
Preliminary Evaluation of Dynamic Load Balancing
Using Loop Re-partitioning on Omni/SCASH

Yoshiaki Sakae Satoshi Matsuoka
Tokyo Institute of Technology, Japan Tokyo Institute of Technology/JST, Japan

sakae@is.titech.ac.jp matsu@is.titech.ac.jp

Mitsuhisa Sato Hiroshi Harada
Tsukuba University, Japan Hewlett-Packard Japan,Ltd.

msato@is.tsukuba.ac.jp Hiroshi.Harada@hp.com

Abstract

Increasingly large-scale clusters of PC/WS continue to
become majority platform in HPC field. Such a commodity
cluster environment, there may be incremental upgrade due
to several reasons, such as rapid progress in processor tech-
nologies, or user needs and it may cause the performance
heterogeneity between nodes from which the application
programmer will suffer as load imbalances. To overcome
these problems, some dynamic load balancing mechanisms
are needed. In this paper, we report our ongoing work on
dynamic load balancing extension to Omni/SCASH which
is an implementation of OpenMP on Software Distributed
Shared Memory, SCASH. Using our dynamic load balanc-
ing mechanisms, we expect that programmers can have load
imbalances adjusted automatically by the runtime system
without explicit definition of data and task placements in
a commodity cluster environment with possibly heteroge-
neous performance nodes.

1. Introduction

Recently, clusters of SMPs have become the majority
in HPC machines[11]. In particular, commodity clusters
are being used at many research organizations and universi-
ties for the cost performance and ease of management, etc.
However, rapid progress of processor and network technol-
ogy typically gives rise toperformance heterogeneitydue to
incremental addition of nodes, incremental reinforcement
of processors/memory, etc. Also, multi-user environment
might result in such performance heterogeneity even if the
nodes were homogeneous.

It would be difficult for a programmer to perform load
balancing explicitly for every environment/application, and
as such, automatic adaptation by the underlying runtime is

indispensable. In this regard, we are developing technolo-
gies for commodity clusters that perform automatic rear-
rangement of data and dynamic load balancing, and em-
ploy OpenMP as the programming interface. More specifi-
cally, we have been developing Omni/SCASH[9], an imple-
mentation of OpenMP on SCASH, a Software Distributed
Shared Memory, for commodity clusters. In this paper, we
report on our implementation of performance monitoring
feedback-based loop re-partitioning to cope with load im-
balances in heterogeneous settings, and its measured per-
formance. We also report on our ongoing work on dynamic
data rearrangement based on SCASH page reference count-
ing in the OpenMPparallel section. With these mecha-
nisms, we expect that programmers can have load imbal-
ances adjusted automatically by the runtime system without
explicit definition of data and task placements.

2. Background

2.1. Omni OpenMP Compiler

The Omni OpenMP compiler is a translator, which takes
OpenMP programs as input to generate a multi-threaded C
program with runtime library calls. C-front and F-front are
front-ends that parse C and Fortran codes into intermediate
codes, called Xobject code. Exc Java tools is a Java class
library that provides classes and methods to analyze and
modify the program easily with a high level representation.
The representation of Xobject code is a kind of AST (Ab-
stract Syntax Tree) with data type information, each node of
which is a Java object that represents a syntactical element
of the source code, and that can be easily transformed. The
translation from an OpenMP program to the target multi-
threaded code is written by Java in the Exc Java tools. The
generated program is compiled by the native back-end com-
piler and linked with the runtime library.

1

2.2. SCASH

SCASH[4] is a page-based software distributed shared
memory system using the PM[10] low-latency and high
bandwidth communication library for Myrinet[7] and mem-
ory management functions, such as memory protection,
supported by the operating system kernel. SCASH is based
on the Eager Release Consistency (ERC) memory model
with multiple writer protocol and implemented as a user
level runtime library. In the ERC memory model, the con-
sistency of a shared memory area is maintained on each
synchronization called thememory barrier synchronization
point.

To realize memory consistency, invalidate and update
page consistency protocols have been implemented. In the
invalidate protocol, an invalidation message for a dirty page
is sent to remote hosts where the page copy is kept at the
synchronization point. In the update protocol, new data on
a page is sent to remote hosts where the page copy is kept
at the synchronization point.

In SCASH, thehomenode of a page is the node that
keeps the latest data of the page and the page directory
which represents the set of nodes sharing the page. The
baseis the node that knows the latest home node when the
home migrates. All nodes know the base nodes of all pages.

2.3. Translation of OpenMP programs to SCASH

In the OpenMP programming model, global variables are
shared by default. On the other hand, variables declared in
the global scope are private for the processor in SCASH,
and shared address space must be allocated explicitly by the
shared memory allocation primitive at runtime. To compile
an OpenMP program into the “shemem memory model” of
SCASH, the compiler transforms code to allocate global
variables in shared address space at runtime.

More specifically the compiler transforms an OpenMP
program by the following steps:

1. All declarations of global variables are converted into
pointers which contain the address of the data in shared
address space.

2. The compiler rewrites all references to global variables
to indirect references through the corresponding point-
ers.

3. The compiler generates global data initialization func-
tion for each compilation unit. This function allocates
the objects in shared address space and stores these ad-
dresses into the corresponding indirect pointers.

The OpenMP primitives are transformed into a set of
runtime functions which use SCASH primitives to synchro-
nize and communicate between processors.

To translate a sequential program annotated with paral-
lel directives into a fork-join parallel program, the compiler
encapsulates each parallel region into a separate function.
The master node calls the runtime function to invoke the
slave threads which execute this function in parallel. All
threads in each node are created at the beginning of exe-
cution, and wait for the fork operation on slave nodes. No
nested parallelism is supported.

In SCASH, the consistency of all shared memory area
is maintained at a barrier operation. This matches the
OpenMP memory model. The lock and synchronization
operations in OpenMP use the explicit consistency manage-
ment primitives of SCASH on a specific object.

From the viewpoint of the programmer, our implemen-
tation for the SDSM is almost similar in behavior to the
hardware-supported SMP implementations, except for sev-
eral aspects such as granularity of coherence which may
have performance implications.

2.4. Performance Degradation on Performance Het-
erogeneous Environment

Before we present extensions for dynamic load balanc-
ing, we demonstrate a typical performance degradation for
performance heterogeneous settings.

Fig. 1 exemplifies the situation where the nodes are per-
formance heterogenous. The cluster consists of 8 500MHz
Intel Pentium III nodes, and 2 300MHz Intel Celeron nodes,
and the earlier version of Omni/SCASH without any load
balancing features are installed. The benchmark run is the
SPLASH II Water benchmark. As one can observe from
the Figure, the slower nodes dominate the critical path of
the loop, and as a result, the entire cluster performs as if it
were 8+2 300MHz nodes instead of performing as if it had
the weighted average clockspeed of the two types of pro-
cessors, which would have been ideal.

3. Dynamic Load Balancing

As mentioned in section 1, there are several conditions
which gives rise to load imbalance: (1) the target applica-
tion has inherently load imbalance, (2) there are differences
in loads among the nodes due to multi-user environment,
and (3) when an application is run on performance hetero-
geneous cluster. Since for cases (2) and (3) load imbalances
cannot be determined a priori, static load balancing tech-
niques would be insufficient, but rather dynamic load bal-
ancing techniques based on runtime performance measure-
ment would be essential.

It is widely known that the locality of data affects perfor-
mances in NUMA/SDSM environment, and as a result sev-
eral data placement techniques have been proposed, such
as (1) placing an extra initialization loop for some data

2

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 4 8

Ti
m

e
[s

ec
]

Number of Nodes

Omni/SCASH Performance: SPLASH II Water 27000 molecules on Hetero

Pentium III 500Mhz
Celeron 300Mhz x 1 + Pentium III 500Mhz
Celeron 300Mhz x 2 + Pentium III 500Mhz

Figure 1. Execution Time of SPLASH II Water
on Performance Heterogeneous Cluster

which are accessed in the main loop as a preamble, to uti-
lize the first-touch memory allocation mechanism supported
by the system, (2) annotating affinity info between data and
threads[5], and (3) application programmers describing data
placement explicitly with directives. These are all static
techniques, and consequently cannot deal with access pat-
tern changes at runtime or dynamic load changes in nodes,
especially those with most frequent access to certain data.

Instead, we propose a mechanism that combines dy-
namic loop re-partitioning based on runtime self-profiling
of performance for dynamic load balancing, and dy-
namic page migration based on page reference counting
for dynamic data placement. Because excessive loop re-
partitioning may cause unnecessary page migrations, it is
very important to investigate the balance between loop re-
partitioning and page migration.

3.1. Directive Extension for Loop Re-partitioning

We use loop re-partitioning as a runtime load balancing
function for data parallel applications. Althoughdynamic
andguidedscheduling options of OpenMP can achieve load
balancing to some extent, both involve some lock and mem-
ory flush operations when access and update to the chunk
queue managed centrally. Therefore they reveal relatively
big scheduling overhead in a distributed memory environ-
ment like especially a cluster. Instead, we achieve load bal-
ance by adjusting the chunk size for each processor early on
in the loop according to runtime performance profiled from
the initial static OpenMP scheduling.

We have added the new scheduling policyprofiled to the
scheduleclause as follows:

schedule(profiled[, chunk_size[,

schedule(profiled)

schedule(profiled, 2)

1 3n n 2n

2 6 2 4

Example: Num Proc = 3, Perf Ratio = 3:1:2

schedule(profiled, 2, 3, 1)

1 3 6 2 4

: executed on proc 0

: executed on proc 1

: executed on proc 2

: profiling loop

Figure 2. Example of profiled scheduling

eval_size[, eval_skip]]])

When profiled scheduling is specified, the number of
times iteration specified byeval skipis normally performed
by each thread, and performance measurement is performed
for the next number of times iteration specified byeval size.
Then, each thread will calculate the runtime peformance
and the remaining iteration space will be partitioned cycli-
cally to each thread according to a performance ratio with
makingchunksizeinto a basis bottom chunk size.

In addition, you can omit evalskip, evalsize and
chunksize in this order. When evalskip is omitted or 0, the
runtime peformance measurement is peformed from top it-
eration. When evalsize is omitted, the runtime peformance
measurement is performed supposing evalsize = 1. When
chunksize is omitted or 0, the remaining iteration space
will be partitioned in a block manner according to runtime
performance ratio.

Fig. 2 is an example of profiled scheduling. In this case,
the total number of processors is 3 and its performance ratio
is 3:1:2 respectively.

When an application programmer specifiesprofiled
scheduling for some parallel loop, Omni makes new sub-
functions for each parallel region, and these are invoked on
slave threads participating in the parallel region. In addi-
tion, Omni inserts time measurement code around the loops
for measuring precise execution time of iterations, then re-
partitions the loop according to performance variations be-
tween threads for the target loop as in Fig. 3. For precise
performance measurement, we utilize hardware real time
counter supported by CPU via PAPI[2].

Each thread manages loop related informa-
tion such as index of subloop and upper/lower
bounds of subloop, and these values are ini-
tialized by ompc profiled sched init() .
ompc profiled sched next() calculates the

3

#pragma parallel omp for schedule(profiled)
 for (i = 0; i < N; i++) {
 LOOP_BODY;
 }

static void __ompc_func(void **__ompc_args){
 int i;
 {
 int lb, ub, step;
 double start_time = 0.0, stop_time = 0.0;
 lb = 0, ub = N, step = 1;
 _ompc_profiled_sched_init(lb, ub, step, 1);
 while (_ompc_profiled_sched_next(&lb, &ub, start_time, stop_time)) {
 _ompc_profiled_get_time(&start_time);
 for (i = lb; i < ub; i += step) {
 LOOP_BODY;
 }
 _ompc_profiled_get_time(&stop_time);
 }
 }
}

Figure 3. Code translation when profiled is
specified as scheduling policy

next iteration space of subloop for each thread.
ompc profiled sched next() adjusts iteration

space between threads according to performance ratio
measured byompc profiled get time() to achieve
loop re-partitioning.

ompc profiled sched next() calculates loop
re-partitioning as follows (see Fig. 4):

1. When a profiled (loop) scheduling is performed:

(a) Calculate the execution speed of each thread for
previous chunk of loops, and broadcast the info
to all other threads.

(b) Estimate the optimal time taken to perform the
remaining loops when performing the loop re-
partitioning according to the performance ratio,
and also when the loop repartitioning is not per-
formed.

(c) When the performance improvement is above a
certain threshold:

i. each thread calculates the number of chunks
for all threads and stores these in the
chunk_vector .

ii. each thread adjusts its own loop index, loop
upper/lower bounds, etc., and exit.

(d) Otherwise a flag is set to indicate that loop
re-partitioning should not be performed further.
Each thread merely calculates the next chunk of
subloop based onchunk_vector calculated
previously, and exit.

2. When a profiled schedule isn’t performed, each thread
merely calculates the next chunk of subloop based on
thechunk_vector calculated previously, end exits.

� � � ��� � �
� � � � 	 � 	 �
 	
 �
�
 � �
 � � �

� �
 ��� � � ��� � � � � �
��� � � � �
 � ��� � �
� � � � ��� � � � �

� � � � 	 � � � � �
� � � � � � ���
 � ��� � �

� � ��� � � � � � � 	 � 	 �
 	
 �
	 ��� � � � � � ��� � �

� � � � � � ���
 � �
	 ��� � � � ���
 � �

� � � � �
 � � ��� � �
� � � 	 � 	 �
 	
 �

! � ��� � � � 	 � 	 �
�� � � 	 �
" � � #
 $ % � � � &

' 	 � � �
 ��
 � � ��� � �
� � � � 	 � 	 �
 	
 �

(� � 	 �
�� � #
 $ �
� � � � ���

� � #
 $ % � � � �

(� � 	 �
�� � #
 $ �
� � � � ���

� � #
 $ % � � � �

) �

* � �

* � �

) �

) � � �+� � � ��, � � -

Figure 4. Overview of loop re-partitioning al-
gorithm

Of the operations above, (a) alone involves communi-
cation with other threads. When performance difference
between threads is not caused by the inherent load imbal-
ance of the application itself, but is caused by the perfor-
mance difference between nodes or loads, the communica-
tion occurs only for the first chunk of iterations, and re-
main static afterwards. As such, we expect performance
advantage for profiled scheduling, compared to dynamic or
guided scheduling that must access to shared data to calcu-
late next iteration space every time.

4. Evaluation

We have used OpenMP versions of EP and CG from
NAS Parallel Benchmarks (NPB-2.3) to evaluate profiled
scheduling. The conversion to OpenMP version from origi-
nal Fortran version was done by RWCP.

EP The EP kernel benchmark is a kernel that could be used
in a Monte Carlo type procedure.2n pseudorandom

4

Table 1. Evaluation Environment: Perfor-
mance Heterogeneous Cluster

Fast nodes Slow node
CPU Pentium III 500MHz Celeron 300MHz
Cache 512KB 128KB
Chipset Intel 440BX Same as “Fast”
Memory SDRAM 512MB Same as “Fast”
NIC Myrinet M2M-PCI32C Same as “Fast”

floating point numbers are generated and some com-
putations which depend only on pairs of neighboring
elements are performed. The data dependency is mini-
mal, hence the problem is called embarrassingly paral-
lel. Therefore we use EP to evaluate the pure efficiency
of profiled scheduling.

CG The CG kernel benchmark uses the inverse power
method to find an estimate of the largest eigenvalue of
a symmetric positive definite sparse matrix with a ran-
dom pattern of non-zeros. There are substantial fre-
quent accesses to the shared arrays in kernel loop of
CG, so that the locality of data has significant influ-
ence on performance. This means that the possibility
of performance degradation could overwhelm the gain
for profiled scheduling.

4.1. Evaluation Environment

In Tab. 1, we show our evaluation environment. Our
performance heterogeneous cluster has differences only in
CPU performance such that some nodes are equipped with
Pentium III 500MHz and the others are equipped with
Celeron 300MHz.

We use RedHat 7.2 as an OS and SCore cluster system
and gcc-2.96 as a compiler with the -O option.

In the following evaluation results, we only show the best
case when chunksize, evalsize and evalskip are all omit-
ted for profiled scheduling.

4.2. Results for Homogeneous Settings

Firstly, in order to examine the overhead of profiled
scheduling itself, we conducted benchmarks on homoge-
neous settings using EP whose performance is not influ-
enced by data placement.

In Fig. 5, while dynamic scheduling exhibits the over-
head due to remote access to update the loop index at every
chunk, we can see that profiled scheduling roughly exhibits
no overhead equaling static scheduling performance.

 5

 10

 15

 20

 25

 30

 1 2 4

Ti
m

e
[s

ec
]

Number of Nodes

Execution Time of EP Class S on Homogeneous Settings

static
dynamic
profiled

Figure 5. Execution Time of EP Class S on Ho-
mogeneous Settings (Pentium III nodes only
)

4.3. Results for Heterogeneous Settings

Fig. 6 shows the execution time of EP class S with static,
dynamic and profiled scheduling without specifying chunk
size. The dashed line with square shows the EP perfor-
mance with static scheduling when all nodes are “Fast”, i.e.
the upper bounds of performance. The solid line with plus
sign shows the EP performance with static scheduling on
heterogeneous settings and this is the lower bounds of per-
formance.

Because the target loop’s iteration space of EP is rather
small, so that dynamic scheduling is feasible and exhibits
the better performance than static scheduling.

When performing profiled scheduling, the target parallel
loop body of EP is rather large, and we confirmed that the
chunkvector exactly corresponds to performance ratio of
the two node classes. Profiled scheduling also shows the
best performance for heterogeneous settings.

Fig. 7 shows the execution time of CG class A with static
and profiled scheduling without specifying the chunk size.

The CG kernel benchmark involves frequent accesses to
shared array, and as such it is important to allocate the task
and its data on the same node, especially on a cluster envi-
ronment where remote access has relatively high overhead.
Moreover, because loop re-partitioning may occur at every
“parallel for” region, such as a data initializing phase and
data consumption phase, it is probable that affinity between
the task and its data could be broken. Consequently, in the
case of CG, profiled scheduling shows worse performance
comparing to static scheduling. We investigate the influ-
ence which profiled scheduling has on data locality in the
next subsection.

5

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 2 4

Ti
m

e
[s

ec
]

Number of Nodes

Execution Time of EP Class S on Heterogeneous Settings

static (Slow x 1 + Fast)
dynamic (Slow x 1 + Fast)
profiled (Slow x 1 + Fast)

static (Fast x 4)

Figure 6. Execution Time of EP Class S on
Heterogeneous Settings (one Celeron node +
Pentium III nodes)

Table 2. Memory Behavior of the CG Class
A on Celeron ×1 + Pentium III ×3 settings for
static/profiled scheduling

static profiled

L2 miss ratio 29.6% 31.1%
Page Fault at SCASH 16456 27201
Barrier 5088 8006

4.4. Influences of Profiled Scheduling on Data Lo-
cality

Tab. 2 shows the numbers of barrier and SCASH level
page fault on one node and L2 cache miss ratio. We com-
pute L2 cache miss ratio with PAPI as follows:

L2 cache miss ratio=
PAPI L2 TCM
PAPI L1 DCM

× 100

PAPI L1 DCM means Level 1 data cache misses and
PAPI L2 TCM means Level 2 total cache misses.

Although static and profiled scheduling L2 cache miss
ratios are similar, the number of SCASH level page fault
of profiled scheduling is much greater than that of static
scheduling. This is because affinity of a memory and a task
may break whenever loop re-partitioning takes place with
profiled scheduling. As a result, more remote memory ac-
cesses will occur and performance will degrade.

The number of barriers increases for the following rea-
son: recall that our profiled scheduling uses barrier to
broadcast the loop re-partitioning info to all the nodes.
Now, because of remote referenceswithoutpage migration
in the current setting, the predicted ratio of CPU perfor-
mance may not be accurately reflected in the actual loops in

 30

 40

 50

 60

 70

 80

 90

 1 2 4

Ti
m

e
[s

ec
]

Number of Nodes

Execution Time of CG Class A on Heterogeneous Settings

static (Slow x 1 + Fast)
profiled (Slow x 1 + Fast)

Figure 7. Execution Time of CG Class A on
Heterogeneous Settings (one Celeron node +
Pentium III nodes)

the latter iterations, because of remote references occurring
or not occurring. Such discrepancy will result in repeated
loop re-partitioning, resulting not only in bad performance
but also excessive barriers.

The results indicated that, it seems almost essential to
combine page migration with dynamic loop re-partitioning
in order to reestablish data locality. Also, we are consid-
ering loop re-partitioning to occur more gradually instead
of re-partitioning immediately and exactly according to the
instrumented performance; this will have a dampening ef-
fect which could prevent repeated repartitioning to occur,
much in the way some numerical optimization algorithm
work with dampening effects.

5. Ongoing Work: Page Migration Based on
Page Reference Count

As mentioned in section 3, the locality of data affects
performance especially in SDSM environment. However,
there is no explicit method for a programmer to specify data
placement with the current OpenMP standard, originally in-
tended for shared memory environment. There have been
proposals to improve OpenMP data placement locality on
NUMA or SDSM environment: [1, 6] proposes directives
to specify explicit data placement; [5] presents a scheme
to align the threads with data with affinity directives; [8]
migrates pages to a node on which the thread that most fre-
quently access the data on the page reside using hardware
page reference counters. For our work however, because we
aim to employ loop re-partitioning, such static techniques
would be difficult to apply directly.

Moreover, counting every page reference without hard-

6

ware support would result in considerable overhead in a
SDSM environment. Instead, we count the number of page
faults at the SDSM level, that is, the number of times when
non-local memory has been accessed, and migrate the page
to the node with the most number of (dynamic) remote ref-
erences to the given page. Because we lose precision over
direct counting of page references with hardware support,
there is a possibility of increase in actual references to re-
mote pages due to page migration. However, because we
are targeting SPMD applications, we can assume that mem-
ory access pattern in kernel parallel loop will not typically
change over each iteration. As such, we may safely assume
that our approximated reference counting will have suffi-
cient precision for our purpose.

In the current prototype, variables subject to migration
and its size must be specified with directives. Because page
reference information that affects page migration is largely
caused by accesses in the (rather stable) main loop that is
dominant with respect to the overall performance, we ex-
pect that good locality can be attained if the compiler can
reduce the # of false sharings (which is achievable with ap-
propriate loop partitions.)

6. Related Work

Nikolopoulos et al. proposed a data placement tech-
nique for dynamic page migration based on precise page
reference counting in a parallel loop of OpenMP programs
using hardware page reference counter supported by SGI
Origin 2000[8]. Based on the accurate value of page ref-
erence counter during the proper code section, exact and
timely page migration is attained. The results show that
their method show better performance than dynamic page
migration supported by OS with some programs of NPB.
Our proposal will extend their results to commodity clus-
tering environment where such hardware support does not
exist.

Harada et al. implemented home reallocation mech-
anism base on the amount of page data changes to
SCASH[3]. In their method, the system detects the node
which has made the most changes of each page at every
barrier synchronization point, then alters the “home” node
of the page to be that node to reduce remote memory access
overheads. The evaluation results with SPLASH2[12] LU
benchmark shows that their execution performance is ad-
vantageous over static home node allocation mechanisms,
including optimal static placement on up to 8 nodes.

7. Conclusion and Future Work

We reported our ongoing work on a dynamic load bal-
ancing extension to Omni/SCASH which is a implementa-
tion of OpenMP on Software Distributed Shared Memory,

SCASH. We aim to provide a solution for solving inher-
ent and dynamic load imbalance of application programs,
namely load imbalance between nodes caused by multi-
user environment, performance heterogeneity in nodes, etc.
Static approaches for such situations would not be adequate
and instead, we propose dynamic load balancing mech-
anism with loop re-partitioning based on runtime perfor-
mance profiling for target parallel loops, and page migra-
tion based on efficient approximated page reference count-
ing during the target loop sections. Using these techniques
we expect that user programmers can achieve non-optimal
load balance corrected by the runtime environment without
explicit definition of data and task placement.

The results of our preliminary evaluation indicates that,
when data locality is not a question, our re-partitioning
scheme with profiled scheduling works well, causing al-
most no overhead compared to static techniques, and per-
forming best when there is load imbalance due to perfor-
mance heterogeneity. However, when locality is lost due
to re-partitioning, performance instead degrades due to in-
creased remote DSM references, and possibly more oc-
currences of barrier synchronizations. This suggests that
profiled scheduling needs to be combined with dynamic
page migration to restore locality; we have proposed a sim-
ple scheme where lightweight page reference count can be
made without hardware support, at the sake of some accu-
racy. We are currently implementing our proposed page mi-
gration algorithm into Omni/SCASH, and hope to conduct
extensive performance measurements in order to validate
the effectiveness of our combined approach.

References

[1] J. Bircsak, P. Craig, R. Crowell, J. Harris, C. A. Nelson, and
C. D. Offner. Extending OpenMP for NUMA Machines:
The Language. InProceedings of Workshop on OpenMP Ap-
plications and Tool (WOMPAT’2000), July 2000. San Diego,
USA.

[2] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A
Portable Programming Interface for Performance Evaluation
on Modern Processors.The International Journal of High
Performance Computing Applications, 14(3):189–204, Fall
2000.

[3] H. Harada, Y. Ishikawa, A. Hori, H. Tezuka, S. Sumimoto,
and T. Takahashi. Dynamic home node reallocation on soft-
ware distributed shared memory system. InProceedings of
IEEE 4th HPC ASIA 2000, pages 158–163, may 2000.

[4] H. Harada, H. Tezuka, A. Hori, S. Sumimoto, T. Takahashi,
and Y. Ishikawa. SCASH: Software DSM using High Per-
formance Network on Commodity Hardware and Software.
In Proceedings of Eighth Workshop on Scalable Shared-
memory Multiprocessors, pages 26–27. ACM, May 1999.

[5] A. Hasegawa, M. Sato, Y. Ishikawa, and H. Harada. Op-
timization and Performance Evaluation of NPB on Omni

7

OpenMP Compiler for SCASH, Software Distributed Mem-
ory System (in Japanese). InIPSJ SIG Notes, 2001-ARC-
142, 2001-HPC-85, pages 181–186, Mar. 2001.

[6] J. Merlin. Distributed OpenMP: Extensions to OpenMP for
SMP Clusters. InInvited Talk. Second European Workshop
on OpenMP (EWOMP’00), Oct. 2000. Edinburgh, Scotland.

[7] http://www.myri.com/.
[8] D. S. Nikolopoulos, T. S. Papatheodorou, C. D. Poly-

chronopoulos, J. Labarta, and E. Ayguadé. Is Data Distri-
bution Necessary in OpenMP? InProc. of Supercomputing
2000, Nov. 2000. Dallas, TX.

[9] M. Sato, H. Harada, and Y. Ishikawa. OpenMP compiler
for Software Distributed Shared Memory System SCASH.
In Proceedings of Workshop on OpenMP Applications and
Tool (WOMPAT’2000), July 2000. San Diego, USA.

[10] H. Tezuka, A. Hori, Y. Ishikawa, and M. Sato. PM: An
Operating System Coordinated High Performance Commu-
nication Library. In P. Sloot and B. Hertzberger, editors,
High-Performance Computing and Networking ’97, volume
1225, pages 708–717. Lecture Notes in Computer Science,
Apr. 1997.

[11] http://www.top500.org/.
[12] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.

The SPLASH-2 Programs: Characterization and Method-
ological Considerations. InProceedings of the 22nd Interna-
tional Symposium on Computer Architecture, pages 24–36,
June 1995.

8

