
Multi-Replication with Intelligent Staging in
Data-Intensive Grid Applications

Yuya Machida#1, Shin’ichiro Takizawa#2, Hidemoto Nakada∗#3, Satoshi Matsuoka#$4

#Tokyo Institute of Technology
2-12-1 Ookayama, Tokyo, 152-8550, Japan
1machida@matsulab.is.titech.ac.jp

2takizawa@matsulab.is.titech.ac.jp
4matsu@is.titech.ac.jp

∗National Institute of Advanced Industrial Science and Technology (AIST)
1-1-1 Umezono, Tsukuba, 305-8568, Japan

3hide-nakada@aist.go.jp

$National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430, Japan

Abstract— Existing data grid scheduling systems handle huge
data I/O via replica location services coupled with simple stag-
ing, decoupled from scheduling of computing tasks. However,
when the application/workflow scales, we observe considerable
degradations in performance, compared to processing within
a tightly-coupled cluster. For example, when numerous nodes
access the same set of files simultaneously, major performance
degradation occurs even if replicas are used, due to bottlenecks
that manifest in the infrastructure. Instead of resorting to
expensive solutions such as parallel file systems, we propose
alleviating the situation by tightly coupling replica and data
transfer management with computation scheduling. In particular
we propose three techniques: (1) dynamic aggregation and O(1)
replication of data-staging requests across multiple nodes using
a multi-replication framework, (2) replica-centric scheduling —
data re-use and time-to-replication as compute scheduling metrics
on the grid and (3) overlapped execution of data staging and
compute bound tasks. Early benchmark results implemented in
our prototype Condor-like grid scheduling system demonstrate
that the techniques are quite effective in eliminating much of the
overhead in data transfers in many cases.

I. I NTRODUCTION

Recent workloads in data-intensive applications on the Grid
such as HEP, astronomy, life-science, etc., consist of huge
data sets that require abundant computational power to process
them. For example, a typical BLAST [1] job requires hours of
aggregate compute time over hundreds of tasks and processors
for multi-dimensional, complex sequence comparisons over
gigabyte of data sets, typically submitted as an grid workflow
batch-job where the scheduling system allocates the numerous
parallel subjobs onto appropriate compute hosts. There, data
in the file or database on the grid are either fetched as a remote
file from a shared file system, or simply remotely staged to the
scheduled machine using copying methods such as GridFTP
underneath a replica location service (RLS).

However, with increasing size of the data sets and pro-
cessing required, simple shared file system or staging could
result in a significant overhead and under-utilization of the grid

infrastructure as we exemplify. Compare the execution time
and efficiency when we submit 80 BLAST tasks to 16 compute
hosts managed by our Condor-like scheduling system Jay
(described later), so that each compute host executes 5 tasks
on average, and they all use the same genomic database file.
We compare the number of running tasks under the following
3 settings (details given in Section IV).

Shared file system:
Use a single NFS (Network File System) server
node to emulate a shared grid file system where the
database file is stored.

Simple staging:
The database file is stored on the local disk on the
submit host, and then staged each time by ascp
prior to each execution. This emulates simple replica
staging techniques employed by most current data
grids.

Ideal setting:
We store the database file onto the local disks of all
compute hosts so that data will always be locally
accessible for minimum overhead.

Figure 1 is the time chart of the number of running the
tasks for the three settings. Compared to the ideal setting, the
shared file system and simple staging both suffer significant
overhead, resulting in inefficient utilization of the computing
resources. This is due to the concurrent access to the I/O
node becoming the bottleneck. Figure 2 focuses on simple
staging, where the hatched area represents tasks performing
data transfer, as opposed to the dark shaded area representing
tasks actually computing. We observe a cyclic pattern where
each node alternates between data transfer phase with very
little CPU utilization, and the compute phase where there is
very little data transfer.

The root of this problem is that, in the current data grid
each data storage element as well as its associated network

Fig. 1. Number of Running Jobs under Shared FSS, Simple Staging and
Ideal Settings

for transfer may not be very scalable across the board in
the grid infrastructure. A single file may be accessed and
staged repeatedly; even if multiple files are accessed, because
of observational or computational affinity they may emanate
from a single fileserver, having to share disk, I/O, and most
importantly, limited network bandwidth. This results in sig-
nificant data transfer latency, which the current grid resource
schedulers either ignore, or mostly force the users to cope with
themselves as we see in the related work section.

For tightly coupled large scale cluster environments, low
latency networking and parallel file systems such as PVFS [2]
or LUSTRE [3] on I/O-intensive data farm of cluster nodes
will help to alleviate the problem. On a data grid without
such “brute-force” solution available, we claim that we can
still solve large parts of the problem by techniques whereby
we achievetight coupling between the grid compute resource
scheduling and data transfer scheduling of the replica man-
agement system. More concretely, we present three techniques
where such tight coupling is achieved transparently to effec-
tively overlap the computation and communication, achiev-
ing almost 100% utilization in compute resources. Although
scheduling computation and data transfer collaboratively with
scheduling has been attempted in various out-of-core parallel
computing settings, our technique is on grids is more dynamic
in that it is reliant on dynamic scheduling within a workflow of
a single job involving multiple tasks, as well as across multiple
workflows of different jobs.

We designed and implemented a prototype by coupling a
Condor [4], [5], [6]-like batch scheduling system Jay with the
proposed techniques. The result of several benchmarks show
that our system demonstrates high utilization efficiency and
scalability in the data grid compared to traditional methods,
and is comparable expensive solutions on a tightly coupled
cluster.

The rest of this paper is organized as follows. In Sec-
tion II, we propose three techniques for highly utilizing data
grid resources. In Section III, we describe our prototype
implementation. In Section IV, we discuss the results on our
cluster system. Finally, Section VI presents our conclusions
and summarizes future works.

Fig. 2. Number of Running Jobs and Transferring Jobs under Simple Staging

II. PROPOSAL—THREE TECHNIQUES FORHIGH

UTILIZATION OF DATA GRID RESOURCES BASED ONTIGHT

COUPLING OFCOMPUTE RESOURCESCHEDULING

In order to resolve the low utilization of resources in
data grids, we propose three techniques to tightly couple
replica staging and computation scheduling, so that repli-
cated data are effectively reused, and that computation and
communication are effectively overlapped. The first technique
reuses cached files, and when no cache exists facilitates
O(1) efficient replication over the when the same dataset is
reused; the second technique accommodates replication time-
to-completion as the computation scheduling metric; the third
technique co-schedules a separate compute-intensive job to
a node during staging of a data-intensive job to maximize
utilization. Collectively, we demonstrate through experiments
on our prototype replica management and scheduling system
that, for realistic usage scenarios the utilization approaches
close to ideal where no staging needs to be performed, due to
all data being local, and/or there is a massive shared parallel
file system attached to low-latency, high-bandwidth network
as is the case for tightly-coupled clusters:

• Dynamic aggregation and O(1) replication of data-staging
requests across multiple nodes using a multi-replication
framework
There are several effective multi-replication algorithms
that facilitate parallel replication without excessive I/O
or network load, if the transfer occurs simultaneously.
We automatically detect when the same file is being
staged to jobs that are invoked (near-) simultaneously, and
will achieve efficient O(1) parallel replication according
to network topology for aggregated data staging. As an
implementation, we combine automatic detection at the
replica manager, fast inter-site, grid-level file copying via
scp/GridFTP, and efficient and fault-tolerant O(1) intra-
site copying by our Dolly+ tool.

• Replica-Centric Scheduling — data re-use and time-to-
replication as compute scheduling metrics on the grid
When our target shared data set is huge, the scheduler
should effectively schedule computing tasks to nodes to
minimize delays incurred by data access. This includes
re-scheduling tasks that will utilize the same file (typical

in task farming style data grid applications) to the same
node to eliminate staging, and when staging will be
required, employing time to replication completion as
the compute resource selection metric. In our imple-
mentation, the scheduler works tightly with the replica
manager to keep track of what files have been replicated
where, which file will be requested by the application,
and network measurement metrics, which will manifest
in the Condor-style classad[7] to determine appropriate
resource matching.

• Overlapped Execution of Data Staging and Compute
Bound Tasks
Even if we achieve maximum efficiency, idle cycles in the
compute nodes may not be avoidable due to high repli-
cation costs, which in turn result from to slow networks,
etc. Since we target a practical grid environment where
there will be a task mix within and across workflows from
different users, we mix and match scheduling of compute
bound tasks and data-intensive tasks so that potential idle
cycle slots due to data transfer are filled by a compute
bound task. When transfer finishes, our system suspends
and/or migrates running tasks and starts data-intensive
tasks of higher priority. Similarly, when outstaging of data
starts then a compute bound tasks aggressively exploit
this and may start or resume their execution. In our
implementation, tasks can be characterized so that the
scheduler could know whether a task is compute or data
bound, expressed in terms of the classad description, and
also monitored so that the scheduler will know which
phase the data-intensive application is in (in/out staging
of data, or performing the actual computation).

The overall summary of our proposed system is depicted
in Figure 3. The RMS manages the locations of the files.
Each host knows which local files are being managed by
the RMS, and sends the host and file information to the
scheduler. When the user submits a job that involves a data-
intensive task that reads a large file F (as described in the
classad), the scheduler will try to allocate the task to an
idle compute host which has previously staged F and cached
it. If there are no idle hosts with F cached, the scheduler
allocates the task to the most opportune host taking into
account the available network bandwidth of the compute host
and the potential replica host. The compute host then actually
inquires the best replica location of F and requests its transfer
to the RMS. When multiple tasks request the same file F
nearly at the same time, this is detected by the RMS, and
for nodes that need replication, O(1) multi-replication transfer
is organized and invoked automatically to best exploit the
local bandwidth of sites and clusters. If there are any pending,
fairly short, compute-bound tasks (again, as described by its
classad), their expected job completion time is matched with
expected transfer completion time of in- and out- staging on
the compute hosts where the data-intensive jobs have been
already allocated, and if they are a “good” match then the
compute-bound tasks are aggressively allocated to exploit the

Fig. 3. System Overview

available idle cycle. When data transfer finishes, compute-
bound jobs are either suspended or migrated out to a different
host. Finally, F is registered to the RMS so that the compute
node can now serve as a potential replica host (provided that
the user guarantees in his submission file that F is read-only).

III. PROTOTYPEIMPLEMENTATION OF THE TECHNIQUES

IN THE GRID SCHEDULING SYSTEM “JAY ”

We implemented a prototype grid scheduling and RMS
system by coupling several components. For the scheduling
system we employed and extended the scheduler and the
compute host management in the Jay system, which is our
simplified Java clone subset of Condor, with some additional
Grid extensions such as direct GSI support. Although being
a subset for prototyping purposes, Jay nevertheless supports
the same key concepts and mechanisms of Condor such as
classads, we expect much of our results to be directly applica-
ble to Condor and other similar Grid job scheduling systems.
We combined Jay with our multi-replication framework [8]
we have developed as a replica management system based
on Globus RLS-like services coupled with Dolly+[9] multi-
threaded fast O(1) and fault-tolerant replication service. Here
we describe an overview of the multi-replication framework
and how scheduling is performed interactively with the replica
management system.

A. Overview of the Multi-Replication Framework

Our multi-replication framework is a RMS which couples
RLS and multicast data transfer system, utilizing threaded
peer-to-peer techniques to conduct effectively O(1) parallel
replication without imposing excessive load on the network
and/or the I/O node. It selects the best source host from which
the data set are transferred to the requesting host automatically.
It registers the location of the replica which has been already
transferred for subsequent data transfers. Moreover it can
aggregate requests for the same file by using application-level
multicast in a part of the data-transfer. The followings are the
mechanism of the source host selection and the data transfer.

1) Source Host Selection Mechanism:The source host
selection consists of a Replica Location Service (RLS) and
a Replica Selector.

Fig. 4. A Data Transfer Mechanism

The RLS provides a service which is composed of a RLS
server and a RLS client. The RLS server manages the locations
of the files in the replica catalog database and handles its
operation requests from the RLS client. The entries in the
database use the standard logical name and physical location
pairing, but embody several other attribute information regard-
ing the hosts where the replica is located, used for selecting
the best replica among all replicas from which the file will be
transferred. The host info includes various network info such
as observed network bandwidth, network RTT, etc. that are
periodically updated.

2) Data Transfer Service:The overview of the data transfer
service is depicted in Figure 4. The data transfer negotiator in
the service can aggregate the requests for the same file by
grouping the requests emanating from multiple hosts of the
same site in the grid in a dynamic fashion. The grouping can be
done in several ways; we currently employ a simple algorithm
where each file request is cached for a certain adjustable
time duration measured by a timer, and successive requests
will refresh the timer. The actual data transfer occurs when
the timer expires. When the cost metric dictates that multi-
replication is advantageous, a representative node in the site
is selected, to which the file is transferred using P2P copying
such as scp or GridFTP.

Once the file is fetched, the data transfer servers that exists
on every compute and data hosts transfers the file collectively
within the grid site using the application-level multicast tool
Dolly+[9] that employs threaded O(1) peer-to-peer copying
algorithm. In effect, data are handed off in a pipelined fashion,
utilizing the available network bandwidth of modern routers
and switches effectively. As such the transfer timeT (n)
is TS + Tw + Tl, where TS is the startup time overhead
including the grouping timer expiration,Tw is the WAN inter-
site transfer time, andTl is the LAN inter-site transfer time to
a single node, and is independent of the number of nodes,n.

B. Implementation of Replica-Centric Scheduling

With Jay, matchmaking [10] is performed by the central
manager to decide the job allocation according to the rank
value of the classads and their matches, in the same manner
as is with Condor.

To accommodate replica-centric scheduling, location infor-
mation of the replica files has to be reflected onto the classad;

to achieve this the central manager queries the RLS and
automatically adds value signifying the properties pertinent
to data location (measured network RTT, bandwidth etc. of
the host holding the data) of the (potential) replica files to the
rank value used by matchmaking. Also added are other data-
relevant info such as the size of the file being requested as
well as the available disk space of the compute node, in order
to allow the scheduler to avoid allocating the job to a host
with disk capacity too small to store the data for the task.

If the compute node happens to be caching the data, and
still has cycles left to process the data (i.e., if the host is an
SMP), and then the replication cost is effectively set to zero
to maximize the rank value of the host.

We describe how our prototype system works in more detail.
Data-intensive applications are executed on our system in the
following fashion as depicted in Figure 5. When a user wants
to submit a job involving a task which uses the data registered
in the RLS server, the user specifies its logical file name in
transfer replica files in the submission file as in
Figure 6. The$(Replica Files) supplies the physical
paths corresponding to the logical names specified by the user.

1) The startd daemon periodically sends a classad describ-
ing not only the host machine information such as the
OS type/version or CPU load average, but also the
replica information listing a the information pertinent
to replication cost (network RTT, bandwidth etc., of the
host holding the replica) of the files registered in the
RLS server. (Because the number of registered replicas
may be huge, filtering is performed so that only the
data either cached in the compute host and/or has been
recently named in the submission file and later reused,
are announced) The schedd also periodically sends the
classads describing the jobs which are scheduled and
still actively running.

2) The central manager periodically allocates the tasks
to the appropriate host by matchmaking with the re-
ceived classads from the submission host. When the
central manager receives a task which uses the data
sets registered in the RLS server, it adds additional
cost metric value that represents the replication cost to
the rank value computed in matchmaking. Finally the
central manager notifies the match to the allocated host
which had the maximum match value, and to the job
submission host.

3) The schedd spawns a shadow process when receiving the
match notification from the central manager. The shadow
sends a classad describing the task to the startd on the
allocated compute host. When the startd receives the
classad, it examines whether if could start the job, and
the rest proceeds in the same manner as Condor, where
startd spawns a stater process which in turns executes
the task if possible.

4) If the received task uses data registered to the RLS
server, then data staging with possible multi-replication
starts as described in the earlier sections.

Fig. 5. Execution Flow of Data-Intensive Tasks

executable = application
input = input.$(Process)
output = output.$(Process)
error = error.$(Process)
arguments = $(Replica_Files)
transfer_replica_files = data1,data2
queue 100

Fig. 6. A example of a Submission File

C. Implementation of Overlapped Execution of Data Staging
and Compute Bound Tasks

A compute host constantly monitors the running task to
determine whether it is in/out staging the data, or performing
the actual computation. This monitored job state is reflected
in the classad published to the central manager, along with
the resources it embodies (such as the number of CPUs) that
will allow determination of whether a given host will have
superficially been allocated tasks to fill the available compute
resources, but in practice the CPUs remain underutilized
because during in/out staging of data. If the size of the file to
be staged as well as the effective network bandwidth is also
available, we obtain an estimate of the duration of staging,
and thus how long the CPUs will remain mostly idle.

The central manager, once given such classads, considers the
available CPUs and the duration of availability, and attempts
to schedule compute-intensive tasks that would likely fall into
such duration onto such hosts. Conversely, if the compute
bound task is executing, and then data-intensive task could
be scheduled to pre-stage the input data.

In our current prototype implementation, we use a simple
criterion where a task is data-intensive if the size of data used
in the task exceeds a certain threshold in matchmaking. This
threshold can be set on a host-by-host basis, to compensate for
the data processing rate according to the performance of the
machine. We are currently investigating a more flexible metric
to distinguish data and compute “boundness” of a given task,
but the current experiments do demonstrate that even such a
simple metric works well under certain settings.

TABLE I

SPECIFICATION OF THEPRESTOIII C LUSTER

CPU Opteron 242
Memory 2GBytes

OS Linux 2.4.30
Network 1000Base-T

Also, currently the data-intensive tasks take priority once
the actual computing phase starts over compute bound tasks.
Thus, for example if a data-intensive task is scheduled first,
and then the compute bound task is scheduled later in an
overlapping fashion, but data transfer happens to finish earlier
than expected, then the compute bound task is suspended or
migrated to allow for the data-intensive task to proceed. This
is due to the observation that, data replication may be costly,
as replicas may be fetched from remote sites, whereas most
migration opportunities are available within local sites with
fast networks to migrate the task state in a rapid fashion. Even
if task suspension is only available, it is still worthwhile to let
the data-intensive task proceed first as most compute bound
tasks are part of a large farming task, and progress of a single
particular task within the job may have very minor effect on
the overall job completion time.

IV. PERFORMANCEEVALUATION

We performed comparative execution of the sample BLAST
data-intensive application depicted in Section 1 to our pro-
totype. We launched a RLS server and the data server on
one node, and registered the location of the database file on
the RLS server. We also designated one node as a central
manager, another as a submit machine, and the remaining
n(n = 4, 8, 16, 32) node(s) as compute hosts with specs
as described in I. We subsequently submitted5n tasks that
execute BLAST with 5 nucleotide query sequences against
nucleotide database nt.

The average execution time as well as the number of tasks
running for (n = 16) are illustrated in Figure 7 and 8. They
show that our system performs much superior to simple file
sharing and staging techniques, and in fact is almost equivalent
to the ideal setting. Moreover it shows that our system is
very scalable since performance remains constant regardless
of the number of nodes. This result could be achievable with
expensive “brute-force” infrastructures, but in our case our I/O
system is a standard PC with nominal I/O bandwidth.

Figure 9 categorizes the nodes in our proposal as either
performing data transfer or actually running. As one can
observe, data transfer takes place only once and very efficiently
thanks to the detection of multi-replication opportunity and
effectively conducting O(1) group data transfer. Moreover we
can see that the data transfer is avoided by reusing already-
created replicas, compared to Figure 2.

To evaluate the scaling of multi-replication, we increased
the number of compute hosts from 2 to 16 nodes. On initial
startup, a genomic sequence database of approximately 3
GBytes is staged to every node. With our system, the startup
time is 3.23 minutes on 2 nodes (30 MBytes/s) and 6.4 minutes

Fig. 7. Average Execution Time of Tasks

Fig. 8. Number of Running Tasks with Our Proposed Technique

on 16 nodes (120 MBytes/s aggregate). By comparison, raw
NFS read on the same file system registered only 12 MBytes/s.
Overall, our technique improved the total execution time by
57.5 % over NFS and 44.3 % over the simple staging.

To evaluate overlapped execution of data and compute
bound tasks, we measured the throughput in a controlled task
mix, where on 8 compute hosts we submit 8 compute-bound
jobs (simple calculation ofπ using the Monte Carlo method)
after submitting 40 data-intensive BLAST job described ear-
lier. Figures 10 and 11 show the results. The former takes
approximately 111 minutes to complete due to idle cycles
caused by data transfer, while the latter takes only 88 minutes
to complete. The figures show that this is caused by lower

Fig. 9. Breakdown of Tasks in Different Phases with Our Proposed Technique

Fig. 10. Number of Running Tasks without Overlapped Execution

Fig. 11. Number of Running Tasks with Overlapped Execution

CPU utilization of the former, while in the latter utilization is
almost constantly 100%.

V. RELATED WORK

Parallel file systems such as PVFS, LUSTRE, and
GPFS [11] provide scalable data access, and some have
been extended for use on the Grid. All requires some (semi-
)dedicated sets of I/O nodes that form a data farming cluster to
facilitate fast, expensive bandwidth access to backend storage.
Data are typically striped at a very low level for parallelism,
with very little control of where the actual data would be
located versus the clients of the data. Although it is possible to
stage data using them with resource brokers such as SRB, they
are rather expensive solutions. Gfarm [12] is a Grid file system
that facilitates owner computes rule to localize computation
with its data. Gfarm also corresponds parallel processes to
its data in a much more deliberate fashion compared to
conventional parallel file systems, including replication to
balance I/O load. However, it does assume a set of clusters on
a Grid of similar nature to conventional parallel file systems,
and moreover, does not perform intricate staging of data from
multiple file systems, etc.

Batch-Aware Distributed File System (BAD-FS) [13] is a
distributed file system that exposes internal control to an

external scheduler to facilitate execution of data-intensive
workloads on both wide- and local-area clusters. However,
selection of the data location from replicas must be done
manually by the user, as well as requiring users to have
complete a-priori knowledge of the flow of data in a particular
workflow, compromising scalability.

Stork [14] schedules data placement tasks on the grid, and
hides failures in network, storage system, and middleware
from user applications. A Stork user describes data placement
request in a classad explicitly in the classad. Stork is used
with DAGMan [15], a meta- (workflow) scheduler for Condor;
DAGMan manages dependencies between Condor and Stork
jobs, where computational tasks are submitted to Condor and
data placement tasks to Stork according to the order in a DAG
file [16]. Stork itself does not help to alleviate the problem
of degradation of I/O performance when numerous nodes
share the same data sets, without brute-force methods such
as parallel file systems as described above. Moreover various
techniques that require dynamic decisions that tightly couple
computation and data transfer/placement is difficult with Stork,
because Condor and Stork schedule the jobs independently
from each other. It may be profitable to integrate the features of
Stork into Condor, and apply our techniques so that expensive
storage infrastructures could be eliminated.

Replica management services on the Grid serve as low-
level building blocks for building systems that improve access
latency, data locality and robustness, etc. The data man-
agement service for the data replication is provided by the
Globus Toolkit [17], EU DataGrid (EDG) project [18], etc.
The data management components of the Globus Toolkit are
composed of RLS (RLS)[19], GridFTP [20] and RFT (Reliable
File Transfer). Reptor [21] plugs into various components
easily and interacts with the RLS (RLS), Replica Metadata
Catalog Service (RMC) and the Replica Optimization Service
(ROS), which selects the best replica allowing for the access
cost. These services usually assume point-to-point commu-
nication and file transfer protocol, and do not cope with
performance bottlenecks when multiple nodes access the I/O
nodes simultaneously. Although several work [22], [23], [24]
evaluates automatic replica placement algorithms with respect
to common data grid workloads, they also do not account for
concentration of data access to a single data or an I/O node, nor
consider possibility of efficient parallel replication algorithms
to alleviate the situations, the key element of our proposal.
Also, the scheduling of data and compute bound tasks versus
data placement are not necessarily considered in concert, again
the key to achieving high efficiency in our proposal.

VI. CONCLUSION AND FUTURE WORK

We proposed three techniques that improves resource uti-
lization of data-intensive application on the data grid, and
demonstrated on our prototype implementation that, at least
under common application situations, the system will perform
almost as good as “ideal” situations where all the data are
local to the compute nodes, without resorting to high-cost,
centralized storage systems and parallel file systems. The

techniques are simple enough to be implemented as extensions
to scheduling and classads of Condor, a proven system in data
grid setting already. As such, we believe our technique will be
applicable to wide range of data grid systems quite effectively.

As future work, we also plan to optimize execution by
considering the treatment of outstaged data, as well as apply
the techniques to real Condor and test it under a realistic and
comprehensive data grid application environment.

REFERENCES

[1] “NCBI BLAST,” http://www.ncbi.nlm.nih.gov/BLAST/.
[2] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur,

“PVFS: A parallel file system for linux clusters,” inProceedings
of the 4th Annual Linux Showcase and Conference. Atlanta,
GA: USENIX Association, 2000, pp. 317–327. [Online]. Available:
citeseer.ist.psu.edu/article/carns00pvfs.html

[3] “lustre,” http://www.lustre.org/.
[4] “Condor Project Homepage,” http://www.cs.wisc.edu/condor/.
[5] M. Litzkow, M. Livny, and M. Mutka, “Condor - A Hunter of Idle Work-

stations,” Proceedings of 8th International Conference of Distributed
Computing Systems, pp. 104–111, 1988.

[6] D. Epema, M. Livny, R. Dantzig, X. Evers, and J. Pruyne, “A Worldwide
Flock of Condors: Load Sharing among Workstation Clusters,”Journal
on Future Generations of Computer Systems, vol. Vol. 12, 1996.

[7] M. Livny, R. Raman, and T. Tannenbaum, “Mechanisms for High
Throughput Computing,”SPEEDUP Journal, vol. Vol. 11, no. 1, 1997.

[8] S. Takizawa, Y. Takamiya, H. Nakada, and S. Matsuoka, “A Scalable
Multi-Replication Framework for Data Grid,”Proceedings of the 2005
International Symposium on Applications and the Internet (SAINT 2005
Workshops), January 2005.

[9] A. Manabe, “Disk cloning program ‘dolly+’ for system management
of pc linux cluster,”Computing in High Energy Physics and Nuclear
Physics, 2001.

[10] R. Raman, M. Livny, and M. Solomon, “Matchmaking: Distributed
Resource Management for High Throughput,”Proceedings of 7th IEEE
International Synposium on High Performance Distributed Computing,
July 28-31 1998.

[11] F. Schmuck and R. Haskin, “GPFS: A shared-disk file system for
large computing clusters,” inProc. of the First Conference on File
and Storage Technologies (FAST), Jan. 2002, pp. 231–244. [Online].
Available: citeseer.ist.psu.edu/schmuck02gpfs.html

[12] O. Tatebe, Y. Morita, S. Matsuoka, N. Soda, and S. Sekiguchi, “Grid
datafarm architecture for petascale data intensive computing,”Pro-
ceedings of the 2nd IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid), pp. 102–110, 2002.

[13] J. Bent, D. Thain, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and
M. Livny, “Explicit Control in a Batch-Aware Distributed File System,”
in Proceedings of the First USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’04), San Francisco, CA, March
2004.

[14] T. Kosar and M. Livny, “Stork: Making Data Placement a First Class
Citizen in the Grid,”Proceedings of 24th IEEE International Conference
on Distributed Computing Systems (ICDCS2004), 2004, tokyo, Japan.

[15] “Directed Acyclic Graph Manager,”
http://www.cs.wisc.edu/condor/dagman.

[16] G. Kola, T. Kosar, and M. Livny, “A Fully Automated Fault-tolerant
System for Distributed Video Processing and Off-site Replication,”In the
14th ACM International Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV2004).

[17] I. Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure
Toolkit,” Internatinal Journal of Supercomputer Applications, vol. Vol.
11, no. 2, pp. 115–128, 1997.

[18] “EU DataGrid project,” http://www.eu-datagrid.org/.
[19] A. L. Chervenak, N. Palavalli, S. Bharathi, C. Kesselman, and

R. Schwartzkopf, “Performance and scalability of a replica location
service,” The Thirteenth IEEE International Symposium on High-
Performance Distributed Computing, 2004.

[20] W. Allcock, J. Bresnaham, I. Foster, L. Liming, J. Link, and P. Plaszczac,
“Gridftp update january 2002,”Globus Project Technical Report, 2002.

[21] D. Bosio, J. Casey, A. Frohner, L. Guy, P. Kunszt, E. Laure, S. Lemaitre,
L. Lucio, H. Stockinger, K. Stockinger, W. Bell, D. Cameron, G. Mc-
Cance, P. Millar, J. Hahkala, N. Karlsson, V. Nenonen, M. Silander,
O. Mulmo, G.-L. Volpato, G. Andronico, F. DiCarlo, L. Salconi,
A. Domenici, R. Carvajal-Schiaffino, and F. Zini, “Next-Generation EU
DataGrid Data Management Services,” inComputing in High Energy
Physics (CHEP 2003), La Jolla, CA, March 2003.

[22] K. Ranganathan and I. Foster, “Decoupling Computation and Data
Scheduling in Distributed Data-Intensive Applications,” inProceedings
of 11th IEEE International Symposium on High Performance Distributed
Computing (HPDC-11), Edingurgh, Scotland, July 2002.

[23] ——, “Identifying Dynamic Replication Strategies for High Perfor-
mance Data Grids,” inProceedings of International Workshop on Grid
Computing, Denver, CO, November 2002.

[24] A. Takefusa, O. Tatebe, S. Matsuoka, and Y. Morita, “Performance
Analysis of Scheduling and Replication Algorithms on Grid Datafarm
Architecture for High-Energy Physics Applications,” inProceedings of
the 12th IEEE International Symposium on High Performance Dis-
tributed Computing (HPDC-12), June 2003, pp. 34–43.

