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Abstract

The Grid Datafarm (Gfarm) architecture is designed for
global petascale data-intensive computing. It provides a
global parallel filesystem with online petascale storage,
scalable I/O bandwidth, and scalable parallel processing,
and it can exploit local I/O in a grid of clusters with tens
of thousands of nodes. Gfarm parallel I/O APIs and com-
mands provide a single filesystem image and manipulate
filesystem metadata consistently. Fault tolerance and load
balancing are automatically managed by file duplication or
re-computation using a command history log. Preliminary
performance evaluation has shown scalable disk I/O and
network bandwidth on 64 nodes of the Presto III Athlon
cluster. The Gfarm parallel I/O write and read operations
has achieved data transfer rates of 1.74 GB/s and 1.97
GB/s, respectively, using 64 cluster nodes. The Gfarm par-
allel file copy reached 443 MB/s with 23 parallel streams
on the Myrinet 2000. The Gfarm architecture is expected
to enable petascale data-intensive Grid computing with an
I/O bandwidth scales to the TB/s range and scalable com-
putational power.

1 Introduction

High-performance data-intensive computing and net-
working technology has become a vital part of large-scale
scientific research projects in areas such as high energy
physics, astronomy, space exploration, and human genome
projects. One example is the Large Hadron Collider (LHC)
project at CERN, where four major experiment groups will
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generate raw data on the petabyte order from four large un-
derground particle detectors each year, with data acquisi-
tion starting in 2006. Grid technology will play an essential
role in constructing worldwide data-analysis environments
where thousands of physicists will collaborate and compete
in particle physics data analysis at new energy frontiers.
To process such large amounts of data, a global computing
model based on the multi-tier worldwide Regional Centers
has been studied by the MONARC Project [11]. The model
consists of a Tier-0 center at CERN, multiple Tier-1 centers
in participating continents, tens of Tier-2 centers in partici-
pating countries, and many Tier-3 centers in universities and
research institutes.

The Grid Datafarm (Gfarm) is an architecture for petas-
cale data-intensive computing on the Grid. Our model
specifically targets applications where data primarily con-
sists of a set of records or objects which are analyzed inde-
pendently. Gfarm takes advantage of this access locality to
achieve a scalable I/O bandwidth using an enhanced parallel
filesystem integrated with process scheduling and file dis-
tribution. It provides a global, Grid-enabled, fault-tolerant
parallel filesystem whose I/O bandwidth scales to the TB/s
range, and which incorporates fast file transfer techniques
and wide-area replica management.

2 Software Architecture of the Grid Data-
farm

Large-scale data-intensive computing frequently in-
volves a high degree of data access locality. To exploit this
access locality, Gfarm schedules programs on nodes where
the corresponding segments of data are stored to utilize lo-
cal I/O scalability, rather than transferring the large-scale



data to compute nodes. Gfarm consists of the Gfarm filesys-
tem, the Gfarm process scheduler, and Gfarm parallel I/O
APIs. Together, these components provide a Grid-enabled
solution to the class of data-intensive problems described
above (and explained in detail in Section 3).

2.1 The Gfarm filesystem

The Gfarm filesystem is a parallel filesystem, provided
as a Grid service for petascale data-intensive computing on
clusters of thousands of nodes. Figure 1 depicts the compo-
nents of the Gfarm filesystem, Gfarm filesystem nodes and
Gfarm metadata servers, which provide a huge disk space
in the petabyte range with scalable disk I/O bandwidth and
fault tolerance. Each Gfarm filesystem node acts as both an
I/O node and a compute node with a large local disk on the
Grid.

The Gfarm filesystem is aimed at data-intensive comput-
ing that primarily reads one body of large-scale data with
access locality. It provides a scalable read and write disk
I/O bandwidth for large-scale input and output of data by
integrating process scheduling and data distribution. For
other files, the Gfarm filesystem works in almost the same
way as a conventional parallel filesystem.

Note that we do not directly exploit SAN technology,
which at a first glance might seem reasonable for facilitating
storage on networks. The decision not to utilize SAN was
based on several reasons. First, we need to achieve a TB/s-
scale parallel I/O bandwidth, a range to which SAN tech-
nology is difficult and/or costly to scale. Second, because of
the tight integration of storage with applications, as well as
salient Grid properties such as scheduling, load balancing,
fault tolerance, security, etc., having a separate I/O across
the network independent from the compute nodes would be
disadvantageous. Rather, we strove for tight coupling of
storage to the computation to achieve both goals. There-
fore, we adopt the “owner computes” strategy, or “move the
computation to data” approach, rather than taking the other
way round, for most data-intensive processing systems such
as HPSS. We feel that for highly data-parallel applications
our strategy is much more scalable, and is far better suited
to the requirements of the Grid.

2.1.1 The Gfarm file

A Gfarm file is a large-scale file that is divided into frag-
ments and distributed across the disks of the Gfarm filesys-
tem, and which will be accessed in parallel. The Gfarm
filesystem is an extension of a striping parallel system in
that each file fragment has an arbitrary length and can be
stored on any node.

A Gfarm file, specified by a Gfarm filename or a Gfarm
URL such as gfarm:/path/name, is accessed using the
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Figure 1. Software architecture of the Grid
Datafarm

Gfarm parallel I/O library or Gfarm commands which pro-
vide a single-filesystem image.

Executable binaries for every execution platform can
also be stored in the Gfarm filesystem. These executables
can be accessed through the same Gfarm URL and selected
depending on the execution platform.

Every Gfarm file is basically write-once. Applications
are assumed to create a new file instead of updating an ex-
isting file. The Gfarm parallel I/O API supports read/write
open, which is internally implemented by versioning and
creating a new file. This is because 1) large-scale data is
seldom updated (most data is write-once and read-many),
and 2) data can be recovered by replication, or by re-
computation using a command history log.

2.1.2 File replicas

Gfarm files may be replicated on an individual fragment
basis by Gfarm commands and Gfarm I/O APIs manually
or automatically. File replicas are managed by the Gfarm
filesystem metadata. Since every Gfarm file is write-once,
consistency management among replicas is not necessary.
A replica is transparently accessed by a Gfarm URL de-
pending on the file locations and disk access loads.

When a process needs to access data across nodes, there
are two choices: replicate the fragment on its local disk,
or access the fragment remotely by using a buffer cache.
Which method is selected will depend on a hint for the
Gfarm I/O API and node status.

File replicas are thus used not only for data recovery in
the event of disk failure, but also to enable high bandwidth,
low latency, and load balancing through their distribution
over the Grid.



2.1.3 The Gfarm filesystem metadata

Metadata of the Gfarm filesystem is stored in the Gfarm
metadata database. This consists of a mapping from
a logical Gfarm filename to physically distributed frag-
ment filenames, a replica catalog, and platform informa-
tion such as the OS and CPU architecture, as well as file
status information including file size, protection, and ac-
cess/modification/change time-stamps.

Gfarm filesystem metadata also contains a file checksum
and a command history. The checksum is mostly used to
check data consistency when replicating, and the command
history is used to re-compute the data when a node or a disk
fails and to indicate how the data was generated.

Metadata is updated consistently with the corresponding
file operations of the Gfarm filesystem. Generally, the meta-
data is referred to at the open operation and is updated and
checked at the close operation. When one of the user pro-
cesses terminates unexpectedly without registering meta-
data despite the fact that the other processes correctly reg-
istered their respective metadata, the metadata as a whole
becomes invalid and will be deleted by the system.

2.1.4 Unified I/O and compute nodes

The Gfarm filesystem daemon, called gfsd, runs on each
Gfarm filesystem node to facilitate remote file operations
with access control in the Gfarm filesystem as well as user
authentication, file replication, fast invocation, node re-
source status monitoring, and control.

In general, the parallel filesystem achieves high band-
width when using parallel I/O nodes, which is limited by
the network bandwidth or network bisection bandwidth. For
petascale data, data rates in the GB/s range are too low to
read data, since it would take more than 10 days to read the
data. More bandwidth, in the TB/s range, is required, but
has typically been costly to achieve.

Since each Gfarm filesystem node acts as both an I/O
node and a compute node, it is not always necessary to
transfer files from storage to compute nodes via the net-
work. Gfarm exploits scalable local I/O bandwidth as much
as possible by using Gfarm parallel I/O and the Gfarm pro-
cess scheduler, and achieves TB/s rates by using tens of
thousands of nodes, even though each node achieves rates
of only tens of MB/s.

2.2 The Gfarm process scheduler and Gfarm par-
allel I/O APIs

To exploit the scalable local I/O bandwidth, the Gfarm
process scheduler schedules Gfarm filesystem nodes used
by a given Gfarm file for affinity scheduling of process and
storage. In this case, the scheduler schedules the same num-
ber of nodes as the number of the Gfarm fragments, tak-

ing into consideration the physical locations of fragments of
Gfarm files, the replica catalog, and Gfarm filesystem node
status, and uses “owner computes” heuristics to maximize
the usage of the local disk bandwidth.

Moreover, the Gfarm parallel I/O APIs provide a local
file view in which each processor operates on its own file
fragment of the Gfarm file. The local file view is also used
for newly created Gfarm files.

It is possible to maximize the usage of the local disk
bandwidth to achieve a scalable I/O bandwidth when paral-
lel user processes utilizing the local file view are scheduled
for a large-scale Gfarm file.

In the case of Figure 1, process A is scheduled and ex-
ecuted on the four nodes where fragments of data A are
stored. Process B is scheduled on three nodes out of six be-
cause data B is divided into three fragments. Each fragment
has a replica and either the master or its replica is chosen
as a compute node. File replicas are used not only for file
backup, but also for load balancing.

When a Gfarm filesystem node that stores a Gfarm frag-
ment is heavily loaded, another node might be scheduled.
On this node, the process will then 1) replicate the fragment
to its local disk, or 2) access the fragment remotely.

At the same time, each Gfarm file can also be accessed as
a large file in the same manner as a standard parallel filesys-
tem such as PVFS [9].

2.3 Fast file transfer and replication

A Gfarm file is partitioned into fragments and distributed
across the disks on Gfarm filesystem nodes. Fragments can
be transferred and replicated in parallel by each gfsd us-
ing parallel streams. The rate of parallel file transfer might
reach the full network bisection bandwidth. After repli-
cating files, the filesystem metadata is updated for a new
replica.

In the wide-area network, several TCP tuning techniques
[17] such as adjustment of the congestion window size, the
send and receive socket buffer size, and the number of paral-
lel streams, are necessary to achieve high bandwidth. Gfarm
handles this through inter-gfsd communication, and we plan
to incorporate GridFTP [16] as an external interface.

2.4 File recovery and regeneration

File recovery is a critical issue for wide-area data-
intensive computing, since disk and node failures are com-
mon, rather than exceptional, cases. Moreover, temporal
shortages of storage often occur in such dynamic wide-area
environments.

The Gfarm filesystem supports file replicas which are
transparently accessed by a Gfarm URL as long as at least
one replicated fragment is available for each fragment.



When there is no replica, Gfarm files are dynamically
recovered by re-computation. Files are recovered when
they are accessed. The necessary information for re-
computation, such as a program and all arguments, is stored
in the Gfarm metadata, and the program itself and all argu-
ments including the content of a file are also stored in the
Gfarm filesystem. It is possible to re-compute the lost file
by using the same program and arguments as were used for
the original file generation.

The GriPhyN virtual data concept [3] allows data to be
generated dynamically, and existing data retrieved, through
an application-specific high-level query. Gfarm can support
the implementation of the GriPhyN virtual data concept at
the filesystem level by using a dynamic regeneration fea-
ture, when naming convention from a high-level query to a
filename and a command history of the filesystem metadata
is appropriately set up.

To regenerate the same data, the program must be free
of any timing bug such as nondeterministic behavior. To
ensure the consistency of re-computation, when a process
has opened a file for writing, or both reading and writing,
other processes cannot open that file.

Gfarm metadata is not deleted for regenerating the file
later even when the Gfarm file is deleted.

As described above, Gfarm files can be recovered
through file replicas and regeneration using a command his-
tory as far back as the filesystem metadata exists. The
metadata itself is replicated and distributed to avoid any
single-point-of-failure and achieve scalable performance
over a wide area, though consistency management of up-
dated metadata is often necessary.

2.5 Grid authentication

To execute user applications or access Gfarm files on the
Grid, a user must be authenticated by the Gfarm system, or
the Grid, basically by using the Grid Security Infrastructure
[4] for mutual authentication and single sign-on. However,
the problem here is that the Gfarm system may require thou-
sands of authentications and authorizations from amongst
thousands of parallel user processes, the Gfarm metadata
servers, and the Gfarm filesystem daemons, thus incurring
substantial execution overhead. To suppress this overhead,
the Gfarm system provides several lightweight authentica-
tion methods when full Grid authentication is not required,
such as within a trusted cluster.

3 Grid Datafarm Applications

The Grid Datafarm supports large-scale data-intensive
computing that achieves scalable disk I/O bandwidth and
scalable computational power by exploiting the local I/O

bandwidth of cluster nodes. Data-intensive applications in-
clude high energy physics, astronomy, space exploration,
human genome analysis, as well as business applications
such as data warehousing, e-commerce and e-government.
The most time-consuming, but also the most typical, task in
data-intensive computing is to analyze every data unit such
as a record, an object, or an event within a large collection.
Such an analysis can be typically performed independently
on every data unit in parallel, or at least have good loci of
locality. Data analysis for high energy experiments, the ini-
tial target application of Gfarm, is the most extreme case of
such petascale data-intensive computing [12].

3.1 High Energy Physics Application

Data analysis in typical high energy experiments is often
characterized as “finding a needle in a hay stack”. Each col-
lision of particles in the accelerator is called an event. Infor-
mation on thousands of particles emerging from the colli-
sion point is recorded by the surrounding particle detectors.
In the LHC accelerator, there will be 109 collisions per sec-
ond. The events are then processed and filtered “on-line”
to pick up physically interesting ones, which are recorded
into the storage media at a rate of 100 Hz for later “off-
line” analysis. During the first year of the accelerator run,
an order of 1016 collisions will be observed and 109 events
will be recorded. Discovering a Higgs particle, depending
on its unknown mass, will mean finding events with certain
special characteristics that occur on an order of several tens
out of 1016 collisions.

Each event data consists of digitized numbers from sub-
detectors such as a calorimeter, silicon micro-strips, and
tracking chambers. This initial recording of the event re-
sults in RAW data. In the ATLAS experiment, the amount of
RAW data is approximately 1 to 3 Mbytes per event, corre-
sponding to several petabytes of data storage per year. The
digitized information in the RAW data is reconstructed into
physically meaningful analog values such as energy, mo-
mentum, and the geometrical position in the detector. In
ATLAS, typical event reconstruction will take about 300 to
600 SPECint95 per event, which will take place mainly at
the Tier-0 regional center at CERN. For the event recon-
struction rate to keep up with the data taking, at least 150
K to 200 K SPECint95 processing power is required at the
ATLAS Tier-0 center.

Physics data analysis such as the Higgs particle search,
B-quark physics, and top-quark physics will be based on the
reconstructed event summary data (ESD) at Tier-1 centers
around the world.

Because events are independent of each other, we can an-
alyze the data independently on each CPU node in parallel.
Only in the last stage of the analysis will a small set of statis-
tical information need to be collected from every node. The



data-parallel, distributed, and low-cost CPU-farm approach
has been very popular and successful in high energy physics
data analysis for the past decade. However, building a large-
scale CPU farm with an order of 1,000 CPUs brings us up
against a new technical challenge regarding the design and
maintenance. How to effectively distribute the large quan-
tity of data to each CPU also remains a problem. Gfarm is
designed to enable the handling of the large quantity of data
localized in each CPU while the integrity of the data set is
ensured by the filesystem metadata.

In the ATLAS data analysis software, object database
technology will be used to store and retrieve data at vari-
ous stages of analysis. One of the candidates for this task
is a commercial database package, Objectivity, which has
already been employed in production by the BaBar exper-
iment at SLAC, and is already a core part of the software
development in the CMS experiment of LHC. Gfarm has
been designed to accommodate Objectivity as well, using
system call trapping [12].

4 Gfarm Parallel I/O API

The Gfarm parallel I/O API enables parallel access to
the Gfarm filesystem to achieve a scalable bandwidth by
exploiting local I/O in a single system image in cooperation
with Gfarm metadata servers.

All Gfarm files are divided into several indexed frag-
ments and stored into several disks on Gfarm filesystem
nodes. The Gfarm parallel I/O API provides several file
views, such as a global file view and a local file view. The
local file view restricts file accesses for a specific file frag-
ment and exploits access locality.

Gfarm achieves a high bandwidth even for access in the
global file view as a parallel filesystem, and also Gfarm
achieves highly scalable bandwidth for access in the local
file view for each file fragment. The Gfarm process sched-
uler schedules the same number of Gfarm filesystem nodes
as the number of fragments of a given Gfarm file for affin-
ity scheduling. Each node has its own file fragment in the
local file view that is expected to be on its local disk. The
local file view can also be applied to newly created files,
which makes it possible to achieve a scalable bandwidth for
writing to exploit the local I/O bandwidth.

The APIs described in this section are just a subset of the
current interfaces for our first prototype; still, they reflect
our design philosophy and architectural decisions. For a
full description, refer to [14, 2].

4.1 File Manipulation

4.1.1 Opening and creating a file

char* gfs_pio_open(char *url, int flags,

GFS_File *gf);
char* gfs_pio_create(char *url, int flags,

mode_t mode, GFS_File *gf);

gfs pio open opens the Gfarm URL url, and returns a
new Gfarm file handle gf. Values of flags are con-
structed by a bitwise-inclusive-OR of the following list. Ex-
actly one of the first three values should be specified:

GFARM FILE RDONLY Open for reading only.

GFARM FILE WRONLY Open for writing only.

GFARM FILE RDWR Open for reading and writing.

The following may be specified as a hint for efficient exe-
cution:

GFARM FILE SEQUENTIAL File will be accessed se-
quentially.

GFARM FILE REPLICATION File may be replicated to a
local filesystem when accessing remotely.

GFARM FILE NOT REPLICATION File
may not be replicated to a local filesystem when ac-
cessing remotely.

gfs pio create creates a new Gfarm URL url with the
access mode mode, and returns a new Gfarm file handle
gf. Mode specifies the file permissions to be created, and
is modified by the process’s umask.

gfs pio open and gfs pio create has individual file
pointers among parallel processes.

4.1.2 File view

File view is a current set of data visible and accessible from
an open file.

When a Gfarm file is used for the Gfarm parallel sched-
uler or is newly created, it may have a local file view such
that each process accesses its own file fragment using the
following API.

char* gfs_pio_set_view_local(GFS_File gf,
int flags);

gfs pio set view local changes the process’s view of the
data in the file specified by the Gfarm URL url to the local
file view. flags can be specified in the same way as are
the flags for a hint of gfs pio open. When the file is a new
file, the order of file fragments is the same as the order of
process ranks.

The following API is used to explicitly specify a specific
file fragment.

char* gfs_pio_set_view_index(GFS_File gf,
int nfrags, int index, char *host,
int flags);



gfs pio set view index changes the process’s view of the
data in the file specified by the Gfarm URL url to a file
fragment with the index index. When the file is a new file,
it is necessary to specify the total number of file fragments
nfrags and the filesystem node host. When the file ex-
ists, GFARM FILE DONTCARE and NULL can be specified
for nfrags and host, respectively.

4.2 File access

The Gfarm parallel I/O API provides blocking, noncol-
lective operations and uses individual file pointers.

char* gfs_pio_read(GFS_FILE gf,
void *buf, int size, int *nread);

gfs pio read attempts to read up to size bytes from the
Gfarm fragment referenced by the file handle gf into the
buffer starting at buf, and returns the number of bytes read
nread.

char* gfs_pio_write(GFS_FILE gf,
void *buf, int size, int *nwrite);

gfs pio write writes up to size bytes to the Gfarm frag-
ment referenced by the file handle gf from the buffer
starting at buf, and returns the number of bytes written
nwrite.

4.3 Trapping system calls for porting legacy or
commercial applications

To utilize a Gfarm filesystem from legacy or commercial
applications whose source code is not available or cannot
be modified, such as the Objectivity object database, sys-
tem call trapping of file I/O operations is provided so that
these applications can be readily parallelized in Gfarm. In
this case, thousands of files are automatically grouped into
a single Gfarm file when they are created with the trapped
open, write, and close syscalls, which will be used for par-
allel process scheduling and automatic replica creation for
dynamic load balancing and fault tolerance under the Gfarm
filesystem management.

The open and creat syscalls check whether the given
pathname is a Gfarm URL. When it is a Gfarm URL,
the file view is changed to the local file view by
gfs pio set view local and the file descriptor is registered
to indicate the Gfarm file for the subsequent read and write
syscalls.

5 Gfarm Commands

The Gfarm commands facilitate shell-level manipulation
of the Gfarm filesystem, which provides most UNIX file

manipulation commands and Gfarm administration com-
mands. For a full description, see [14, 2].

gfls, gfmkdir and gfrmdir can be used to manip-
ulate Gfarm filesystem metadata. gfrm, gfchmod, gf-
chown, gfchgrp, and gfcp access and modify file meta-
data and Gfarm fragments on a Gfarm filesystem.

gfimport imports and scatters large-scale data from
other filesystems or from the network, while gfexport
gathers and exports the same sort of data. Since the most
effective means of scattering data or a file is basically
application-dependent, typical cases such as block striping
and line-oriented partition are provided and these can be
used as a skeleton code for application-dependent partition-
ing. To permit efficient interaction with other conventional
filesystems or network streams, an adaptor for GridFTP [16]
is currently being developed.

6 Performance Evaluation

The basic performance of Gfarm parallel I/O is evalu-
ated on the Presto III Athlon cluster at Tokyo Institute of
Technology, where each node of the cluster consisted of a
dual AMD Athlon MP 1.2GHz processor, 768MB memory,
and 200GB HDDs. There are a total of 128 nodes, and 256
processors, interconnected with Myrinet 2000 and Fast Eth-
ernet. The Linpack HPC benchmark achieves 331.7 GFlops
out of a theoretical peak performance of 614.4 GFlops.

6.1 Disk I/O bandwidth

Gfarm provides scalable I/O bandwidth for reading a pri-
mary large-scale file using affinity scheduling and local file
view, and scalable I/O bandwidth for writing new files in
local file view.

Figure 2 shows an excerpt of a program for measuring
the Gfarm parallel I/O bandwidth for writing. This pro-
gram creates a new Gfarm file fn and changes the file
view to the local file view, which is expected to create a
fragment of the Gfarm file on each local disk if sufficient
space is available. The data buf is written to the new file
in parallel using gfs pio write. Finally, the Gfarm file is
closed with gfs pio close, which also registers the filesys-
tem metadata of the Gfarm file. For simplicity, Figure 2
calls gfs pio write only once using the whole buffer size;
however, an actual benchmark program will repeatedly call
gfs pio write with the same 64KB buffer.

For reading, parallel processes are scheduled by the
Gfarm file fn, then each process opens the file and changes
the file view to the local file view. In the performance mea-
surement, each process is scheduled on the node where the
corresponding fragment is stored, although this is not al-
ways the case in general use. The data is read from the file
in parallel using gfs pio read. Finally, the Gfarm file is



write_test(char *fn, void *buf, int size)
{

GFS_File gf;
gfs_pio_create(fn, GFS_FILE_WRONLY,

mode, &gf);
gfs_pio_set_view_local(gf, lflag);
gfs_pio_write(gf, buf, size, &np);
gfs_pio_close(gf);

}

Figure 2. An excerpt to measure Gfarm paral-
lel I/O bandwidth
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Figure 3. Gfarm parallel I/O performance

closed with gfs pio close, which checks for data error by
using the md5 checksum.

Figure 3 shows the Gfarm parallel I/O performance with
a total of 640 GB of data on 64 cluster nodes. Each process
accesses 10 GB of data, which is much more than the 768
MB of main memory, to measure the disk I/O performance
while minimizing the influence of memory buffering. The
performance is measured from the open operation to the
close operation in Figure 2, which includes the overhead
of accessing the Gfarm filesystem metadata and calculating
the md5 checksum.

The Gfarm parallel write writes a total of 640
GB of data in parallel and achieves an aggregate bandwidth
of 1.74 GB/s. Each node achieves a bandwidth of 27.2 MB/s
on average. Presto III cluster node has either of two kinds
of disks; Seagate ST380021A and Maxtor 33073H3, which
shows a different disk I/O performance.

The Unix independent write shows the com-
bined bandwidth of an independent write syscall on each
node. Note that the performance difference is negligible
even though the bandwidth of the Gfarm parallel write in-
cludes the overhead of accessing the metadata and calculat-
ing the md5 checksum.

The Gfarm parallel read reads 640 GB of data

Gfarm parallel copy bandwidth [MB/sec]

0

100

200

300

400

0 5 10 15 20

The number of nodes (fragments)

Seagate ST380021A

Maxtor 33073H3

Figure 4. Gfarm parallel file replication perfor-
mance

in parallel and achieves a total bandwidth of 1.97 GB/s, with
each node achieving a bandwidth of 30.8 MB/s on average.
Since a simple read syscall on each node achieves a band-
width of 29.9 MB/s, so the difference is again negligible.

The performance measurement has therefore shown that
the Gfarm parallel bandwidth scales at least up to 64 nodes,
and the overhead of accessing the metadata and calculating
the checksum is not significant.

6.2 Parallel file replication and copy

A Gfarm file is partitioned into fragments and distributed
across the disks on Gfarm filesystem nodes. Fragments can
be transferred and replicated in parallel.

Figure 4 shows the bandwidth to replicate a Gfarm file
with a fragment size of 10 GB using the Gfarm command
gfrep. File size of Gfarm files increase in proportion to
the number of nodes or fragments.

A Gfarm file is replicated in parallel through a Myrinet
2000. The Myrinet 2000 has a bandwidth of about 130
MB/s, however the copy bandwidth of each stream is lim-
ited by a disk I/O bandwidth of 26 MB/s for Seagate or 21
MB/s for Maxtor. As shown in Figure 4, Gfarm parallel file
replication achieves 443 MB/s using 23 parallel streams on
the Myrinet 2000.

Although gfrep includes the overhead of invoking the
copy operations and updating the Gfarm filesystem meta-
data, the copy bandwidth scales at least up to 23 nodes on
the Presto III cluster.



7 Related Work

MPI-IO [10] is the standard interface for parallel file ac-
cess, however it does not define the local file view provided
by Gfarm filesystem, which is a key issue to maximize local
I/O scalability.

PVFS [9] is a striping parallel filesystem that utilizes
the local disks of a Linux cluster, and which supports
UNIX/POSIX I/O APIs and MPI-IO as well as native PVFS
APIs. Since the striping filesystem does not take into ac-
count the affinity of process and disk storage, the bandwidth
is often limited by the network bandwidth as reported by
[9]. On the other hand, Gfarm parallel I/O achieves a scal-
able parallel I/O bandwidth by utilizing the affinity of pro-
cess and disk storage as much as possible. Moreover, the
Gfarm filesystem supports Grid security and fault tolerance
by file duplication or re-computation on a cluster of clusters
with thousands of nodes on the Grid.

HPSS [5] is a hierarchical mass storage system with par-
allel I/O that uses striping disk caches and parallel movers
as are typically used by parallel FTP, MPI-IO, and DFS.
Since HPSS does not support any form of disk-side or
mover-side computation, all data must be moved through a
network before computation, which means that the system
bandwidth is also limited by the network bandwidth.

Distributed filesystems, such as NFS, AFS, Coda, xFS
[7] and GFS [13], target situations where many distributed
clients efficiently access files by using file caches, etc. Un-
fortunately, distributed filesystems cannot achieve sufficient
bandwidth for write operations requiring a GB/s bandwidth,
which is typically needed for data-intensive computing.

Several systems that are equipped with Grid-aware file
accesses, such as GridFTP [16], Legion I/O [18] and Kan-
garoo [15], enable access to remote files on the Grid in a
similar manner to distributed filesystems, albeit in a more
loosely coupled manner for wide-area networks. GridFTP
[16] is an FTP extension to the Grid Security Infrastructure
[4] and facilitates adaptive parallel streams to maximize the
bandwidth in a wide-area network. Kangaroo copes with
recoverable errors as much as possible to ensure highly re-
liable execution, and hides latency by using a local disk as
a disk cache. The Gfarm filesystem aims to maximize the
bandwidth both between systems in a wide-area network
and within a system by minimizing data movement and ef-
fectively sending computation to the nodes.

Globus replica management [6] provides metadata man-
agement of replicated files on a Grid, choosing the best pos-
sible replica to allow efficient access from a remote site. It
consists of low-level Replica Catalog APIs that manage the
metadata and high-level Replica Management APIs. The
Replica Catalog APIs provide low-level replica catalog ma-
nipulations such as creating a replica entry, and do not en-
sure consistency between a metadata and a physical file.

The Replica Management API is designed to cope with this
issue using GridFTP and Replica Catalog APIs, which are
available in the Globus Toolkit 2 release [1].

8 Implementation Status and Development
Schedule

The initial prototype system implemented almost all
Gfarm parallel I/O APIs and several indispensable Gfarm
shell-level commands [14] including sufficient system call
trapping to utilize the Gfarm filesystem with the Objectiv-
ity object database on Linux, Solaris, NetBSD, and Tru64.
A light-weight authentication has been implemented based
on a secret shared key assuming a trusted environment for
delivering the key. The Gfarm metadata server uses the
OpenLDAP server. The Gfarm filesystem daemon has fa-
cilities for fast remote-file manipulation, fast remote exe-
cution, third-party file transfer between the Gfarm filesys-
tem daemons, and load average monitoring. It has been de-
ployed on the Presto III and other smaller scale clusters and
is currently being tested using Monte Carlo simulation data.

The current schedule for the Grid Datafarm project is as
follows. It will be closely synchronized with the CERN
LHC Data Challenge practice to ensure the functionality
and the scalability of the product.

Second prototype system (2002 – 2003): Process
scheduling will be incorporated with load balancing
and fault tolerance using runtime replica creation. File
recovery using re-computation will be fully supported.
Security will be enhanced for the Grid environment via
GSI and a bridge to GSI. Scalability up to thousands
of nodes will be achieved with a fast-startup mecha-
nism in a similar manner to that for the multipurpose
daemon (MPD) [8]. Multiple Gfarm metadata servers
with replicated metadata will be consistently operated
to provide fault tolerance for the metadata database and
efficient metadata access from different sites.

Deployment (2004 –): Gfarm will be fully deployed on
the production platform to analyze petascale online
data. The current cluster design is as follows. Each
Gfarm node will have a 5-TByte Raid-5 drive with 28
200-GByte low-power 2.5” HD drives, 4-way over-
5-GFlops 64-bit CPUs, over-20-GByte RAM, and a
multi-channel, multi-gigabit LAN. The node is a 1U
box, 200-250 W power/box with active cooling. The
Gfarm cluster will consist of 20 chassis, 4 petabytes,
16 TFlops, 200 KWatts, each chassis with 200 TByte,
160 CPUs/40 U and 10 KWatts, which also has a 3-
PByte tape storage and a direct multi-gigabit link to
the network fabric.



9 Summary and future work

The Grid Datafarm provides a huge disk space of over
a petabyte with scalable disk I/O, network bandwidth, and
fault tolerance that can be used as a Grid service for petas-
cale data-intensive computing using high-end PC technol-
ogy. The idea is to utilize local I/O bandwidth as much
as possible. To achieve this, we have parallel computation
move to the data, and not vice versa as is with other efforts,
abiding by the “owner computes” approach. Storage and
computation are tightly integrated to facilitate smooth and
synergetic scheduling, load-balancing, fault-tolerance, se-
curity, etc., which are all necessary properties for the com-
putation to scale to the Grid.

Preliminary performance evaluation showed that scal-
able disk I/O and network bandwidth on the 64 nodes of the
Presto III Athlon cluster could be achieved. The Gfarm par-
allel I/O write and read achieved 1.74 GB/s and 1.97 GB/s,
respectively, when using 64 nodes. The Gfarm parallel file
copy achieved 443 MB/s with 23 parallel streams on the
Myrinet 2000.

We are now trying to evaluate and improve the perfor-
mance of the Gfarm system on a cluster with hundreds
of nodes, and will also evaluate the performance between
Gfarm clusters connected via a gigabit-scale wide-area net-
work using a Gfarm parallel copy and GridFTP. We believe
the Gfarm architecture can achieve a scalable I/O bandwidth
of over 10 TB/s with corresponding scalable computational
power on the Grid at the same time.

Currently, Gfarm parallel I/O APIs are provided as a
minimal set based on the synchronous POSIX model. We
plan to add nonblocking interfaces and to integrate the MPI-
IO interface.

The goal of the Grid Datafarm project to build a petas-
cale online storage system by 2005 that is synchronized
with the CERN LHC project. Moreover, the Grid Data-
farm system will provide an effective solution to other data-
intensive applications such as bioinformatics, astronomy,
and earth science.
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