
Implementation of a Portable Software DSM in Java

Yukihiko Sohda
∗

Tokyo Institute of Technology
Tokyo, Japan

sohda@is.titech.ac.jp

Hidemoto Nakada
Electrotechnical Laboratory

Tsukuba, Japan

nakada@etl.go.jp

Satoshi Matsuoka
†

Hirotaka Ogawa
Tokyo Institute of Technology

Tokyo, Japan

{matsu,ogawa}@is.titech.ac.jp

ABSTRACT
Rapid commoditization of advanced hardware and progress of net-
working technology is now making wide area high-performance
computing a.k.a. the ‘Grid’ Computing a reality. Since a Grid
will consist of vastly heterogeneous sets of compute nodes, espe-
cially commodity clusters, some have articulated the use of Java
as a suitable technology to satisfy portability across different ma-
chines. Since Java’s natural model of parallelism is shared memory
multithreading, one will have to support distributed shared memory
(DSM) in a portable manner; however, none of the previous work
on implementing Java on DSM has been a portable solution. In-
stead, we propose a software architecture whose goal is to achieve
portability of DSM implementations across different commodity
clustering platforms, while restricting the programming model some-
what, and implemented a prototype system, JDSM. Benchmark re-
sults show that the current implementation on Java incurs increased
memory coherency maintenance cost compared to C-based DSMs,
thus limiting scalability to some degree, and we are currently work-
ing on a solution to alleviate this cost.

1. INTRODUCTION
Rapid commoditization of advanced hardware and progress of

networking technology is now making wide area high-performance
computing, or so-called the ‘Grid’ Computing, a reality. Since a
Grid will consist of vastly heterogeneous sets of compute nodes,
especially commodity clusters, platform portability which enables
programs to be downloaded from networks and to be executed is
required. In addition, performance portability which provides good
performance irrespective of platforms, is also needed. To satisfy
portability across different machines, a language which has full
code level portability and runtime optimization technologies such
as JIT compiler would be suitable; needless to say, Java qualifies as
such a language.

However, a Java Virtual Machine (JVM) implementation assumes

∗Research Fellow of the Japan Society for the Promotion of Sci-
ence
†Also with Japan Science and Technology Corporation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM 0-89791-88-6/97/05 ...$5.00.

an underlying shared memory machine. As such, a multithreaded
Java program cannot directly run on distributed memory parallel
computers such as PC clusters. To facilitate such machines the
distributed shared memory (DSM) functionality must be integrated
into a JVM in some way. Previous work [2, 3, 15, 24] modified the
JVM for such integration, sacrificing general platform portability
of Java. Not only that the such customized JVMs will not be gener-
ally available, but also JVM modifications make it very difficult to
employ existing JVM resources for high-performance computing,
such as JIT compilers and efficient garbage collection algorithms,
within such customized JVMs1. As a result, previous DSM systems
are not entirely appropriate for portable high-performance comput-
ing.

Instead, we propose a design of a portable Java DSM system
called JSDM which could readily be run on top of a variety of
JVMs, without their customizations. We employ a layered archi-
tecture where various layers of the DSM system can be tailored
not only for portability, but also for achieving the best performance
for a given platform, such as MPPs, PC Clusters, or a network of
SMPs. In the lowest layer, a variety of low-level communication
substrate could be employed with a common communication ab-
straction, from tightly-coupled, high-bandwidth low-latency mes-
saging, to wide-area, secure communication over the Grid. In the
higher layer, we can flexibly adapt to different architectures by al-
lowing different memory consistency protocols and algorithms, de-
pending on the characteristics of the application and the lower-level
messaging layer. JavaDSM is also ‘Grid Aware’, in that programs
and data files can be sent over a secure link with full authentication
over a firewall, to a cluster with private addresses.

To accommodate such portability, JDSM requires that the users
conform to a certain multithreaded programming style. This is in
contrast to work such as cJVM[3] where the objective is to execute
arbitrary multithreaded Java programs on a distributed memory ma-
chine. This in a sense is a technical tradeoff, and we will later show
that for SPMD-style parallel programs, the restriction actually fits
naturally with the style of such programs.

We evaluated JDSM on a PC cluster with 3 different JDKs and
networks substrates of different speeds. The experimental results
show that the JDSM generally scales well on different platforms,
demonstrating the viability of portable implementation. On the
other hand, we do observe that there are some overhead incurred
in the synchronization, resulting in load imbalances and increased
execution time. By improving on the area, we achieve speedups
comparable to C-based DSMs, with execution time that is compet-
itive.

1In fact, as far as we know, none of the previous proposals em-
ployed a working JIT compiler.

2. DESIGN ISSUES OF PORTABLE JAVA
DSMS

2.1 Major Design Issues
Because of the restriction as imposed by the Java Language Spec-

ification (JLS)[8, 14], a software DSM in Java is restricted from
employing some of the techniques used in C-based DSMs. Below
we discuss the design issues pertaining to the memory management
and programming models in JDSM when considering the JLS:

2.1.1 Memory Management
Firstly, for DSM memory management, two technical choices

must be made, 1) the units of memory management, and 2) the
memory consistency model.

As memory management unit, a DSM can be either a) Page-
Based, or b) Object-Based. C-based DSM systems often employ
Page-Based management units for various reasons, including the
availability of hardware paging to detect memory accesses with
no program modifications and very low execution overhead. For
Java, however, to employ Page-Based units the DSM memory man-
ager must be able to access any memory within the JVM—this
is possible when one modifies the underlying memory manage-
ment of the JVM, as is with Java/DSM[24]. But in general, for
a portable implementation such assumption cannot be made, and
physical pages are completely hidden from the programmer within
Java. Moreover, one requires an extremely sophisticated algorithm
to efficiently cope with object copying for modern, incremental
copying GCs employed in almost all high-performance JVMs such
as the Sun HotSpot. On the other hand, Object-based management
fits well with the underlying memory management of the JVM.
Object references can be directly used, and even when objects are
copied the JVM takes care of pointer forwarding etc. As such the
Object-Based management does not require JVM modification, and
is well-suited for portable DSM implementation in Java. The draw-
back is that object accesses must be checked in software, possibly
causing non-negligible overhead.

Although there have been numerous proposals of memory con-
sistency models, exactly which model is suitable for DSM on Java
is not clear, since in general, the best consistency model depends
on the memory access patterns of applications, and the properties
of execution environments. In fact the general memory model of
Java itself is in somewhat of a flux at the present time. Instead of
tying the system down to a particular memory consistency model, it
could be favorable to design a framework where it is easy to imple-
ment and customize different memory consistency models and pro-
tocols. For example, one could choose Invalidate/Update protocols,
and efficient algorithms for depending on clustering environments
such as Sequential Consistency or Lazy Release Consistency, etc.

2.1.2 Programming Model
In a very loose sense, the target of any Java DSM system is a par-

allel program written with Java threads. Systems could have vary-
ing degrees ofsingle system imageit presents as a programming
model. On one extreme, a full illusion of a single JVM could be
provided; one could relax this property for performance and porta-
bility, as will be described later.

To make such programs run on distributed memory machines
without JVM modification, some form of program translation to
employ DSM features might be required. Such translations involve
analysis of which objects will be shared among the nodes, how
the objects will be accessed, the relationship between threads on
different nodes, etc. Although efforts have been made in the static
analysis community, such analysis for general multithreaded Java

programs is difficult, and moreover, does not always result in an
efficient parallelization of programs. One could do away with such
analysis and handle the DSM operations entirely during runtime as
is with cJVM, but one could sacrifice performance.

For JDSM, we restrict ourselves to mostly SPMD-style high-
performance computing programs, where suitable DSM algorithms
are known to perform efficiently in a clustering environment. We
design the classes and their interfaces so that a SPMD-style pro-
grams can easily be written and existing ones ported onto JDSM
with high performance. Moreover, since the programming model is
similar to that of OpenMP, JDSM could possibly be used as an un-
derlying implementation vehicle for Java version of OpenMP such
as JOMP[11] on clusters.

For Object-Based management, access to shared memory can be
done in two ways: one is the master-proxy scheme, where a proxy
object with the same interface as the ‘real’ object to be shared is
created. The proxy effectively hides the migration of objects it rep-
resents, and localizes the memory access checks to be performed
on each node that holds the proxy. This scheme has the advantage
that the complexity of program transformation is greatly reduced,
involving very small code increase. There are several drawbacks
regarding performance and storage, however; a) it cannot batch
together successive memory accesses to multiple object fields for
overhead elimination, b) the proxy class becomes a separate class,
leading to some programming complications, and c) all field ac-
cess involve method invocation, including array elements, causing
considerable overhead. The alternative scheme is to insert memory
access checks before and after object field accesses. In the worst
case, memory checks will be inserted before and aftereveryfield
accesses, but with simple optimizations one could effectively batch
together such checks for efficiency.

For portable implementation, one has to cope with the fact that
different JVMs are invoked on each node, and these JVMs have
no knowledge that they are effectively sharing the heap with DSM.
This causes some difficulties such as hash values. For arbitrary
multithreaded programs spanning distributed memory, it is diffi-
cult to determine, say, the equality of objects using hash values
due to differing hash values of objects amongst different JVMs.
For JDSM, we alleviate this problem somewhat by restricting pro-
grams to be SPMD, and as will be described later, limiting how the
sharable objects will be allocated. Due to this restriction, all the
shared objects will be created in the same order, and the equality of
objects can be determined by using the ordinal number as the key.

2.1.3 Coping with the ‘Grid’
For wide-area high-performance environment, e.g., the Grid, the

following points must be considered as well. Firstly, a cluster sys-
tem in a Grid must authenticate and authorize users in some way,
and the DSM system must be executed under such (global) user ID.
Not only data but also the program must be transferred in a secure
manner to the cluster acting as the computing resource on the Grid,
and adapted according to the particular environment of the cluster
(e.g., the number of nodes, the communication substrate, the JVM
being used, etc.). Since the nodes are shared among multiple users,
Grid resource scheduling must coordinate with the resource acqui-
sition of the JDSM.

2.1.4 Other Implementation Issues
In addition to the major design issues, we list below some other

issues that must be considered for effective portability: specifica-
tion of shared objects, object copying (migration), method invoca-
tions for shared objects, and handling of array objects and primitive
types.

• The specification of objects to be shared must be made easy
for the user. On the other hand, the extreme case i.e., al-
lowing all the objects allocated in a program to be sharable,
will be inefficient. JDSM only allows sharing of objects that
have been explicitly allocated as sharable in the initialization
phase of the program. Although this is somewhat restric-
tive, for SPMD programs ‘global’ data accessible from all
the threads are usually relatively stable. The alternative is to
perform static analysis to determine which objects are public
and private, but this could be difficult/conservative. We are
currently working to allow a restricted set of dynamically al-
located objects to be shared to cope with OpenMP semantics.

• To copy or migrate an object between nodes, the object seri-
alization is used. But user defined serializers are required for
unserializable objects.

• Sharing a large object such as an array could result in sub-
stantial false sharing. Proper data distribution is necessary
to avoid false sharing, and standard distribution methods as
well as possibly array alignment must be supported.

• To share instances of primitive types (scalars), one could em-
ploy the wrapper classes, while the alternative is to employ
different schemes for primitive type sharing. The latter could
be more efficient, but would make the resulting system com-
plex.

2.2 Summary of JSDM Implementation Choi-
ces/Policies

Based on the design issues, we derive the following design for
JDSM. Although we have already mentioned or hinted at the design
choices made, we nevertheless will summarize the choices below.

Units of memory management The unit of memory management
unit is a Java object. We provide a framework from which
various memory consistency models and protocols (e.g. Strict
Consistency, Lazy Release Consistency, etc.), can be derived.
Currently, JDSM defaults to Lazy Release Consistency[12]
with Write Invalidate.

Programming Model User programs are SPMD-style Java multi-
threaded programs. Access checks, in the form of method
invocation to memory consistency operations, are inserted
manually by the user or a higher-level program translator for
field read/write accesses. Method invocations are treated as
write accesses with no special checks. Shared objects are
registered at object creation time during initialization phase.

Coping with the Grid In order to achieve widespread portability,
we currently employ ssh for wide-area authentication, al-
though other infrastructures such as Globus[7] could be used.
Ssh establishes a communication stream between the server
(i.e., the remote host) and the client. For easening the man-
agement of server programs, the client initially invokes a
Java management process called ClusterManager; the Clus-
terManager subsequently invokes a server process on each
cluster node. The user program and data are securely trans-
mitted using a ssh stream from the Client, possibly across
firewalls. Here, class files are loaded from the ssh stream on
the (remote) server host using a customized class loader.

Other Implementation Issues As mentioned earlier, the objects
that are shared can only be declared during program initial-
ization, while objects created inside parallel execution threads

Cluster

Cluster
Manager

Fire Wall

ssh

Client

Figure 1: JDSM Overview and execution image

are private to the thread. Object migration uses the stan-
dard Java serialization, and as such unserializable objects
are not supported. By using a standard serializer, programs
can identify objects (e.g.equal), but must be careful about
their overhead. Array objects are shared with proper distri-
bution, default being block distribution per size. Primitive
type values are not supported for simplicity, requiring wrap-
per classes.

3. JDSM IMPLEMENTATION
We now describe the JDSM implementation in detail. The JDSM

system has a modularized and layered architecture for portability,
and is also architected as a class framework. Roughly speaking, the
JDSM system is composed of three modules (Figure 1).

ClusterManager The module for managing the DSM Servers on a
cluster. Basically, the ClusterManager invokes computation
threads on each Server in response to a Client job invocation
request.

Server The Server runs on each cluster node, and executes user
programs on behalf of the client. Server is invoked by Clus-
terManager, then mutually establishes connections with Ser-
vers on other nodes.

Client The Client sends the user’s computation requests to the
ClusterManager. During computation, the Client acts as a
file server for sending programs and data to the Servers. As
seen in Figure 1, the Client can communicate with the Clus-
terMangager and Server nodes across a firewall in a limited
fashion, leading to flexible and secure system in a Grid envi-
ronment.

The Server itself is composed of three components that constitute
a layered architecture (Figure 2):

SPMD layer Provides the SPMD programming model interface to
which the user programs to. Note that this layer provides
only the APIs—the actual DSM behavior is provided by the
underlying DSM layer.

DSM layer The DSM layer performs DSM consistency checks and
operations using the high level communication interface pro-
vided by the underlying Trans layer. The layer is constructed
as a pluggable class framework so that various consistency
algorithms and protocols can be implemented. By default,
the system implements the Lazy Release Consistency which

Comm Comm Comm

Trans

S
P
M
D
T
h
re
a
d
 A
-0

Trans Trans Trans Trans Trans Trans Trans Trans

DSM DSM DSM DSM DSM DSM DSM DSM DSM

Node0 Node1 Node N

S
P
M
D
T
h
re
a
d
 A
-1

S
P
M
D
T
h
re
a
d
 A
-N

S
P
M
D
T
h
re
a
d
 B
-0

S
P
M
D
T
h
re
a
d
 B
-1

S
P
M
D
T
h
re
a
d
 B
-N

S
P
M
D
T
h
re
a
d
 C
-0

S
P
M
D
T
h
re
a
d
 C
-1

S
P
M
D
T
h
re
a
d
 C
-N

Task A

Task C

Task B

Figure 2: Component layer image on Server nodes.

Trans Layer Trans Layer
Comm Layer

Various Low-level Interfaces
VIA TCP/IP PM

Figure 3: Communication Component Hierarchy

can be run with good scalability in a clustering environment
without extremely fast networks. More aggressive protocols
can also be employed for MPP and fast messaging environ-
ments.

Trans layer The Trans provides an abstract, high level communi-
cation layer that supports various DSM-specific operations as
will be described. This layer only assumes ‘logical’ thread
locations. Mappings to physical locations and actual com-
munication happens in the lower-level Comm Layer.

Comm layer The Comm layer is the physical communication layer,
and is shared by all SPMD threads. This layer is designed to
be pluggable, and hides the differences of various physical
networks equipped on clusters. Also, this is the only part of
the system where native calls could be facilitated via JNI—
the rest of the system are pure Java. By default a generic
TCP/IP socket communication (which does not use JNI and
is thus pure Java) is provided, but we are also developing
modules for directly calling PM[20] and VIA[10] interfaces
via JNI.

3.1 Trans & Comm Layers
We first describe the Trans & Comm Layers in detail. As men-

tioned above, a portable DSM system must be able to support a) a
variety of (perhaps multiple) networks that interconnect the clus-
ter nodes, and b) co-existence of multiple communication threads
(Figure 3).

The standard JDK only supports TCP/IP socket communication
between separate JVMs. To support different interconnects and
their fast messaging protocols (such as VIA, PM, AM[22], GM,
etc.), in a portable manner, the communication layer abstracts out
the differences between the underlying communication substrates.
When porting to a platform with a new network or a low-level pro-
tocol, one only needs to implement a new Comm layer module, and

method description
asend asynchronous message sends

received message receive (callback method)
expressSend send express messages

Table 1: Declared methods in Trans Class

method description
init initialization
fin finalization
asend sending messages

expressSend send express messages

Table 2: Declared methods in Comm interface

the rest of the library nor the user program is affected. By all means,
not only the difference in the performance of different communica-
tion substrates must be considered, but also the overhead of Java
(such as the cost of JNI invocation) must be technically considered,
which we will demonstrate in the benchmarking section.

The Trans layer ties together the computation threads with the
Comm layer. It also abstracts out the physical node location of
threads. It also provides interfaces such as the followings for im-
plementing DSM behavior in the DSM layer (Table 1).

The asend method sends asynchronous messages to a thread,
whether it is on a local node or a remote node. Thereceived

method is a callback method called on message receives. Therece-

ived method in turn employs another thread to call some DSM
layer method according to the message. Here, to avoid the cost of
new thread creation, we employ the standard thread pooling tech-
nique. TheexpressSend method is used for sending a fixed-size,
high-priority ‘express message’ employed in synchronizations such
as barriers, and system control. Express messages have a special
format, and treated on an out-of-band control path compared to
standard messages, in which objects and classes are serialized.

The Comm layer is composed of theComm interface (Table 2)for
sending messages and a Dispatcher that receives messages and for-
wards them to an appropriate Trans layer methods.Comm itself does
not provide an interface for receiving messages, as the message is
routed to the Dispatcher on message reception. The Dispatcher in
turn calls the appropriatereceived method of a Trans layer in-
stance of the designated recipient. As such, one only needs to im-
plement the message sending interface in Table 2 and a Dispatcher
interface to cope with a new communication substrate.

3.1.1 SocketComm

As an example, we demonstrate the implementation of the stan-
dardSocketComm, which is written purely in Java.SocketComm
employs JavaSocket andServerSocket classes, and establishes
full TCP/IP peer-to-peer socket connections (i.e.,N ∗ (N − 1) con-
nections forN nodes) between the nodes. The socket must be read
and written simultaneously; however, since Java does not have si-
multaneous read/write interface such as the Unixselect, an extra
thread is allocated to read messages from the stream. When a new
message arrives, the thread checks the message tag, and calls either
thereceived or theexpressReceived method in the Dispatcher
according to the tag.

AlthoughSocketComm is pure Java, faster communication sub-
strates will require parts of their implementation to be in native
methods for fast communication and linking to the C library of the
substrate. Currently, we have implemented the Comm interfaces
for PM and VIA using JNI.

public abstract class SharedObject{
Object obj; // shared object
int key; // key(registration number)
int myNode; // node number
private SharedObjectStatus status;

// status of shared object
void lock(); // lock this shared object
void unlock();// unlock this shared object
...

}

Figure 4: SharedObject abstract class

method description
init initialization
fin finalization

register register shared objects
acquire get lock for write access to shared object
release release lock
update get latest shared object status

acquireAsync asynchronous acquire
updateAsync asynchronous update

Table 3: Declared methods in SharedObjectPool

3.2 DSM Runtime Implementation
As mentioned earlier, for the current implementation, the DSM

is achieved by using Lazy Release Consistency where the Write
Invalidate protocol is used. The basic algorithm is essentially same
as that in C. The consistency protocol for the program is specified
in the configuration file. The implementation essentially realizes a
“Global Object Space”, because the unit of sharing is a Java object.

Each shared object is serialized by the Java serializer, then sent
to other nodes, and as such the shared object has to implement
Serializable. Since the Java serializer performance is low, we
are in the process of implementing a faster serializer, for example,
a primitive array specialized serializer.

Each shared object is wrapped and managed in the (subclass
of) SharedObject abstract class (Figure 4). Subclasses include
SharedObjectOnewhich manages single-instance objects, andSh-

aredObjectForBlock which manages array objects with block
distribution, etc.

DSM runtime in JDSM system defines an abstract classShared-

ObjectPool, and specific DSM algorithms and protocols will sub-
class and define the required interfaces as shown in Table 3 to im-
plement their respective functionality. The algorithms must also
utilize the Trans layer for inter-node communication, and resorting
to other means of back-door communication is not allowed.

Below, we describe the interface of theLazyRelease class which
inherits fromSharedObjectPool:

init method Initializes the management tables of shared objects,
acquires information on the execution environment (number
of nodes, etc.) fromComm, creates a thread to process request
from other nodes.

register method Registers a shared object by wrapping it in the
(subclass of) theSharedObject abstract class, and makes an
entry in the shared object management table. For algorithms
that allow owner migration, the current implementation sets
the owner node to be node rank 0.

update method Called with the object to be updated as an argu-
ment, and updates the local node view of the object to be
up-to-date.

public abstract class Spmd{
public Comm comm;
public SharedObjectPool pool;
public void init();
public void start();
public void fin();

}

Figure 5: Spmd abstract class

acquire method The object to which the write lock should be
acquired is called as an argument, and an exclusive access
right to the object is granted. Notification (invalidation in
the case of write-invalidate) message is sent to all the nodes
which have local copies of the object.

release method The object to which an exclusive access is be-
ing held is called as an argument, and the lock is released,
notifying all relevant nodes.

updateAsync method For efficiency, JDSM offers asynchronous
consistency management. In contrast toupdate, where the
returned argument is the original object to be updated in the
call and the update will have occurred on return, forupdate-

Async a Future object is immediately returned. The actual
updated target shared object is obtained by calling thetouch

method, which blocks until the update is actually complete.
A proper use of method allows update latency to be effec-
tively hidden (although Lazy Release Consistency we imple-
ment already alleviates some of the latency), an important
optimization in clusters with higher communication latency.

acquireAsync method Similar toupdateAsync in that it facili-
tates asynchronous acquire withFuture objects.

fin method Finalizes the DSM program by discarding the dis-
tributed shared objects, management tables, etc.

3.3 User Program
The target user program is a SPMD-style multithreaded program.

The user programs his code by subclassing theSpmd abstract class
(Figure 5).

The init andfin methods are executed sequentially and ex-
actly once, at the beginning and at the end of program execution
respectively. The user must allocate and register the shared objects
in theinit method using theregister method, and finalize them
in thefinmethod. The user programs the main body of his parallel
code in thestart method. Here, the number of threads appropriate
for each node (usually matching the number of CPUs in the node,
although it can be specified otherwise) is fired up, and will all call
thestart method in parallel. All objects allocated withinstart
will be private to that node, although we are considering limited
relaxation of this to accommodate Java OpenMP.

Here, Figure 6 is a sample JDSM program. Multiple threads
spanning across the cluster shares three vectors, and multiply the
vectors at will in a consistent manner. First, three arrays of double
are declared and registered ininit (1). Then threads starts execut-
ing in parallel. Each thread updates access reads to the array b and
c (2), acquires access writes to the array a (3), stores the multipli-
cation result and releases it (4).

3.3.1 Overall Setup and Workflow of DSM Execution
Given such a client API, the underlying JDSM system executes

the user program in the following way:

1. The ClusterManager is initialized and started,

public class VecMul extends Spmd{
public double[] a,b,c = new double[length];
public int length;
public void init(){

...
pool.register(a, lengthPerNode); // (1)
pool.register(b, lengthPerNode);
pool.register(c, lengthPerNode);

}
public void start(){
for (int i = lengthPerNode * myThread ;
i < lengthPerNode * (myThread + 1) ; i++){
pool.update(b, i); // (2)
pool.update(c, i);
pool.acquire(a, i); // (3)
a[i] = b[i] * c[i];
pool.release(a, i); // (4)

}
}
public void fin(){ ... }

}

Figure 6: User program example

2. Servers are started by the ClusterManager on each node,

3. Communication is established between each node, the Comm
layer is initialized,

4. The user program is executed by the Client, possibly outside
the firewall; secure communication established between the
Client and the ClusterManager,

5. DSM runtime and Trans layers are initialized, class files are
securely shipped to servers from the client using secure streams
(ssh port forwarding in the current implementation).

6. ExecuteSpmd.init on each node,

7. ExecuteSpmd.start for specified number of threads on each
node, I/O requests are forwarded and processed by the Client,

8. ExecuteSpmd.fin on each node

9. Finalization of DSM runtime and Trans layer on each node

4. PERFORMANCE EVALUATION
We have tested the performance of JDSM system by using a)

different JVMs and JIT compilers, as well as b) different underly-
ing communication substrates (interconnects and protocols). The
benchmark is a Java ported version of the LU Kernel and Water
from SPLASH2[23].

4.1 Evaluation Environment
The evaluation environment is the Presto PC Cluster, which fea-

tures 64 500MHz Celeron PC nodes with 512MB memory (of which
32 is currently used for benchmarking, because only 32-nodes are
facilitated with Myrinet), with multiple interconnects (multiple Fast
Ethernet links and Myrinet). Operating system is Linux 2.2.16
with RWCP SCore[9] 3.2 extensions. The JDKs subject to eval-
uation are IBM JDK1.3, Sun JDK1.3.0 (‘Hotspot VM’), and Sun
JDK1.2.2(‘classic VM’)+OpenJIT-1.1.15.

4.2 Basic Performance
As a basic test, we evaluated the performance of the Comm mod-

ules and the JDSM runtime.

���������	
����
��
	���
���
���������

����
������

!

"!

�!!

�"!

#!!

#"!

! $ �% �# %& �#$ #"% "�#�'()��*

�
�

	

�
�
�
)�

+
	
�
*

!

#

&

%

$

�!

�#

�
�
��

�
�
�
�
�

)

�
�

�
+
*

����
��
	���
����
��
	���
����
���������

����
���������

Figure 7: JDSM Runtime Basic Performance (SocketComm)

�����,�����
��
	���
���
���������

����
������

!

#!

&!

%!

$!

�!!

�#!

�&!

! $ �% �# %& �#$ #"% "�# �'()��*

�
�

	

�
�
�
)�

+
	
�
*

!

"

�!

�"

#!

#"

�!

�"

�
�
��

�
�
�
�
�

)

�
�

�
+
*

����
��
	���

����
��
	���

����
���������

����
���������

Figure 8: JDSM Runtime Basic Performance(JPMComm)

4.2.1 SocketComm

Table 4 shows the one-way latencies of native socket and Java
socket in SocketComm for varying data sizes. Compared to na-
tive sockets, we see that Java SocketComm incurs approximately
1.3 times latency overhead, and saturates around 9.3MB/s which
is slightly lower than the saturated native socket bandwidth. This
shows that the overhead imposed by Comm layer is reasonably
small for relatively slow socket communication.

4.2.2 JPMComm

We next compare the performance of native PM and its Java in-
terface we have developed, calledJPMComm(Figure 5). PM[20] is
being developed at the Real-World Computing Partnership (RWCP)
of Tsukuba, Japan, and is known to be one of the fastest commu-
nication protocol on top of Myrinet.JPMComm provides Java JNI
interface to the underlying low-level PM primitives for JDSM. Be-
cause of low latency/high-bandwidth characteristics of PM/Myrinet,
Java overhead manifests itself quite easily compared toSocketComm.
We employ caching as well as other techniques to lower the JNI
overhead as much as possible. Still, for small sizes we almost dou-
ble the latency (6.82 usec vs. 10.4 usec) while on larger data sizes
the ratio goes down. Even for native PM, we see that performance
is limited to only 34MB/s; this is far lower number than reported
for other PM publications. We have not pinpointed the exact cause,
but microbenchmarks exhibit problems in PCI hardware, in that
the PCI DMA-write performance is somehow severely restricted
on our particular PC.

4.2.3 JDSM Runtime Basic Performance
We next measure the basic JDSM runtime overhead. We em-

ployed the IBM JDK1.3 as the JVM, andSocketComm andJPMComm
as the communication layer. In the PingPong benchmark, we have

Socket SocketComm
Mess. Size(bytes) Latency(usec) Bandwidth(MB/s) Latency(usec) Bandwidth(MB/s)

1 86.68 0.011 109.7 0.009
16 89.00 0.179 111.3 0.143
256 155.4 1.646 177.4 1.442
4096 671.6 6.098 699.0 5.859
32768 3109.7 10.53 3496.5 9.372

Table 4: Latency and bandwidth on SocketComm and Java Socket

PM JPMComm
Size(bytes) Latency(usec) Bandwidth(MB/s) Latency(usec) Bandwidth(MB/s)

1 6.82 0.147 10.4 0.096
16 7.02 2.266 10.5 1.523
256 18.00 14.25 24.0 10.66
4096 167.6 24.44 211.0 19.41
65536 1923.8 34.07 2087.3 31.39

Table 5: PM and JPMComm Latency and Bandwidth(Myrinet)

Barrier Synchronization Cost (SocketComm)

0

10

20

30

40

50

2 4 8 16 32 PE

T
im

e
[m

se
c]

IBM 1.3
Sun 1.3.0
Sun 1.2.2+OpenJIT

190msec on 32PE

Figure 9: Barrier Synchronization Cost (SocketComm)

the two nodes share an array object, and alternatively perform writes
to the array. The full DSM protocol is operational, including calls
to acquire, release, as well as sending of invalidation messages.
The result is compared with direct calls to the Comm layer (Fig-
ure 7, Figure 8).

Both Comm interfaces exhibit good performance, saturating the
physical bandwidth—at 64KBytes, we observe 11MB/s forSocket-
Comm and 32MB/s forJPMComm. On the other hand, when DSM is
layered on top, we only obtain 5.4MB/s and 7.5MB/s forSocketComm
andJPMComm at 128KB, respectively, only obtaining 1/2 to 1/4 of
the peak bandwidth. This is primarily due to the overhead of object
locks onacquire, as well as the serialization overhead of objects.

We also measure the cost of barrier synchronizations(Figure 9).
Though at this time we adopt the shuffle exchange as a barrier syn-
chronization algorithm, arbitrary algorithm can be used. We ob-
serve that the cost is relatively small for 16 processors, but it in-
creases for 32 processors. We speculate that the slowdown is in-
cured by improper thread scheduling in the JVM, but we are still
investigating this.

Such low-level benchmarks do not give the whole story; indeed
the question is, will the loss in performance be negligible so that
we obtain fast and scalable DSM system. We investigate this in our
applications benchmarks.

Time[sec] IBM JDK1.3 Sun JDK1.3 C
LU (2048) 68.4 90.6 58.0

Water (4096) 126.2 327.8 98.0

Table 6: SPLASH2 on an uniprocessor

4.3 Benchmarking with SPLASH2 LU and Wa-
ter

We measure the performance of JDSM with SPLASH2 LU Ker-
nel and Water ported to JDSM as an example scientific application.
For benchmarking purposes, We have varied the matrix sizes from
the original SPLASH2 LU kernel from 1024 by 1024 to 2048 by
2048. We also compared the performance with uniprocessor ex-
ecution of the code for both C and the JDKs we have employed
(Table 6). We see that Java is competitive with C, although not en-
tirely equivalent. Comparing this uniprocessor performance with
Figure 11 and Figure 13 for 1 node, we also see that the cost of
DSM operations add less than 15% overhead to sequential code
under JIT compilation.

For execution on clusters, Figure 10 shows the results for IBM
JDK 1.3, Sun JDK 1.3.0 (HotSpotVM) and Sun JDK1.2.2+OpenJIT-
1.1.15, respectively. We observe that scalability is somewhat re-
stricted — for 16 nodes we are obtaining only approximately fac-
tor of 2 speedup. Looking at the time breakdown reveals that the
problem size is too small for the number of processors, and com-
munication dominates the computation time. In fact, much of the
communication time is barrier operation, and preliminary analysis
shows that, on the current Linux platform, poor thread scheduling
of native threads hinders the compute threads to be reactivated after
barrier synchronization. As such, we need to find synchronization
tricks to circumvent this problem. If we observe the LU Kernel
core computation (Interior), we see that IBM JDK1.3 achieves 3.7
times while Sun JDK1.3.0 achieves 4.7 times speedups.

By doubling the problem size to 2048× 2048 (computational
complexity per node increase by a factor of 8), we obtain the re-
sults as shown in Figure 11. Here, we obtain speedups of approx-
imately 5.8 to 7.0 times, and the interior speedup exceeds over a
factor of 10 for 16 processors. The performance saturated with 16
processors as the performance for 32 processors is equal to for 16

SPLASH LU Kernel (IBM 1.3, size:1024)

0

2

4

6

8

10

12

1 2 4 8 16 PE

E
xe

cu
tio

n
T

im
e[

se
c]

Total
Diagonal
Perimeter
Interior
Barrier

SPLASH2 LU Kernel (Sun 1.3.0, size:1024)

0

2

4

6

8

10

12

14

1 2 4 8 16 PE

E
xe

cu
tio

n
T

im
e[

se
c]

Total
Diagonal
Perimeter
Interior
Barrier

SPLASH2 LU Kernel (Sun1.2.2+OpenJIT, size:1024)

0

5

10

15

20

25

30

35

40

1 2 4 8 16 PE

E
xe

cu
tio

n
T

im
e[

se
c]

Total
Diagonal
Perimeter
Interior
Barrier

Figure 10: SPLASH2 LU Kernel (Matrix Size:1024) with SocketComm

SPLASH2 LU Kernel (IBM 1.3, size:2048)

0

20

40

60

80

100

1 2 4 8 16 32 PE

E
xe

cu
tio

n
T

im
e

[s
ec

]

Total
Diagonal
Perimeter
Interior
Barrier

SPLASH2 LU Kernel (Sun 1.3.0, size:2048)

0

20

40

60

80

100

120

1 2 4 8 16 32 PE

E
xe

cu
tio

n
T

im
e

[s
ec

]

Total
Diagonal
Perimeter
Interior
Barrier

SPLASH2 LU Kernel (Sun 1.2.2+OpenJIT, size:2048)

0

50

100

150

200

250

300

1 2 4 8 16 32 PE

E
xe

cu
tio

n
T

im
e

[s
ec

]

Total
Diagonal
Perimeter
Interior
Barrier

Figure 11: SPLASH2 LU Kernel (Matrix Size:2048) with SocketComm

SPLALSH2 LU Kernel (IBM 1.3, PMComm)

0

5

10

15

20

25

30

35

40

45

1 2 4 8 16 32 PE

E
xe

cu
tio

n
T

im
e[

se
c]

Total
Diagonal
Perimeter
Interior
Barrier

Figure 12: SPLASH2 LU Kernel (Matrix size:1024) on IBM
JDK1.3. with PMComm

processors. Since the speedup ratio increased as the problem size
increased from 1024× 1024 to 2048× 2048, further increase in
speedup ration is expected for realistic problem sizes.

As a reference, we attach the results of JPMComm (Figure 12).
Since JPMComm is still in development stage, we see that the per-
formance is unstable.

Finally, we show the measurement with the SPLASH 2 Water-
nsquared benchmark withSocketComm (Figure 13). The number
of molecules is 4096, the number of timesteps is 3. We obtain the
peak speedups of approximately 4.5 to 7.5 times for 16 processors.

5. RELATED WORK
As a precursor research, we have demonstrated a similar portable

DSM scheme with the OMPC++[19] system. OMPC++ translates
multithreaded SPMD C++ programs onto a software DSM imple-
mented with a MPC++ fine-grained object-based message-passing
language using the program transformation feature of OpenC++[5].
Portability of OMPC++ relies on MPC++, i.e., MPC++ is the tar-

SPLASH2 Water-nsquared (4096mols)

0

50

100

150

200

250

300

350

400

1 2 4 8 16 32 PE

E
xe

cu
tio

n
T

im
e

[s
ec

]

IBM JDK 1.3
Sun JDK 1.3.0

Figure 13: SPLASH2 Water-nsquared (4096mols) with
SocketComm

get language to compile the DSM code to. Although similar, it did
not feature pluggable DSM protocols and communication layers,
nor had to be concerned with technical restrictions of Java.

Although there are numerous DSM systems proposed for C since
the inaugural work by Kai Li[13], research on DSM systems for
Java have not been many, despite that Java’s natural model of par-
allel programming is shared memory+ threads:

Java/DSM[24] Java/DSM is an early Java DSM system, where it
modifies the underlying memory management of the ‘clas-
sic’ JVM so that it uses an existing C-based DSM system
TreadMarks[1]. This allows simple execution of Java on top
of clusters if TreadMarks is available; on the other hand, be-
cause of substantial modification to the memory system, ex-
isting JIT compilers cannot be used. Being a page-based sys-
tem, it is not clear if advanced copying garbage collectors on
modern VMs could be easily combined with TreadMarks.

cJVM[3, 4] cJVM is a DSM system being developed by IBM Haifa.

It achieves a single system image by modifying the JVM.
Contrasting to Java/DSM, it is a standalone JVM where mem-
ory management unit is object-based, and remote object in-
vocations as well as field accesses are handled with prox-
ies. cJVM features an impressive array of functionalities
to implement single system image, such as a thread model
which supports a transparent method shipping, distributed
class loading, and considerations for distributed I/O, etc. Such
features are necessary because cJVM is targeted for tradi-
tional server-style applications—being able to replace, say,
Java web server on SMPs with a clustered version. On the
other hand, as far as we know it does not facilitate a JIT com-
piler due to various changes within the JVM including mem-
ory management, object layout, and additional bytecodes.
Moreover, although no scientific benchmarks have been run,
we speculate that for such applications master-proxy model
will turn out to be slow. Finally, portability is a problem, as
it only runs on its customized JVM.

JESSICA[15] JESSICA is similar to cJVM in that the JVM is
modified to achieve single system image on a PC cluster. The
difference from cJVM is the support of load balancing via
thread migration, and the reliance on existing DSM system
for distributed memory management, as is with Java/DSM.
Again, performance and portability would become issues in
a wide-area, high-performance environment.

Hyperion[2] Hyperion translates Java into C code, and then em-
ploys existing DSM libraries and system threads to imple-
ment DSM in Java. DSM-related operations are inserted at
program transformation time. As is with JDSM, Hyperion
features multiple memory consistency algorithms/protocols,
as well as being able to employ various low-level communi-
cation layers. Portability does suffer due to the reliance on
the libraries as well as not being able to support Java’s fea-
tures fully (such as dynamic program loading, security, etc.),
but nevertheless it would be interesting to directly compare
the performance with JDSM, since on scientific programs
straightforward Java to C conversion could result in efficient
code.

Jackal[21] is a high-performance Java DSM system where a highly
efficient Java messaging runtime, Manta, is combined with
an efficient static compiler. Although there are no direct
comparisons with C, the early reports of Jackal performance
seems to compare in par with the IBM JDK1.3.0 JIT. Jackal
also performs various optimizations at compile time; it would
be interesting to compare the performance of Jackal with that
of JDSM for a common benchmark.

To summarize, all the systems suffer from assuming a customized
Java execution infrastructure; one cannot use arbitrary JVMs as is
possible with JDSM. Unless the underlying runtime supports it, it
may not be easy for the user to customize his code to employ what-
ever the appropriate underlying communication substrate is avail-
able for the cluster, nor being able to customize the consistency
protocols (except for Hyperion). Performance suffers due to the
fundamental lack of JIT compilers due to JVM modifications, or
straightforward translations, unless a custom compiler is employed
as is with Jackal.

Compared to such systems, JDSM does offers portability across
different JVMs as well as reasonable performance, exploiting ex-
isting Java infrastructure. JDSM programs has so far been run on 3
different JVMs with full JIT compiler support. The communication

substrates implemented or in development include Sockets, VIA on
Ethernet, VIA on Myrinet, and PM on Myrinet. Although there are
some performance issues to be resolved, JDSM is competitive if
not matching the performance achieved by C-based DSM systems.

The drawback of JDSM is that, it does not offer the single system
image to arbitrary Java multithreaded programs. Programs have to
be written in a certain SPMD style, and the nodes are used merely
as compute engines where external communication e.g., file I/O are
centralized and done remotely by the Client. For scientific compu-
tation, we feel that such a restriction is acceptable; for example, we
have observed that SPLASH2 programs are written in a way such
that they are readily portable to JDSM. On the other hand, JDSM
is not appropriate for transactional or web style multithreaded pro-
gramming. Although we plan on expanding the scope of programs
appropriate for JDSM, it is not clear whether such expansion will
sacrifice the portability and/or performance as currently enjoyed by
JDSM.

JavaParty[18] is a pure-Java system that allows transparent re-
mote object method invocation and object migration. JavaParty
shares the advantage with JDSM in that standard JVM platforms
can be employed, and as such is portable across a variety of plat-
forms. JavaPary relies on RMI for communication (and as a result
is a proxy-based system), and in fact offers its own version of (pure
Java) RMI to achieve higher performance, since the use of generic
RMI would be excessively slow. JavaParty is well-suited for pro-
gramming in the wide-area setting, as it features the full security
functionality of RMI; on the other hand as JavaParty is not a pure
DSM system, it is not clear how that would affect the program-
ming style w.r.t. SPMD programs, or how it will perform due to its
proxy-based design.

6. CONCLUSION AND FUTURE WORK
We proposed JDSM, a portable, Java DSM system for wide-area,

high-performance computing. We discussed the design issues for
designing such a system in Java, especially in the light of various
restrictions imposed by JLS. We then presented a concrete design
and implementation in the form of JDSM, describing how porta-
bility could be achieved at the expense of restricted programming
model. Test runs and Benchmarks show that JDSM is portable
across a variety of JVMs and execution platforms, and performance
is generally reasonable, with needs for improvements in some spe-
cific cases.

JDSM currently is in a sense a run-time library for DSM support—
we are currently developing a program translator to insert the nec-
essary field read/write check operations automatically. For this we
are currently investigating two possibilities; one is to use dynamic
program editing systems such as Javassist[6] to customize the pro-
gram offline or at load time. The other option is to employ JIT
compilers such as OpenJIT[16, 17] to perform JIT compile-time
customization. The former has the advantage of being able to adapt
to a variety of JVMs, since the result is still a valid portable Java
class file, while the latter could provide the full compiler infrastruc-
ture to optimize away the checks, etc. We could also use JDSM as
a backend to Java OpenMP bindings such as JOMP[11], in which
case the checks are inserted by the OpenMP frontend. As men-
tioned earlier, JDSM object allocation semantics must be modified
to accommodate OpenMP, however.

There are other technical challenges that need to be considered
for future work. We need to investigate the performance interac-
tions between the lower-level communication substrate and differ-
ent memory consistency algorithms and protocols, especially with
respect to scalability. We need to port more SPLASH2 benchmarks
as well as other programs to test the scalability of JDSM. More-

over, we must strive to alleviate some of the performance problems
as pointed out in the Benchmarking section, so that the system can
be distributed and deployed in a real-life setting. Security needs
to be enhanced, especially for allowing remote resources on Server
nodes to be accessed. Joining of multiple clusters in a secure man-
ner across high-bandwidth wide-area interconnect in the presence
of firewalls and private addresses must be coped with.

7. REFERENCES
[1] C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu,

R. Rajamony, W. Yu, and W. Zwaenepoel. TreadMarks:
Shared Memory Computing on Networks of Warkstations.
IEEE Computer, 29(2):18–28, Feb. 1996.

[2] G. Antoniu, L. Bouge, P. Hatcher, M. MacBeth,
K. McGuigan, and R. Namyst. Implementing Java
consistency using a generic, multithreaded DSM runtime
system. InParallel and Distributed Processing. Proc. Intl
Workshop on Java for Parallel and Distributed Computing,
volume 1800 ofLNCS, May 2000.

[3] Y. Aridor, M. Factor, and A. Teperman. cJVM: a Cluster
Aware JVM. InProceedings of International Conference on
Parallel Processing ’99, pages 31–39, Jun. 1999.

[4] Y. Aridor, M. Factor, A. Teperman, T. Eliam, and
A. Schuster. A High Performance Cluster JVM Presenting a
Pure Single System Image. InProceedings of ACM 2000
Java Grande Conference, pages 168–176, June 2000.

[5] S. Chiba. A Metaobject Protocol for C++. In Proceedings of
OOPSLA’95, pages 285–299, 1995.

[6] S. Chiba. Javassist — A Reflection-based Programming
Wizard for Java. InProceedings of OOPSLA’98 Workshop
on Reflective Programming in C++ and Java, October 1998.

[7] I. Foster and C. Kesselman. Globus: A Metacomputing
Infrastructure Toolkit.international Journal of
Supercomputer Applications, 1997.

[8] J. Gosling, B. Joy, and G. Steel.The Java Language
Specification. The Java Series. Addison-Wesley, 1996.

[9] A. Hori, H. Tezuka, and Y. Ishikawa. An Implementation of
Parallel Operation System for Clustered Commodity
Computers. InCluster Computing Conference ’97, Mar.
1997.

[10] http://www.viarch.org/. Virtual Interface Architecture
Specification, Dec. 1997.

[11] M. Kambites and J. Bull. JOMP – An OpenMP-like Interface
for Java. InACM 2000 Java Grande Conference, pages
44–53, Jun. 2000.

[12] P. Keleher.Lazy Release Consistency for Distributed Shared
Memory. PhD thesis, Dept. of Computer Science, Rice
University, Dec. 1994.

[13] K. Li and P. Hudak. Memory Coherence in Shared Virtual
Memory Systems.ACM Transactions on Computer Systems,
7(4):321–359, Nov 1989.

[14] T. Lindholm and F. Yellin.The Java Virtual Machine
Specification. The Java Series. Addison-Wesley, 1996.

[15] J. M. M. Matchy, C. Wang, F. C. M. Lau, and X. Zhiwei.
JESSICA: Java-Enabled Single-System-Image Computing
Architecture. In1999 International Conference on Parallel
and Distributed Processing Techniques and Applications
(PDPTA ’99), June-July 1999.

[16] S. Matsuoka, H. Ogawa, K. Shimura, Y. Kimura, K. Hotta,
and H. Takagi. OpenJIT —A Reflective Java JIT Compiler.
In Proceedings of OOPSLA ’98 Workshop on Reflective
Programming in C++ and Java, pages 16–20, Dec. 1998.

[17] H. Ogawa, K. Shimura, S. Matsuoka, F. Maruyama,
Y. Sohda, and Y. Kimura. OpenJIT: An Open-Ended,
Reflective JIT Compile Framework for Java. InProceedings
of ECOOP ’2000 - Object-Oriented Programming, number
1850 in LNCS, pages 362–387, Jun. 2000.

[18] M. Philippsen and M. Zenger. JavaParty — Transparent
Remote Objects in Java.Concurrency: Practice and
Experience, 9(11):1125–1242, 1997.

[19] Y. Sohda, H. Ogawa, and S. Matsuoka. OMPC++— A
Portable High-Performance Implementation of DSM using
OpenC++ Reflection. InProceedings of Reflection ’99,
LNCS 1616 Meta-Level Architecture and Reflection, pages
215–234, July 1999.

[20] H. Tezuka, A. Hori, Y. Ishikawa, and M. Sato. PM: An
Operating System Coordinated High Performance
Communication Library. In P. Sloot and B. Hertzberger,
editors,High-Performance Computing and Networking ’97,
volume 1225, pages 708–717. Lecture Notes in Computer
Science, Apr. 1997.

[21] R. Veldema, R. Bhoedjang, R. Hofman, C. Jacobs, and
H. Bal. Jackal: a compiler supported, fine grained
Distributed Shared Memory implementation of Java.
Technical report, Division of Mathematics and Computer
Science, Vijre University, Amsterdam, 2000.

[22] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E.
Schauser. Active Messages: a Mechanism for Integrated
Communication and Computation. InProceedings of the
19th International Symposium on Computer Architecture,
May 1992.

[23] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and
Methodological Considerations. InProceedings of the 22nd
Annual International Symposium on Computer Architecture,
pages 24–36, Jun. 1995.

[24] W. Yu and A. Cox. Java/DSM: a Platform for Heterogeneous
Computing. InACM 1997 Workshop on Java for Science and
Engineering Computation, volume 43.2, pages 65–78, Jun.
1997.

