
Evaluating Web Services Based Implementations of GridRPC

Satoshi Shirasuna
Tokyo Institute of Technology

sirasuna@is.titech.ac.jp

Hidemoto Nakada
Tokyo Institute of Technology, and

National Institute of Advanced
Industrial Science and Technology

hide-nakada@aist.go.jp

Satoshi Matsuoka
Tokyo Institute of Technology, and

National Institute of Informatics
matsu@is.titech.ac.jp

Satoshi Sekiguchi
National Institute of Advanced

Industrial Science and Technology
s.sekiguchi@aist.go.jp

Abstract

GridRPC is a class of Grid middleware for scientific
computing. Interoperability has been an important issue,
because current GridRPC systems each employ its own pro-
tocol. Web services, where XML-based standards such as
SOAP and WSDL are expected to see widespread use, could
be the medium of interoperability; however, it is not clear
if 1) XML-based schemas have sufficient expressive power
for GridRPC, and 2) whether performance could be made
sufficient. Our experiments indicate that the use of such
technologies are more promising. than previously reported.
Although a naive implementation of SOAP-based GridRPC
has severe performance overhead, application of a series
of optimizations improves performance. However, encod-
ing of various features of GridRPC proved to be somewhat
difficult due to WSDL limitations. The results show that
GridRPC systems can be based on Web technologies, but
there needs to be work to extend WSDL specifications, pos-
sibly impacting OGSA-based Grid services directions.

1. Introduction

GridRPC systems, such as Ninf[9] and NetSolve[3], pro-
vide high-level, easy-to-use task-parallel programming ab-
straction for the Grid. It hides the complexities in using
various Grid services such as security, resource discovery,
and scheduling; provides traditional parallel computing ab-
stractions such as parallel tasking and flexible synchroniza-
tion; as well as facilitate scientific computing features such
as client-sever shared memory abstraction for large arrays,
transparent client-side RPC API via dynamic server-side
IDL management, and scientific IDL.

One primary R&D/standardization issues is interoper-
ability amongst GridRPC systems, as well as with other
services. Existing GridRPC systems employ private pro-
tocols, and although there have been efforts such as the
NetSolve–Ninf bridge[8], they are not desirable solutions
due to 1) only intersections of the features becoming avail-
able, 2) performance penalty of protocol translation, and 3)
difficulty of supporting all combinations of GridRPC sys-
tems.

Meanwhile, Web services technologies with XML-based
protocol standardization such as SOAP[2], WSDL[4] and
UDDI[1], along with recent announcement and acceptance
of the Open Grid Services Architecture (OGSA) make it an
attractive medium for such standardization efforts. How-
ever it is not clear if 1) XML-based schemas have suffi-
cient expressive power for GridRPC, as it embodies various
mechanisms not present in traditional RPCs. For example,
both NetSolve and Ninf “scientific IDL” allow automated
shared memory, call-by-reference passing of array parame-
ters while transferring only portions of arrays being used,
and their server-side IDL management frees client users
from dealing with managing IDLs to be up-to-date, etc. 2)
Performance could be insufficient, since there are signifi-
cant costs in XML handling. Previous results have been
unoptimistic in this regard[5].

To investigate whether Web services are viable sub-
strate for future GridRPC systems, we substituted various
GridRPC components with SOAP and WSDL-based mod-
ules. Results are more promising than previously reported;
although a naive implementation of SOAP-based GridRPC
exhibits considerable performance overhead, series of opti-
mization techniques improves performance to be competi-
tive with the original binary transport. However, encoding
various features of GridRPC as described above proved to

1



Interface Request

Interface Info.

Arguments

Result

Interface Info

(IDL)

Ninf Client
Ninf Server

Figure 1. Ninf system architecture

Interface Get / HTTP

Interface Info. (WSDL) / HTTP

Arguments / SOAP

Result / SOAP

Interface Info

(WSDL)

Ninf Client
Ninf Server

Figure 2. SOAP-based GridRPC system archi-
tecture

be imperfect, due to several inherent limitations of current
WSDL, mandating small extensions to support scientific
IDL. Overall GridRPC systems can benefit from Web ser-
vices as the underlying transport and service descriptions,
even in future OGSA-based Grid services.

2. Web Services and GridRPC

WWW and XML recently gave rise to “Web services”,
including the following technologies:

SOAP SOAP (Simple Object Access Protocol)[2] is a
specification for message exchange in a distributed en-
vironment, independent of programming languages, or
platforms. SOAP itself is a one-way, object-based wire
transfer protocol. Although not mandated, HTTP is
widely used for transport layer of SOAP messages.

WSDL WSDL (Web Service Definition Language)[4] is a
specification for describing interface information for
web services. WSDL itself has several bindings for
Web services, but often used with SOAP as its IDL.

We investigate the usage of both standards in GridRPC
system by replacing the various proprietary protocols and
schemas components, while preserving the current client
APIs and IDLs. Figure 1 shows the current architecture of
the Ninf GridRPC system. A remote library is “gridified”

by describing its interface and other information using the
Ninf (scientific) IDL. Contrary to traditional RPCs where
IDLs are managed on both the client and the server, and
programmers must “program around” the generated skele-
tons from IDLs, in GridRPC all IDL management is on the
server side, and the client can preserve the almost identi-
cal call interface without any skeleton generation, achiev-
ing distribution transparency. The underlying client library
obtains interface information at run-time from the server in
a two-phase RPC call sequence (similar to Java Jini). Here,
a private “Ninf” protocol is employed to obtain interface in-
formation and perform wire transfer of GridRPC calls, latter
based on XDR.

Figure 2 shows the Web-service based GridRPC archi-
tecture. The client retains the original API and the sci-
entific IDL—however, underneath interface information is
described using WSDL, translated from scientific IDL. The
client performs a two-phase RPC call where it obtains the
WSDL file using HTTP Get. SOAP is used to exchange
parameters, meaning that call information such as library
name and parameters themselves (including huge arrays)
are encoded in a SOAP message. The result is again sent
back in a SOAP response message.

Despite that the Web-service-based GridRPC system has
various merits such as utilization of web services tools, in-
teroperatbility and better compliance with OGSA, as well
as being firewall friendly, some issues may hinder its usage:

Performance Degradation Performance penalty cased by
XML could be significant. SOAP encoding may cause
×10 ballooning factor of parameter size resulting in
significant wire transfer overhead. Moreover, the cost
of XML serialization/deserialization could be consid-
erable or even dominant. [5] reports that SOAP-based
RMI is slower than Java RMI by orders of magnitude.

Expressibility of SOAP and WSDL for GridRPC
SOAP and WSDL target business applications,
whereas GridRPC targets the requirements of sci-
entific applications. Previous research showed that,
features of GridRPC systems mentioned above is
difficult to realize for CORBA[12]. It is not clear
whether SOAP and WSDL are sufficiently expressible
to support such features.

3. The 1st Prototype

As the first prototype, we implemented Ninf on Apache
SOAP “naively”. Apache SOAP is written in Java, con-
sisting of a set of client libraries to allow client access to
SOAP servers, and the Apache SOAP server that runs as a
Servlet. We employed the Apache SOAP as the message
layer, while preserving the client-side API for the origi-
nal Ninf system(Figure 3). Since Apache SOAP does not



Client Application

Apache SOAP 

Client Library

Apache SOAP Server

Servlet Server

(Tomcat)

Client

1. Interface Request / HTTP

2. Interface Info. (WSDL) / HTTP

3. Parameters / SOAP

4. Result / SOAP

Client Library

Calculation Library

Server

Figure 3. Ninf on Apache SOAP

support WSDL we added a WSDL module for IDL man-
agement. We took steps to simplify the implementation
to mainly evaluate the performance and Web services ad-
equacy for GridRPC: for example, all the modules were
implemented in Java, and due to the limitations of Apache
SOAP, we did not implement some GridRPC features such
as 1) multiple Out parameters, and 2) In/Out parameters,
etc.

For the server, we employ the Apache SOAP server it-
self as the GridRPC server. Gridified libraries are regis-
tered with Apache SOAP server, along with the WSDL file
describing its interface. For the client, we use the Apache
SOAP library as the underlying message transport. The
GridRPC call initially transfers the URL signature of the
library, with which the server does the appropriate lookup
and the obtained IDL in WSDL format is sent back to the
client, which uses the information to serialize the parame-
ters appropriately, and sent as a SOAP message. The server
then deserializes the parameter, invokes the library, and then
serializes and sends back the result, again as a SOAP mes-
sage using the Apache SOAP library. The calls is performed
while preserving the GridRPC API, and thus the use of
Apache SOAP is largely transparent to the user.

We then evaluated the performance of Ninf on Apache
SOAP by gridifying a simple matrix multiply library. Al-
though a simple library, we felt that it serves as an appro-
priate benchmarking yardstick for two reasons: 1) it largely
embodies ratio of complexity between communication vs.
computation (for n-by-n matrix it is O(n 2) vs. O(n3)) that
is representative of dense matrix application kernels, and 2)
for sparse matrices computation is more dominant, which
will mostly hide the GridRPC overhead irrespective of im-
plementation, while communication dominant applications
such as fluid dynamics, Grid computing itself may not be
feasible.

As a testbed, we employed nodes of the PrestoII clus-
ter in our laboratory at Titech. There are 64 nodes of
dual Pentium III 800MHz w/640MB memory, with DEC

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 50 100 150 200 250 300 350 400 450

Size (NxN)

T
im

e
 (
m

s
e
c
)

Ninf on Apache SOAP
Calculation
XDR

Figure 4. Ninf on Apache SOAP performance
(LAN)

21140AF interconnected with a full-bandwidth 100Base-T
switch. Relevant software consists of Linux 2.2.19, IBM
Java 1.3.0, and Jakarta Tomcat 3.2.3. In evaluations of
LAN environment, both the client and server are on the
same LAN. For evaluations of WAN environment, we em-
ployed a node at AIST as a client, and a node of PrestoII
cluster as a server. The client is a Sun Ultra-Enterprise ma-
chine with SPARC 333MHz ×6 and 960MB memory. Rel-
evant software consists of Solaris 5.7, Sun Java 1.3.0, and
Jakarta Tomcat 3.2.3. Figures 4, 5 show the result in LAN
environment and WAN environment respectively. The hor-
izontal axis denotes the array size n, and the vertical axis
shows the execution time. We also compare the execution
time of a XDR-based GridRPC system we implemented in
Java, matching closely the software structure of the original
C-based Ninf implementation. We easily observe that our
naive implementation of Ninf on Apache SOAP is terribly
inefficient, with orders of magnitude increase in GridRPC
execution time compared to the XDR-based implementa-
tion. This is consistent with the previous, related reports
[5].

Detailed performance analysis revealed that the overhead
is largely due to inefficient handling of large XML data by
Apache SOAP which uses the DOM[6] parser for deseri-
alization of SOAP messages. The DOM parser needs to
receive the entire XML data before any analysis, as it will
initially construct in memory a DOM object tree that rep-
resents the entire XML structure subject to parsing. The
drawbacks include 1) we cannot deserialize a SOAP mes-
sage until we receive the entire message, and 2) more se-
riously, space will be grossly inefficient because the entire
DOM tree needs to be in memory; in fact this even con-
sumes more space compared to the original textual XML
representation by several factors.



0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 50 100 150 200 250 300 350 400 450
Size (NxN)

T
im

e
 (
m

s
e
c
)

Ninf on Apache SOAP
Calculation
XDR

Figure 5. Ninf on Apache SOAP performance
(WAN)

Client Application

SOAP

Decoder

Client Server

1. Interface Request / HTTP

2. Interface Info. (WSDL) / HTTP

3. Parameters / SOAP

4. Result / SOAP

SOAP

Encoder

HTTP Client

WSDL

Reader

Ninf Client

Calculation Library

WSDL

Module

SOAP

Decoder

Servlet Server

SOAP

Encoder

Ninf Server

Figure 6. Ninf-on-SOAP architecture

4. Ninf-on-SOAP (2nd Prototype)

To solve the performance inadequacy, we designed
and implemented a 2nd prototype system called Ninf-on-
SOAP(Figure 6), which embodies customized SOAP seri-
alizer/deserializer tuned for speed. Also, it supports other
features of Ninf GridRPC API including multiple Out pa-
rameters, and In/Out parameters. As is with the 1st proto-
type, all modules are implemented in Java.

4.1. Ninf-on-SOAP Server

The Ninf-on-SOAP server runs as a Servlet, and the
global runtime architecture is largely the same as the
Ninf-on-Aparche SOAP. Individual system components, are
however very different:

WSDL module Upon GridRPC invocation from the client,
the WSDL module reads the registered WSDL file cor-

responding to the client-URL-designated gridified li-
brary. In order to parse&analyze the WSDL file, a
Java library called WSDL4J is utilized. The WSDL file
will have been generated from the Ninf scientific IDL
using the new version of the Ninf IDL compiler, and
will contain the following information required on the
server side: a) Classname that embodies the gridified
method (library), b) Gridified method (library) name,
c) Name, type information, and input/output mode of
each parameter, and d) Ordinal position of each param-
eter.

SOAP deserializer This module deserializes the SOAP
message sent by the client. The SOAP message is as-
sumed to comply with the IDL information denoted by
the corresponding WSDL—otherwise an error would
occur For XML analysis, we employ the SAX[10]
parser, which is event-driven and does not need to
maintain the entire XML data in memory. Also, SAX
allows on-the-fly serialization/deserialization of SOAP
messages, a property will shall exploit later for opti-
mization. Each deserialized parameter is placed into a
vector, where the order of placement is determined by
the information embedded within the WSDL.

The Invoker The Invoker executes the gridified library. In
the prototype implementation, the executed library is
a single Java method, but in general it could be any
“gridified” C, C++, or Fortran functions with arbitrary
call-by-reference array parameters.

The SOAP Serializer The SOAP serializer serializes into
XML the returned result of the gridified Java method,
as well as the Out and In/Out parameters from the pa-
rameter vector, and sends them back to the client as
SOAP messages.

4.2. Ninf-on-SOAP Client

Ninf-on-SOAP client library retains the original simplic-
ity and the small size of the original Ninf client. When a
GridRPC call is made, the client sends the URL designa-
tion of the library to the server, and the server in turn sends
back the WSDL file specifying the interface information,
that has been compiled from the Ninf scientific IDL. The
client uses the WSDL information to serialize the In and
In/Out parameters, and sends them as SOAP messages. Af-
ter the computation is done of the server, the client receives
the return Out and In/Out parameters and deserializes them,
again according to the WSDL interface information.

As for handling of SOAP as the underlying messaging
layer and WSDL as IDL, much of the structure is similar
to that for the server side. The SOAP parser is built using
SAX as is with the server.



0

50000

100000

150000

200000

250000

300000

0 200 400 600 800 1000 1200

Size (NxN)

T
im

e
 (
m

s
e
c
)

Ninf on SOAP
Calculation
Ninf on Apache SOAP
XDR

Figure 7. Performance of Ninf-on-SOAP (LAN)

0

100000

200000

300000

400000

500000

600000

700000

0 200 400 600 800 1000 1200
Size (NxN)

T
im

e
 (
m

s
e
c
)

Ninf on SOAP
Calculation
Ninf on Apache SOAP
XDR

Figure 8. Performance of Ninf-on-SOAP
(WAN)

5. Benchmarking and Optimizations

We measured the performance of Ninf-on-SOAP under
the same environment as in Section 3. Figures 7, 8 show
the results plus the performance of the 1st prototype (Ninf
on Apache SOAP) for comparison. Although the perfor-
mance is significantly improved, the overhead is still high
compared to the XDR version.

We performed detailed analysis of where time is be-
ing spent along the execution flow for Ninf-on-SOAP on a
GridRPC call (Figure 9). The dotted rectangle enclosure in-
dicates the overhead prior to server-side computation, con-
sisting of serialization, wire transfer, and deserialization
phases. Figure 10 indicates that serialization/deserialization
are major sources of overhead, while wire transfer is very
small under the 100Base-T environment, despite nearly
an order of magnitude increase in message size. Even
in WAN environment (Figure 11), the cost of serializa-

Overhead
Serialization

Sending
Receiving+

Deserialization

Calculation library 
execution

Serialization+
Sending

Receiving+
Deserialization

Client Server

Figure 9. Ninf-on-SOAP execution flow

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 200 400 600 800 1000 1200

Size (NxN)

T
im

e
 (
m

s
e
c
)

Overhead
Serialization (Client)
Sending
Deserialization (Server)

Figure 10. Detailed overhead analysis (LAN)

tion/deserialization is big although wire transfer occupies
the biggest part of the overhead because of the increase in
message size.

We next perform a series of optimizations, and inves-
tigate whether performance overhead is inherent to using
Web services, or that with clever implementation tech-
niques, we can remove much of the overhead.

5.1. Optimization 1: HTTP Content-Length Elimi-
nation

One significant overhead is that serialization, wire trans-
fer, and deserialization are done in sequence and not over-
lapped (Figure 9). This is because Content-Length header
field is required on a HTTP Post request, and thus the client
must construct the entire SOAP message in memory first
in order to calculate the message length. However, since
SOAP messages are XML-based, HTTP servers could de-
termine the end of the message by counting pairs of XML
tags, provided that the XML is syntactically correct. Since
GridRPC systems generate the SOAP messages and as such



0

50000

100000

150000

200000

250000

300000

0 200 400 600 800 1000 1200

Size (NxN)

T
im

e
 (
m

s
e
c
)

Overhead
Serialization (Client)
Sending
Deserialization (Server)

Figure 11. Detailed overhead analysis (WAN)

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 200 400 600 800 1000 1200

Size (NxN)

T
im

e
 (
m

s
e
c
)

Overhead (w/ Content-Length)
Overhead (w/o Content-Length)
Serialization (Client)
Sending
Deserialization (Server)

Figure 12. HTTP Content-Length overhead
(LAN)

malformed XMLs do not happen, we can safely omit the
field and effectively overlap and pipeline server side seri-
alization, wire transfer, and server-side deserialization (de-
spite that it is a slight violation of the RFC).

Figure 12 shows that, the overhead is roughly the sum
of serialization and deserialization time in LAN environ-
ment, whereas with optimization it decreases to be roughly
half (about 55%). The overhead is also reduced in WAN
environment (Figure 13) even though the decrease is not
apparent as in LAN environment because wire transfer oc-
cupies the big part of the overhead. This demonstrates that
such overlapping & pipelining are quite effective for using
SOAP as the GridRPC transport

We are considering ways to comply with RFC while re-
taining performance. One approach is to employ a very fast
two-pass algorithm such as employed by [13], which only
counts the message length on the first pass. The 2nd ap-
proach is to roughly estimate the length of XML represen-

0

50000

100000

150000

200000

250000

300000

0 200 400 600 800 1000 1200

Size (NxN)

T
im

e
 (
m

s
e
c
)

Overhead (w/ Content-Length)
Overhead (w/o Content-Length)
Serialization (Client)
Sending
Deserialization (Server)

Figure 13. HTTP Content-Length overhead
(WAN)

tation per each field whose length may be variable (such
as numerical values), and padding with whitespaces when
the textual representation is shorter. The 3rd approach is to
employ Chunked Transfer Coding supported by HTTP 1.1,
and separate a big message into a small chunks, each with
its own size indicator. Evaluation of these methods is a fu-
ture work.

5.2. Optimization 2: Base64 Encoding

SOAP offers semi-binary encoding of parameters via
Base64 encoding. Here, we observe the effect of such en-
coding instead of sending the array as a collection of ele-
ment data. Note that Ninf standardizes binary encodings
of array data, but we are not necessarily straightforwardly
sending the memory image of individual arrays, but rather
will have to perform various pack/unpacking as mandated
by various specifications in the scientific IDL.

Figures 14, 15 show that, by applying Base64 encoding,
we obtain approximately 75% overhead reduction both in
LAN environment and WAN environment, primarily due to
elimination of parsing overhead in serialization and dese-
rialization thanks to substantial decrease in the number of
XML tags.

One drawback of this approach is that we lose the in-
formation of each item of arrays in wire format. How-
ever, treating an array as a big binary data is acceptable
in the most of scientific computing. One alternative is to
use gzipped transfer supported by HTTP 1.1, but the cost of
serialization/deserialization would not be reduced.

5.3. Putting them all together

Figures 16, 17 compare the performance when opti-
mizations are applied individually and also in combination,



0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 200 400 600 800 1000 1200

Size (NxN)

T
im

e
 (

m
s
e
c
)

SOAP

SOAP (Base64)
XDR

Figure 14. Overheads of different encodings
(LAN)

0

50000

100000

150000

200000

250000

300000

0 200 400 600 800 1000 1200

Size (NxN)

T
im

e
 (

m
s
e
c
)

SOAP

SOAP (Base64)
XDR

Figure 15. Overheads of different encodings
(WAN)

illustrating that Ninf-on-SOAP and optimizations applied
thereof improves performance significantly over the naive
Ninf on Apache SOAP. In fact, compared to the XDR imple-
mentation performance is almost competitive; thus, for less
communication-intensive, typical GridRPC application, we
expect the optimized Ninf-on-SOAP to be quite usable.

To compare our implementation with other fast SOAP
implementations, we compare our results with the perfor-
mance of XSOAP[7], a new fast SOAP-based RMI devel-
oped at Indiana University. Because XSOAP does not yet
support 2-dimensional arrays, we used a 1-dimensional ar-
ray to express matrix data. The result shows that perfor-
mance of XSOAP is nearly equal to our 2nd prototype sys-
tem, Ninf-on-SOAP (not optimized).

0

50000

100000

150000

200000

250000

300000

0 200 400 600 800 1000 1200

Size (NxN)

T
im

e
 (
m

s
e
c
)

Ninf on Apache SOAP
Ninf on SOAP
Ninf on SOAP (Base64)
Ninf on SOAP (w/o Content-Length)
Ninf on SOAP (Base64, w/o Content-Length)
XDR
Calculation
XSOAP 1.2.8

Figure 16. Performance of various versions
(LAN)

0

100000

200000

300000

400000

500000

600000

700000

0 200 400 600 800 1000 1200
Size (NxN)

T
im

e
 (
m

s
e
c
)

Ninf on Apache SOAP
Ninf on SOAP
Ninf on SOAP (Base64)
Ninf on SOAP (w/o Content-Length)
Ninf on SOAP (Base64, w/o Content-Length)
XDR
Calculation
XSOAP 1.2.8

Figure 17. Performance of various versions
(WAN)

6. SOAP/WSDL Expressibility

Here we qualitatively assess whether SOAP and WSDL
are sufficiently expressible for scientific IDL features of
GridRPC. Figure 18 is an example of Ninf IDL for a ma-
trix multiply function call, and Figure 19 is a part of WSDL
converted from the Ninf IDL. Since the Ninf system is de-
signed for scientific computing, the supported data type is
tailored for such a purpose; for example, the data types are
limited to scalars and their multi-dimensional arrays. On
the other hand, there are special provisions in the IDL for
scientific applications, such as support for expressions in-
volving input arguments to compute array size. Therefore,
there are several features that are not expressible by current
specifications of SOAP and WSDL, the target of which is
business applications. We will discuss representative exam-
ples below.



� �
Define dmmul(mode_in int n,

mode_in double A[n][n],
mode_in double B[n][n],
mode_out double C[n][n])

"... description ..."
Required "libxxx.o"
Calls "C" dmmul(n,A,B,C);

� �
Figure 18. Ninf IDL

� �
<message name="DMMulInput">

<part name="n"
type="xsd:int"/>

<part name="A"
type="tns:ArrayOfArrayOfdouble"/>

<part name="B"
type="tns:ArrayOfArrayOfdouble"/>

</message>

<message name="DMMulOutput">
<part name="C"

type="tns:ArrayOfArrayOfdouble"/>
</message>

<portType name="MatrixType">
<operation name="dmmul"

parameterOrder="n A B C">
<input message="tns:DMMulInput"/>
<output message="tns:DMMulOutput"/>

</operation>
</portType>

� �
Figure 19. Core part of WSDL

Array Size Specification For scientific computing,
various array information such as size depend
on some call parameters (typically one or com-
bination of scalar parameters). As a simple
case, consider a matrix multiply function call
for matrices of size n, C = AB, denoted as
dmmul(n, A, B, C), and when gridified becomes
gridrpc_call("dmmul", n, A, B, C).
Even under local, sequential setting the size parameter
n is required since arrays are passed as reference
and the Fortran/C typesystem doesn’t embody size
information. But this alone is insufficient for an RPC
system, since it must know at the call site a) n denotes
such information, b) A and B has to be sent to the
server, and c) C must be returned. In GridRPC, such
information (not expressible in business IDLs such as
CORBA) is denoted in scientific IDL. WSDL however
currently lacks the ability to directly express array
sizes or such dependencies.

Subarray, strides of array Likewise, given some numeri-

cal library, it is typical for only portions of arrays, such
as subarrays and array strides, are accessed, even if
the entire array is seemingly passed by references. Al-
though SOAP supports partially transmitted arrays and
sparse arrays, and would be possible to express such
subarrays and array strides, WSDL does not embody
any specifications of such data types.

Interoperability and usability WSDL can describe the
parameter order with the parameterOrder attribute
within an operation. Ninf-on-SOAP uses this attribute
to denote the order of parameters. However, because
parameterOrder attribute is optional, Ninf-on-SOAP
cannot decide the order if it encounters some WSDL
lacking parameterOrder. Currently, Ninf-on-SOAP
handles such a case assuming that the order is the same
as it appears in the WSDL file, and that input parame-
ters are followed by output parameters.

There are other interoperability issues, such as WSDL
facilitating multiple ways to specify the same datatype, such
as arrays. Since complete implementations will have to deal
with all such different representations, assuring interoper-
ability will be somewhat a tedious task.

7. Related Work

There have been numerous work on efficient RPC imple-
mentation in the ’80s, but they predate the primary focus of
our work—Grid(RPC) vs. XML, SOAP, WSDL, etc.—and
their results are not directly applicable. [12] performs qual-
itative and quantitative comparisons of GridRPC systems
with CORBA. There, the wire speed between the most effi-
cient implementations were similar, and the issue was with
ease of use of GridRPC-style client interface management
and expressibility of scientific IDLs compared to CORBA
IDLs. [5] compares different incarnations of RMI proto-
cols, and shows that their implementation of SOAP-based
RMI is slower than Java RMI or Nexus RMI by an order of
magnitude. They only measure bytearray transfer efficiency
and does not discuss GridRPC/scientific IDL-like proper-
ties. As a followup work [11] describes a SOAP-based RMI
system, SoapRMI, implemented using their own fast XML
parser implementation called the XML Pull Parser. Again,
the focus is on general RMI. [14] proposes a XML-based
Grid system, which uses XML (actually similar to but not
WDSL) only for interface information description, but em-
ploys binary-based data format for data exchange for perfor-
mance efficiency; they do not discuss scientific IDL prop-
erties, nor interoperability issues by sticking within XML
standards.



8. Conclusion

We investigated whether GridRPC could be formidably
be implemented using Web services, in particular SOAP
as the underlying wire protocol, and WSDL as the
system-level IDL while retaining the ease-of-use of current
GridRPC. We found that naive implementations would re-
sult in significant overhead, but on-the-fly, pipelined seri-
alizaton/deserialization, coupled with elimination of XML
tags by the use of base64 encoding, results in significant
speedup to be almost competitive with binary wire protocol
implementations. However, some features of Ninf scientific
IDL was difficult to express with WSDL, namely dependen-
cies between scalar parameters and the actual array size, ar-
ray stride, subarray specifications, etc. Small extensions to
the WSDL will likely resolve this, however.

For future work, we construct a fast XML parsing algo-
rithm especially tailored for SOAP and GridRPC serializa-
tion/deserialization, along with using dynamic compilation
techniques for dynamic IDL management at call sites.

References

[1] UDDI Technical White Paper. Technical report, uddi.org,
June 2000.

[2] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman,
N. Mendelsohn, H. rystyk Nielsen, S. Thatte, and D. Winer.
Simple Object Access Protocol (SOAP) 1.1, W3C Note,
May 2000. http://www.w3.org/TR/2000/NOTE-SOAP-
20000508.

[3] H. Casanova and J. Dongarra. Applying NetSolve’s
network-enabled server. IEEE Computational Science &
Engineering, 5(3):57–67, July/Sept. 1998.

[4] E. Christensen, F. Curbera, G. Meredith, and
S. Weerawarana. Web Services Description Lan-
guage (WSDL) 1.1, W3C Note, March 2001.
http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

[5] M. Govindaraju, A. Slominski, V. Choppella, R. Bramley,
and D. Gannon. Requirements for and Evaluation of RMI
Protocols for Scientific Computing. In Proc. of SuperCom-
puting 2000, November 2000.

[6] A. L. Hors, P. L. Hegaret, L. Wood, G. Nicol, J. Robie,
and M. Champion. Document Object Model (DOM) Level
2 Core Specification Version 1.0, W3C Recommendation,
November 2000. http://www.w3.org/TR/2000/REC-DOM-
Level-2-Core-20001113.

[7] Indiana University. XSOAP toolkit (aka SoapRMI).
http://www.extreme.indiana.edu/soap/.

[8] H. Nakada and S. S. Satoshi Matsuoka. Bridging Ninf and
NetSolve, 1997.

[9] H. Nakada, H. Takagi, S. Matsuoka, U. Nagashima, M. Sato,
and S. Sekiguchi. Utilizing the Metaserver Architecture in
the Ninf Global Computing System. In High-Performance
Computing and Networking ’98, LNCS 1401, pages 607–
616, 1998.

[10] Simple API for XML (SAX). http://www.saxproject.org/.

[11] A. Slominski, M. Govindaraju, D. Gannon, and R. Bram-
ley. Design of an XML based Interoperable RMI System:
SoapRMI C++/Java 1.1. In Proc. of The 2001 International
Conference on Parallel and Distributed Processing Tech-
niques and Applications (PDPTA’2001), June 2001.

[12] T. Suzumura, T. Nakagawa, S. Matsuoka, H. Nakada, and
S. Sekiguchi. Are Global Computing Systems Useful?
Comparison of Client-server Global Computing Systems
Ninf, NetSolve Versus CORBA. In Proc. of 14th IEEE Intl.
Parallel & Distributed Processing Symp., pages 547–556.
IEEE Computer Society Press, 2000.

[13] R. A. van Engelen and K. A. Gallivan. The gSOAP Toolkit
for Web Services and Peer-To-Peer Computing Networks. In
Proc. of IEEE CC Grid Conference 2002, May 2002.

[14] P. Widener, G. Eisenhauer, and K. Schwan. Open Meta-
data Formats: Efficient XML-Based Communication for
High performance Computing. In Proc. of the 10th IEEE
International Symposium on High Performance Distributed
Computing-10 (HPDC-10), pages 371–380, August 2001.


