and 64MB
DRAM (we assume that the left notch can be found), the

CG
40

35

el

—_
<

—<— DRAM only|
10 B 5 64MB
—A—128MB
—>¢ 256MB

Energy Consumption (J)
N
o
:

0 . !

0 200 400 600 800 1000
Installed Main Memory Capacity (MB)

SP
70

Q\% —o— DRAM only

60 X —=— 64MB
50 q

—A— 128MB
—¢—256MB

Energy Consumption (J)

0 200 400 600 800
Installed Main Memory Capacity (MB)

1000

MG
140
—&— DRAM only
120 ——— 64MB
5 /3 —A—128MB
2 100 —x— 256MB
C
£ |f
o
g 80 \
2 |
5
O 60
8
2 40
i}
20
0
0 200 400 600 800 1000
Installed Main Memory Capacity (MB)
HPL
160
140
S 120
c
o
£ 100 |
£
3
2 80 r
[=]
S 60 -
% [t
: f’ggﬂ e —o—DRAM only
w40 —=—64MB I
2 ——128MB |
—<256MB
0 ! !
0 200 400 600 800 1000

Installed Main Memory Capacity (MB)

Figure 6. Transit of Energy Consumption by Memory System

energy consumption is reduced to about 8.5J, which is 25%
of that on the typical architecture. In this case, the increase

on execution time, compared to the typical case, is limited
to 17%.

5 Related Work

We can find several studies of energy consumption of
memory modules with various approaches. Improving
cache efficiency enables to save energy consumption, for
it reduces accesses to lower level cache and memory, and
simultaneously shortens execution time of applications to
save static energy. Kondo et al. have proposed a memory ar-
chitecture that improves such efficiency with software con-
trollable on-chip memory[12]. Hung et al. and Lebeck et al.
control memory states dynamically, on an assumption that
DRAM chips have standby and/or low power mode[9][4].
Since memory state can be switched per chip rather than
per page, they propose paging methods to collect active
pages in a smaller number of chips. Cai et al. also tune
active memory size, in order to minimize the total energy

consumption of memory chips and HDDs by tuning time-
out interval of HDDs[6]. Tolentino et al. proposed several
page shaping techniques for minimizing the number of ac-
tive memory chips[10]. Their architectures, except that of
Kondo et al., have been evaluated with desktop or server
applications, rather than HPC applications. Also, their ap-
proaches in themselves do not reduce introduction costs of
large main memory.

Remote swapping, which uses memories on remote ma-
chines as swap device, has been proposed[16] and evalu-
ated with modern high speed networks, for example with
InfiniBand[14] or 10GbE[11], achieving lower swapping
costs than using HDDs. As far as we know, energy con-
sumption of systems using remote swapping has not been
reported. While it can reduce local memory capacity, en-
ergy consumption in remote has to be considered. However,
in large scale systems with multi-applications, it is expected
to smooth the memory usage among machines to reduce the
total capacity of main memory. Thus it would be one of
promising approaches to combine remote swapping and our
architecture.

While the above architectures assume main memory to
be homogeneous, embedded systems often embody hybrid
main memories such as SRAM and DRAM, mainly for the
limitation of power consumption and mounting space. In
such systems, allocation strategy of data has a large impact
on performance; thus Avissar et al. have proposed a com-
piler technique to allocate static data so that it minimizes
memory access delay[5]. However their method is diffi-
cult to accommodate large arrays or dynamically allocated
regions, which are frequently used in HPC. On the other
hand, we have proposed a paging method to use MRAM
and DRAM efficiently and dynamically, and evaluated it
with HPC applications.

6 Conclusion

We have proposed low power memory architecture in-
cluding next generation non-volatile memories. In our ar-
chitecture, we replace a part of DRAM from MRAM be-
ing non-volatile memory for reducing capacity of DRAM
costing high power at main memory level, and we allo-
cate FLASH that expected to become large capacity stor-
age as swap device. And we have also proposed the low
power paging method utilizing heterogeneous memories ef-
ficiently. For evaluating our proposed architecture, we con-
struct the performance model estimating application ex-
ecution time and energy consumption of memory chips.
We evaluate our architecture with simulating several HPC
application benchmarks. Simulated results show that the
energy consumption can be reduced to 25% by reducing
DRAM capacity, with 17% performance loss of applica-
tion benchmarks. Moreover we obtained an interesting ob-
servation that is counter to the traditional wisdom; reduc-
ing DRAM capacity even if swapping occur reduces energy
consumption in execution of the applications having high
locality memory accesses.

Our short term future work are that we extend our model
confined to only memory chips to the one include CPU
and the others components and considering paging method
based on other than LRU. And in this paper we assume that
MRAM excel than DRAM at speed and power, but we will
have to consider memory hierarchy and introduction of the
other non-volatile memories according to the technological
direction in the future.

We aim to utilize accomplishment of our work for de-
signing and management power-aware large scale HPC sys-
tems in future, there are some challenges below. First the
method that dynamically detects optimum main memory
capacity that minimizes application’s energy consumption
and is indicated in our simulation results. And we con-
sider construction of the performance model for reducing
energy consumption of multi applications and coordination
with job schedulers, remote swapping and the technique of
dynamical memory states switching.

Acknowledgments

This work was partly supported by JST, CREST and Mi-
crosoft Technical Computing Initiative.

References

[1] Nas Parallel Benchmarks.
software/NPB.

[2] TSUBAME Grid Cluster, Tokyo Institute of Technology.
http://www.gsic.titech.ac.jp/~ccwww/.

[3] Valgrind. http://valgrind.org/.

[4] A.R.Lebeck et al. Power aware page allocation. In ASPLOS-
IX: Proceedings of the ninth international conference on Ar-
chitectureal support for programming languages and oper-
ating systems, 2000.

[5] O. Avissar, R. Barua, and D. Strwart. Heterogeneous mem-
ory management for embedded system. In International
Conference on Compilers, Architecture and Synthesis for
Embedded Systems(CASES), 2001.

[6] L. Cai et al. Joint power management of memory and disk.
In Proceedings of the conference on Design, Automation and
Test in Europe (DATE’05), volume 1, pages 86-91, 2005.

[7] C.Lefurgy et al. Energy management for commercial
servers. Computer, 2003.

[8] C.Liu et al. Exploiting barriers to optimize power consump-
tion of cmps. In /9th IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS’05), 2005.

[9] H.Hung et al. Design and implementation of power-aware
virtual memory. In USENIX 2003 Annual Technical Confer-
ence, 2003.

[10] M.E.Tolentino et al. an implementation of page alloca-
tion shaping for energy efficiency. In International Paral-
lel and Distributed Processing Symposium (IPDPS’06) HP-
PAC, 2006.

[11] M.Goto et al. implementing remote swap memory using
rdma over 10gb ethernet (in japanese). The Institute of Elec-
tronics, Information and Communication Engineers, 2006.

[12] M.Kondo et al. Reducing memory system energy in data in-
tensive computations by software-controlled on-chip mem-
ory. In Int’l Workshop on Compilers and Operating Systems
for Low Power, 2002.

[13] A. Petitet, R. C. Whaley, J. Dongarra, and A. Clearyb.
HPL - a Portable Implementation of the High-Performance
Linpack Benchmark for Distributed-Memory Computers.
http://www.netlib.org/benchmark/hpl.

[14] S.Liang et al. Swapping to remote memory over infiniband:
An approach using a high performance network block de-
vice. In Proceedings of the IEEE Cluster Computing (Clus-
ter2005), 2005.

[15] S.Tehrani et al. Magnetoresistive random access memory
using magnetic tunnel junctions. In Proceedings of IEEE,
2003.

[16] T.Newhall et al. Nswap: A network swapping module for
linux cluster. In Proceedings of Euro-Par 03 International
Conference on Parallel and Distributed Computing, 2003.

http://www.nas.gov/

