Overview of GridRPC: A Remote Procedure
Call API for Grid Computing *

Keith Seymour®, Hidemoto Nakada®°®, Satoshi Matsuoka®”, Jack Dongarra!,
Craig Lee?*, and Henri Casanova®?®

! Department of Computer Science, University of Tennessee, Knoxville
2 San Diego Supercomputer Center
% Dept. of Computer Science and Engineering, University of California, San Diego
% Computer Systems Research Dept., The Aerospace Corp., El Segundo, California
® National Institute of Advanced Industrial Science and Technology (AIST)
5 Tokyo Institute of Technology
" National Institute of Informatics

Abstract. This paper discusses preliminary work on standardizing and
implementing a remote procedure call (RPC) mechanism for grid com-
puting. The GridRPC API is designed to address the lack of a standard-
ized, portable, and simple programming interface. Our initial work on
GridRPC shows that client access to existing grid computing systems
such as NetSolve and Ninf can be unified via a common API, a task that
has proven to be problematic in the past.

1 Introduction

Although Grid computing is regarded as a viable next-generation computing in-
frastructure, its widespread adoption is still hindered by several factors, one of
which is the question “how do we program on the Grid (in an easy manner)”.
By all means there have been various attempts to provide a programming model
and a corresponding system or a language appropriate for the Grid. Many such
efforts have been collected and catalogued by the Advanced Programming Mod-
els Research Group of the Global Grid Forum [1]. One particular programming
model that has proven to be viable is an RPC mechanism tailored for the Grid,
or “GridRPC”. Although at a very high level view the programming model pro-
vided by GridRPC is that of standard RPC plus asynchronous coarse-grained
parallel tasking, in practice there are a variety of features that will largely hide
the dynamicity, insecurity, and instability of the Grid from the programmers.
As such, GridRPC allows not only enabling individual applications to be dis-
tributed, but also can serve as the basis for even higher-level software substrates
such as distributed, scientific components on the Grid. Moreover, recent work [2]
has shown that GridRPC could be effectively built upon future Grid software
based on Web Services such as OGSA [3].

* This work funded in part by a grant from the NSF EIA-9975015.

2 Keith Seymour et al.

This work was motivated by earlier attempts to achieve interoperability be-
tween by two systems that provide network-enabled services, namely NetSolve
[4] and Ninf [5]. This proved to be difficult, indicating the need for a more uni-
fied effort to understand the requirements of a GridRPC model and API. This
is reported in the next section.

2 The GridRPC Model and API

Function Handles and Session IDs. Two fundamental objects in the
GridRPC model are function handles and the session IDs. The function handle
represents a mapping from a function name to an instance of that function on a
particular server. Once a particular function-to-server mapping has been estab-
lished all RPC calls using that function handle will be executed on the server
specified in that binding. A session ID is an identifier representing a particular
non-blocking RPC call.

Initializing and Finalizing Functions. The initialize and finalize functions
are similar to the MPI initialize and finalize calls. Client GridRPC calls before
initialization or after finalization will fail.

— grpc_initialize reads the configuration file and initializes the modules.
— grpc_finalize releases any resources being used by GridRPC.

Remote Function Handle Management Functions. The function handle
management group of functions allows creating and destroying function handles.

— grpc_function handle default creates a handle using the default server.
— grpc_function handle init creates a handle with a user-specified server.
— grpc_function_handle destruct frees the memory for the specified handle.
— grpc_get_handle returns the handle corresponding to the given session ID.

GridRPC Call Functions. The four GridRPC call functions may be catego-
rized by a combination of two properties: blocking behavior and calling sequence.
A call may be either blocking (synchronous) or non-blocking (asynchronous) and
it may use either a variable number of arguments (like printf) or an argument
stack calling sequence (see Section 2).

grpc_call makes a blocking call (variable argument list).
grpc_call_async makes a non-blocking call (variable argument list).
grpc_call_argstack makes a blocking call (argument stack).

grpc_call_argstack_async makes a non-blocking call (argument stack).

Lecture Notes in Computer Science 3

Asynchronous GridRPC Control and Wait Functions. The following
functions allow probing the status or waiting for completion of previously sub-
mitted non-blocking requests. The wait calls allow an application to express de-
sired non-deterministic completion semantics to the underlying system, rather
than repeatedly polling on a set of sessions IDs.

grpc_probe checks whether the asynchronous GridRPC call has completed.
— grpc_cancel cancels the specified asynchronous GridRPC call.

— grpc_wait blocks until the specified non-blocking request completes.

— grpc_wait_and waits for all of the non-blocking requests in a given set.

— grpc_wait_or waits for any of the non-blocking requests in a given set.

— grpc_wait_all waits for all previously issued non-blocking requests.

— grpc_wait_any waits for any previously issued non-blocking request.

Error Reporting Functions. The following error reporting functions provide
error codes and human-readable error descriptions.

— grpc_perror prints the error string associated with the last GridRPC call.
— grpc_error_string returns the error description string, given an error code.
— grpc_get_error returns the error code for a given non-blocking request.

— grpc_get_last_error returns the error code for the last invoked call.

Argument Stack Functions. With the following argument stack interface it
is possible to construct the arguments to a function call at run-time.

— grpc.arg-stack new creates a new argument stack.

— grpc_arg stack push_arg pushes the specified argument onto the stack.

— grpc_arg stack_pop_arg removes the top element from the stack.

— grpc_arg stack destruct frees the memory for the specified argument
stack.

3 Implementations

3.1 GridRPC over NetSolve

NetSolve [4] is a client-server system which provides remote access to hardware
and software resources through a variety of client interfaces, such as C, Fortran,
and Matlab. Since NetSolve’s mode of operation is in terms of RPC-style function
calls, it provides much of the infrastructure needed to implement GridRPC.

Overview of NetSolve. A NetSolve system consists of three entities, as illus-
trated in Figure 1. The Client, which requests remote execution of some function
(through C, Fortran, or an interactive program such as Matlab or Mathemat-
ica). The Server executes functions on behalf of the clients. The server hardware
can range in complexity from a uniprocessor to a MPP system and similarly the
functions executed by the server can be arbitrarily complex. The Agent is the
focal point of the NetSolve system. It maintains a list of all available servers
and performs resource selection for all client requests as well as ensuring load
balancing of the servers.

Keith Seymour et al.

SERVERS

Client Server
% % % IDL umerical
4. Connect - 5
i back using | FILE | \LiPrary
NETSOLVE Client Globus /O
AGENT -
: 2l 3. Invokd IDL Compiler
Mm:lmr] g[S Executabld \ Generate
WS = ¥
Database .
-+ voy Remote Library
2. Interface GRAM ;ork'+ Executable
Scheduler %’2:’7‘35: Reply Interface
CLIENT MDS R Information
1. Interface retrieve] | DIF File
\ Request J

Fig. 1. Overview of NetSolve. Fig. 2. Overview of Ninf-G.

Using NetSolve to Implement GridRPC. Currently we have a full im-
plementation of the GridRPC API running on top of the NetSolve system. An
important factor in enabling the implementation of GridRPC in NetSolve is
the strong similarity of their APIs. Besides this similarity, NetSolve has sev-
eral properties that make it an attractive choice for implementing GridRPC:
fault-tolerance, load-balancing, and security.

3.2 GridRPC over Ninf

Overview of Ninf-G. Ninf-G is a re-implementation of the Ninf system [5] on
top of the Globus Toolkit. The Globus toolkit provides a reference implementa-
tion of standard (or subject to proposed standardization) protocols and APIs for
Grid computing. Globus serves as a solid and common platform for implementing
higher-level middleware and programming tools, etc., ensuring interoperability
amongst such high-level components, one of which is Ninf-G. Figure 2 shows an
overview of the Ninf-G system in this regard.

Ninf-G is designed focusing on simplicity. In contrast with NetSolve, Ninf-G
does not provide fault detection, recovery or load-balancing by itself. Instead,
Ninf-G assumes that backend queuing system, such as Condor, takes responsibil-
ity for these functionality. Ninf-G fully deploys Globus Security Infrastructure.
It means that not only all the components are protected properly, but also they
can utilize other Globus components, such as GridFTP servers, seamlessly and
securely.

Using Ninf-G to Implement GridRPC. As in NetSolve, the Ninf-G design
allows direct support for the GridRPC model and API. The steps in making an
actual Ninf-G GridRPC call can be broken down into those shown in Figure 2.

Retrieval of interface information and executable pathname.
MDS sends back the requested information.

Invoking remote executable.

Remote executable callbacks to the client.

W=

Lecture Notes in Computer Science 5

4 Related Work and Conclusions

We have presented preliminary work in defining a model and API for a grid-aware
RPC mechanism. The concept of Remote Procedure Call (RPC) has been widely
used in distributed computing and distributed systems for many years. Previous
work in this area has focused on RPC mechanisms for single processors, tightly-
coupled homogeneous processors, and also distributed objects, such as CORBA
and Java RMI. The work reported here focuses on RPC functionality that meets
the needs of scientific computing among loosely-coupled heterogeneous systems
over wide-area networks, while allowing multiple implementations. While the
NetSolve and Ninf implementations are reported here, the GridRPC API does
not preclude the internal use of XML-based protocols since this is not exposed
through the API. Since a more complete discussion is beyond the scope of this
short paper, the interested reader is referred to [6].

While the model and API presented here is a first-step towards a general
GridRPC capability, there are certainly a number of outstanding issues regard-
ing wide-spread deployment and use. Quite briefly these include discovery, meta-
data schemas, scheduling (including the co-scheduling of multiple GridRPCs),
and workflow management among multiple servers. Transitive and composible
fault-tolerance and security will also have to be provided across a potentially dis-
tributed call-tree of GridRPCs. The development of a practical, basic GridRPC
capability, however, will produce a body of experience that will establish the
priorities for such future work.

References

1. C. Lee, S. Matsuoka, D. Talia, A. Sussman, M. Mueller, G. Allen, and J. Saltz. A
Grid Programming Primer. http://wuw.gridforum.org/7_APM/APS.htm, submit-
ted to the Global Grid Forum, August 2001.

2. Satoshi Shirasuna, Hidemoto Nakada, Satoshi Matsuoka, and Satoshi Sekiguchi.
Evaluating Web Services Based Implementations of GridRPC. In Proc. of HPDC11,
pages 237-245, 2002.

3. Tan Foster, Carl Kesselman, Jeffrey Nick, and Steven Tuecke. The Physiology of
the Grid: An Open Grid Services Architecture for Distributed Systems Integration.
http://www.globus.org/ogsa, January 2002.

4. D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller, K. Sagi, Z. Shi, and
S. Vadhiyar. Users’ Guide to NetSolve V1.4. Computer Science Dept. Technical
Report CS-01-467, University of Tennessee, Knoxville, TN, July 2001. See also
http://icl.cs.utk.edu/netsolve.

5. Hidemoto Nakada, Mitsuhisa Sato, and Satoshi Sekiguchi. Design and Implemen-
tations of Ninf: towards a Global Computing Infrastructure. In Future Generation
Computing Systems, Metacomputing Issue, volume 15, pages 649658, 1999. See
also http://ninf.apgrid.org.

6. K. Seymour, N. Hakada, S. Matsuoka, J. Dongarra, C. Lee, and H. Casanova.
GridRPC: A Remote Procedure Call API for Grid Computing (long version).
http://wwu.eece.unm.edu/"apm/docs/APM_GridRPC_0702.pdf, July 2002.

