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Abstract

Recent developments of global computing systems such
as Ninf, NetSolve and Globus have opened up the oppor-
tunites for providing high-performance computing services
over wide-area networks. However, most research focused
on the individual architectural aspects of the system, or
application deployment examples, instead of the necessary
charactersistics such systems should intrinsically satisfy,
nor how such systems relate with each other. Our compar-
ative study performs deployment of example applications of
network-based libraries using Ninf, NetSolve, and CORBA
systems. There, we discover that dedicated systems for
global computing such as Ninf and NetSolve have manage-
ment, progammability, and in does not suffer performance
disadvantages over more generic distributed computing ca-
pabilities provided by CORBA. Such results indicate the ad-
vantage of dedicated global computing systems over gen-
eral systems, stemming further basic research is necessary
across multiple systems to identify the ideal software archi-
tectures for global computing.

1. Introduction

Research on global computing systems such as Globus[3],
Legion[5], and Condor[14] are starting to proliferate thanks
to the advances in high-speed networking. However, al-
though some deployments in realistic situations have been
reported, such systems are still largely experimental, and
thus face various software challenges to see wide-spread,
practical use.

The fundamental question in such a situation is, to what
extent are such systems useful and/or required, as compared
to existing software infrastructures, especially those for dis-
tributed computing. Distributed computing has been stud-
ied for a number of years, resulting in industry standards
such as CORBA[11]. What are the concrete advantages
or disadvantages of new global computing infrastructures
compared to such existing infrastructures? Are there fea-
tures lacking in existing systems so as to make them insuffi-
cient or harder to use, or are we not merely ‘reinventing the
wheel’ while existing software infrastructures suffice?

In particular, we have been working on the Ninf

system[16, 17, 10], which is an RPC-based global comput-
ing system for creating numerical libraries that can be called
remotely in a transparent manner. There have been other
similar systems, such as Netsolve[2]. The purpose of such
system is not be a comprehensive layer to construct numer-
ous possible types of global computing applications; rather,
the intent is to provide ease-of-use interfaces to “globalize”
(parts of) existing applications. Thus, they can be consid-
ered a higher-level middleware serving more specific needs
and possibly built on systems such as Globus.

Both Ninf and Netsolve have been ‘criticized’ for provid-
ing an RPC infrastructure, which at a higher abstract level is
what essentially industrial RPC standards such as DCE and
CORBA already provide. In fact, there have been several at-
tempts at utilizing CORBA for scientific computing includ-
ing [8, 15, 6, 1]. What then, are the qualitative and/or quan-
titative advantages of Ninf and/or Netsolve, over existing
RPC infrastructures? The aim of this research is to perform
various systematic comparisons of RPC-based global com-
puting systems against existing distributed-computing RPC
systems, to investigate the viabilities of dedicated global
computing systems. This is the first such research we have
seen to date as far as we know, and we hope that other types
of objective comparisons can be made for other breeds of
global computing systems.

More concretely, we have investigated the ‘globaliza-
tion’ of an example numerical library as well as a real nu-
merical application (advanced Semi-Definite Programming
solver) under Ninf, Netsolve and two CORBA systems:
TAO[13] and OmniORB[12], and compared their perfor-
mance as well as ease of programming, maintainability, etc.
Performance-wise we have also studied the viability of sub-
stituting the underlying communication layer of Ninf with
Nexus library from Globus. We have found that not only
that Ninf has performance advantage over the CORBA sys-
tems, but also that both Ninf and Netsolve offer function-
alities not available in CORBA which greatly reduces the
globalization effort of existing libraries and applications.
Thus, we have been able to provide strong evidences for
viability of dedicated RPC-style global computing systems.



2. Brief Overview of Ninf and Netsolve versus
CORBA

Both Ninf and Netsolve are tailored for numerical com-
puting, offering network-based numerical library function-
ality via the use of RPC technology. Parts of applica-
tions making procedure calls can be replaced with high-
performance, remote equivalents in a transparent manner,
usually only a small modification to the call itself, without
any RPC data types, prologue/epilogues, IDL management,
etc.

Compared to existing, general-purpose RPC techniques,
this is not simple as it seems: for example, for local pro-
cedure calls most numerical data structures such as arrays
are passed by reference, so the numerical RPC mechanism
must provide some shared memory view of the arguments,
despite being a remote call.

Furthermore, no information regarding its physical size,
or which portions are to be used are maintained by the un-
derlying language. Rather, such information are passed as
parameters, which must be appropriately given by some
calling convention which must be obeyed by the applica-
tion. Also, the underlying language might not provide suf-
ficient type information to the RPC system, as the types in
the numerical RPC are somewhat ‘finer grained’, in that it
must contain info such as the leading dimension of the ar-
ray/matrix usage.

Moreover, both Ninf and Netsolve locate appropriate
computing resources on the network without explicit speci-
fication, achieving load balancing and fault tolerance. Vari-
ous info are contained in their specialized IDL language.

For example, in Ninf, if a client’s C program involved
calling a matrix multiply routine:

#define N 1000
double A[N][N], B[N][N], C[N][N];

matrix multiply(N, A, B, C);
// C = A * B

The procedure call in the last line is merely replaced
with:

Ninf call("matrix multiply",N,A,B,C);

Here, notice that:

1. Only one generic, polymorphic call (Ninf_call())
given as the basic API for RPC. This not only allows
simple one-line substitution of call sites to make the
call be remote, but also allows the clients not to main-
tain stub libraries or IDLs (see below).

2. The size of the matrix is given by N, but C (nor For-
tran) has no inherent ways to determine the size of
an array data structure, let alone which parts of the
matrix is used for more intricate algorithms.

3. Both C and Fortran assumes that array arguments A,
B, and C are passed by reference. Moreover, there
is no way to tell from the program that C is being

used as an output, while A and B are inputs to the
procedure.

4. The first argument of the call is the signature of the li-
brary or an application being called. For Ninf, unless
a URL is specified to target a particular library on a
host, the metaserver infrastructure selects an appro-
priate server from a set of servers under its mainte-
nance, depending on monitored network throughput,
server performance and load, and the availability of
the library.

In order to facilitate such flexibility for program glob-
alization and ease-of-maintenance on the client side, both
Ninf and Netsolve provide specialized IDLs that embody
sufficient information to implement the features described
above. For example, for Ninf, the IDL for the ma-
trix multiply would look like the following:

/* Ninf interface */
Define dmmul(long mode in int n,

mode in double A[n][n],
mode in double B[n][n],
mode out double C[n][n])
"description"
Required "libXXX.o" /* link libs */
/* lang. and call seq. */
Calls "C" dmmul(n,A,B,C);
Complexity n3̂
...

Here, the IDL embodies the necessary information to de-
scribe the in/out values of the call, just as is with the
CORBA IDL. Some additional information are present,
such as the computational complexity of the call with its
arguments. Moreover, the IDL compiler automatically de-
duces the dependencies of scalar parameters versus the ar-
ray indices. The example IDL describes only the simple
situation of shipping the entire matrix based on n; more
complex descriptions such as leading dimension, stride, de-
pendencies on linear combinations of multiple indices, etc.
are supported.

In both Ninf and Netsolve, the client does not maintain
any form of IDLs; rather, the client only contains a small
IDL interpreter. When a call is made, the metaserver (Agent
in the case of Netsolve) locates an appropriate server, and
lets it connect to the client. Given the signature of the call,
the server sends the compiled IDL to the client; the client
IDL interpreter in turn uses it to marshal and demarshal the
arguments in order to make the call. This is somewhat sim-
ilar to the Dynamic Invocation Interface (DII) of CORBA,
but is completely transparent on the client side, unlike DII.

For the underlying communication, Ninf and Netsolve
are very similar. Both employ Sun XDR encoding to mar-
shal arguments, and try to pack and send the numerical data
in a packed manner as a bytestream. One difference is that
Ninf packetizes data stream into 4KByte packets, whereas
Netsolve does not.

In summary, Ninf and Netsolve are asymmetrical sys-
tems in that the client and server side software packages be-
ing different. Not only this is the matter of size, but also for



functionality, as well as the necessary of maintenance; the
client side need not be updated to a limited degree even if
there is some protocol change, thanks to the IDL info being
uploaded dynamically. By contrast, CORBA and other typ-
ical RPC systems are symmetrical, in that the same software
packages are used for both client and the server. While this
provides better flexibility for example clients can become
servers and vice versa, it could put the complexity of the
management not only on the server but also on the client
side.

2.1. Systems Used for Benchmarking

Here are the systems used for benchmarking, consisting
of Ninf, Netsolve and two representative CORBA systems:

• Ninf: ver. 2.0 — The latest release of the Ninf system
available from http://ninf.etl.go.jp/.

• NetSolve: ver. 1.2 — The latest release of the Net-
solve system available from http://www.cs.
utk.edu/netsolve/.

• Ninf-on-Globus — A prototype implementation of
Ninf ported to run on top of Globus. More specif-
ically, the only changes made so far have been to
change the communication layer from TCP/IP to
Nexus; other features of Globus are yet to be utilized.
Still, this serves as a good vehicle for testing the com-
munication performance as well as how well Globus
interfaces to existing global computing systems.

• ACE: 5.0 + TAO: 1.0 — The CORBA system un-
der development led by Doug Schmidt at Washing-
ton University [13]. TAO is reputed for its high
performance[4] and various additional features such
as real-time. Although originally developed in the
academia, ACE/TAO has seen production use in sev-
eral projects. ACE/TAO is freely available for ftp
from http://www.cs.wustl.edu/
˜schmidt/TAO.html

• OmniORB: ver. 2.7.1 — OmniORB is another rep-
resentative high-performance ORB in wide use. It is
also freely available at http://www.uk.resea-
rch.att.com/omniORB/omniORB.html, in-
cluding raw performance numbers.

3. The Benchmark Global Computing Appli-
cations

Here we briefly discuss the benchmark applications. One
is the Linpack numerical library, which we have employed
as a test case for our previous benchmarking work on
Ninf[17]. The other is the SDPA application, which is a full-
fledged numerical application used in advanced operations
research. The former incurs substantial communication and
is predictable, representing worse (if not worst) case sce-
nario in terms of data transfer. The latter is representative
of a typical global computing application where data size is

significant, but computation itself dominates the computa-
tion time.

3.1. Overview of Linpack

For double precision Linpack, we execute the LU-
decomposition(dgefa) and backward substitution (dgesl) re-
motely. The overall execution time of Ninf call TNinf call

consists of communication time Tcomm + computing time
Tcomp . Given a Linpack matrix size n, they are:

Tcomm = Tcomm0 +
8n2 + 20n

B
(1)

Tcomp = Tcomp0 +
2/3n3 + 2n2

Pcalc(n)
. (2)

where Tcomm0 and Tcomp0 are the setup times for com-
munication and computation, respectively, B is the client-
server communication throughput, and Pcalc(n) is the lo-
cal Linpack performance on the server machine. Then,
Ninf call performance PNinf call can be completely pre-
dicted as follows:

PNinf call =
2/3n3 + 2n2

TNinf call
. (3)

Because Tcomm is O(n2) while Tcomp is O(n3), it becomes
computation dominant as n becomes larger. As a result, we
can expect that PNinf call will exceed the performance on
the client machine given sufficient Pcalc(n).

3.2. Overview of SDPA

SDPA (Semidefinite Programming Application)[9] is an
application to solve semidefinite programming problems,
which is an advanced form of optimization problems be-
yond linear programming in operations research. The
central algorithm is a form of interior-point method, al-
lowing fast solutions to very large problems not possi-
ble with previous methods. SDPA is used for various
optimization problems such as architectural optimization
in buildings, control-theoretic optimizations, and solving
large graph theory problems. SDPA is being developed
by a group led by Prof. Masakazu Kojima at Tokyo In-
stitute of Technology, independent of Ninf, and has set
several world records in solving combinatorial problems.
A standalone version is available for anonymous ftp at
ftp://ftp.is.titech.ac.jp/pub/OpRes/
software/SDPA/.

SDPA is designed as a standalone application; thus, it
reads the array describing the problem from a file described
with a certain format, computes, and stores the result into
an output file. Although this is a typical behavior of a stan-
dalone program, neither the original Ninf nor Netsolve had
the facility to directly cope with such form of input/output,
as the original intent was to ”ninfy” libraries as opposed
to applications. Moreover, the application reads/writes
to/from files at multiple, arbitrary places within the applica-
tion; thus, there is no single point of entry for data passing
as is with library procedures.



We have attempted two ways to solve the problem. First,
the new versions of Ninf and Netsolve support remote
file pointer abstractions. As long as all file I/O locations
are identified, this allows relatively systematic and sim-
ple change to the application to read/write with a remote
file. As a second solution, we wrote a wrapper library,
which transfers the necessary data into temporary files on
the server. The application is then invoked with filenames
of these temporary files. The results are returned in a sim-
ilar manner. Although this involves no change to the ap-
plication, it will incur extra overhead of entire file transfer.
Moreover, allowing such uncontrolled potentially persistent
data on the server might not be desirable. For CORBA, we
only used the wrapper solution.

For both solutions, for LAN, computation dominates the
communication time, even for relatively small problems.
For WAN setting, this is not necessary the case.

4. Characteristics Comparisons of Ninf, Net-
solve and CORBA for Global Computing
Applications

For global computing to become ubiquitous, we be-
lieve there are several requirements that could be termed as
“ease-of-use”. To be more technically concrete, we broke
this down into three characteristics of pertaining to the us-
age of each system. We discuss the observed qualitative and
quantitative characteristics of each, both from the client and
the server sides:

1. Ease of programming: what are the learning and pro-
gram modification efforts by the client and the server
programmers to “globalize” a library or an applica-
tion? (1C and 1S)

2. Ease of installation: How much footprint do installa-
tions require? How easy is it to install the system?
(2CS)

3. Ease of maintenance and reliability: Is the system
easy to maintain and update? Are the systems robust
to failure, especially in global setting? (3C and 3S)

(1C) Ease of programming (client side)

In order for RPC-style global computing systems to be-
come widespread, it is essential that the client-side pro-
gramming be very simple. This applies to both development
of new programs as well as modifying existing programs for
delegating parts of their execution to remote libraries. For
both Ninf and Netsolve, invocation of remote computing
service is almost identical to local procedure calls, requir-
ing essentially a cosmetic change to the call itself (in fact,
Ninf and Netsolve themselves are almost identical, as such
it is trivial to port one client application to another). More
concretely, for each instance of local procedure call

func(arg1, arg2, ...);

that the client wants to invoke remotely, all he needs to do
is to change it syntactically to:

Ninf call("func",arg1,arg2, ...); (Ninf)

netsl("func()",arg1,arg2, ...); (Net-
solve)

Moreover, the client does not need to maintain any of the
stub code for the RPC; all he needs to do is to link his appli-
cation with the generic Ninf or Netsolve library, which do
not need to be changed for different remote libraries being
called 1. The complexity of the remote call is effectively
encapsulated on the server side.

Contrastingly, for CORBA, the complexity of RPC call
is not encapsulated on the server side, nor in the IDL of the
call. One has to understand the various CORBA types de-
fined for each language binding. There has to be various
declarations, pre/post processings, and user-level type con-
versions made before a call can be made. Moreover, the
defined data types for differ for each CORBA system; thus,
not only that the client program has to be modified consid-
erably, but also a client code is not portable across CORBA
systems2

More concretely, for CORBA, the client user has to gen-
erate the stub code from the latest IDL, and then must write
his code in accordance with the code structure of the stub.
Below is an outline of this in TAO:

#include ‘‘LinpackC.h’’
CORBA::Long lda, n;
CORBA::Environment env;
CORBA::ORB var orb =

CORBA::ORB init(argc,argv,0,env);
CORBA::Object var object =

orb->string to object(ior,env);
Linpack var s =

Linpack:: narrow(object.in(),env);
s -> linpack(a,lda,n,ipvt,b,info,env);

Below are the number of lines that the client had to dedi-
cate to make a remote call for each of the benchmarks. Note
that this is still a very simple case; in cases where numer-
ous remote calls are made from within the application, the
effects will be much more substantial.
(1S) Ease of programming (server side).

The efforts required for ‘ninfying’ a library or an appli-
cation is similar. For libraries, both Ninf and Netsolve re-
quire no modification to the library code itself, as long as
the library employs the standard data types (i.e., scalars and

1One caveat for such genericity is that static type checking of the argu-
ments are not directly available. Thus, if the user makes a mistake in the
type or the arity of the arguments, the result is a dynamic error, or could
even crash the client. Fortunately, this could be circumvented in languages
such as C, where macros and function prototype declarations are available;
the technique is to essentially create a header file containing “wrapper” that
defines a function which delegates the call to the generic Ninf call.

2One could argue that with IIOP, a client of one CORBA system can
be connected to a server of another CORBA system. While this is true
and works in practice, most high-performance ORBs support private high-
performance protocols if the client and the server are of the same system,
bypassing IIOP. The impact of performance loss by the use of IIOP is dis-
cussed in Section 5.



Linpack SDPA

Ninf 1 1
NetSolve 1 1

TAO 14 42

Table 1. Number of lines for making a remote
call (client)

arrays); rather, all the information regarding the call is writ-
ten in the IDL, and the generated skeleton code is merely
linked with the library code. For CORBA, one has to write
not only the IDL, but what effectively is a glue wrapper code
following the structure of the generated skeleton code from
the IDL. Moreover, as was mentioned, CORBA IDL does
not support features essential in numerical matrix shipping
such as leading dimension, strides, dependencies between
the arguments, etc. Thus, one has to program such special
features in an explicit way in the wrapper code.

In comparing the IDLs, Ninf resembles ANSI C and is
relatively simple to write. CORBA is similarly simple, but
lacks the ability to describe some numerical features as de-
scribed above. Netsolve IDL is a little more complex, how-
ever gives finer-grained control to the user. Figures 1 and
2 are extracts of example IDLs for Linpack. In practice,
the size of Ninf IDL is 247 bytes, Netsolve is 711 bytes.
CORBA is as small but when one includes the necessary
stub code the user has to write, the total size increases to
3044 bytes.

Figure 1. Ninf IDL

Figure 2. NetSolve IDL

(2CS) Ease of installation (client and server)

The system must be easily installable—this is especially
important on the client, since the client user usually will in-
stall the client on his desktop machine, just as he would a
web browser or a telnet client. It is also important to some
degree on the server side for obvious reasons. Since such
characteristics are difficult to quantify, we compare the size
of the installed package, plus the time required for the in-
stallation.

Table 2 shows the (a) maximum amount of installation
space required, including source, compiled binaries, docu-
ments, demos etc., and (b) the amount of binaries and li-
braries required for operation. We see that TAO is substan-
tially large due to the numerous robust features it provides
for general distributed computing as well as different lan-
guage bindings. This is understandable, as CORBA must
meet the needs of variety of distributed computing needs,
but still is substantial, especially for the dedicated purpose
of numerical global computing. OmniORB is seemingly
small in that regard; in fact the operational size of the server
is smaller than Ninf or Netsolve.

Still, for both Ninf and Netsolve, the distinguishing fac-
tor from both CORBA implementations is the small opera-
tional sizes of the client. This is primarily due to fact that:

• Ninf and Netsolve are asymmetrical systems in that
the client and server are separate software packages,
with much of the complexity (such as IDL manage-
ment) residing on the server side and the metaserver
(Agent in Netsolve), and

• Ninf nor Netsolve is more specific to numerical
global computing, and does not support all the robust
features for distributed of CORBA, such as IIOP in-
teroperability, object support including interface in-
heritance, etc. It remains to be seen if Ninf or Net-
solve provide the sufficient features for most likely
application scenarios for RPC-style global comput-
ing.

Client InstallClient OprServer InstallServer Opr

Ninf 2.0 MB .56 MB 11 MB 5.6 MB
NetSolve 5.0 MB .95MB 20 MB 16 MB

TAO 700 MB 37 MB 700 MB 37MB
OmniORB 30 MB 2.8 MB 30 MB 2.8 MB

Table 2. Installation Sizes of Each System

By all means installation size is not the only parameter
to indicate the ease of installation. Larger installation size
could mean more features, which could especially be impor-
tant for generic tools such as CORBA. Still, we stress the
importance of the client-side especially being lightweight.
We do note that the system complexity will increase as code
size grows. This complexity will burden the programmer
side if it is to be hidden from the user (consider the com-
plexity of Windows installer). Instead, by simplifying what
is to be loaded especially on the client side, the entire sys-
tem will become manageable, more robust, and thus possi-



bly more widely used. 3

(3C) Ease of maintenance and reliability (client side)

The small size of the client realized by the lightweight
client has also another advantage over symmetrical systems.
As described earlier, both Ninf and Netsolve has a very
lightweight client supporting generic remote calls, allow-
ing IDLs to be maintained solely on the server side. Thus,
the client never needs to update his client package, unless
drastic changes are made to the system. Even if the API
of a particular call is changed, or even if some protocol el-
ements are added or modified such that the IDL compiler
generates the stubs differently, the client does not have to
update the client package. In CORBA, the IDLs must be
shipped to all the clients, and the IDL compiler be run, pos-
sibly the client wrapper code for stubs rewritten, everything
re-linked etc. One could alternatively use the DII interface
in CORBA, but its usage is rather kludgey.

This characteristics is in principle similar to Java
Jini[7]4, and is of effective advantage for global-scale dis-
tributed computing. In such a setting, to update all the peers
in the system in sync would be very difficult, if not impos-
sible endeavor. Rather, what modifiable parts of the system
should be dynamically updated on demand . Jini allows this
by downloading all the protocol code dynamically upon es-
tablishment of a connection. Ninf and Netsolve are little
more conservative, in that the downloaded code is not a
Turing-complete language, but rather small languages spe-
cially tailored for argument marshaling for numerical com-
puting. This is a tradeoff issue; while in Jini one can al-
ter the protocol completely, one must have the complete
Java runtime environment underneath, including the stan-
dard class libraries. Ninf and Netsolve allow for a smaller
client, at the expense of less degree of freedom for updates.

(3S) Ease of maintenance and reliability (server side)

Maintenance on the server side is similar for Ninf, Net-
solve, and CORBA systems, but so far as we have seen, only
Ninf allows registration of new libraries while the server is
active. For both Netsolve and CORBA systems we have
studied, one has to bring down the server. Such live reg-
istration is a desirable property where the client might be
anonymous, and thus it could be difficult to notify every-
one of the change. It is unlikely that this is a fundamental
restriction in Netsolve or CORBA systems, but this is one
useful feature one should keep in mind when designing sys-
tems where the users may be anonymous.

3For fairness, we do also note that some operating systems or popu-
lar middleware employ CORBA as an underlying object system, just as is
with Microsoft Windows embody DCOM. For example, Linux GNOME
desktop environment employs the Orbit CORBA system as the underly-
ing ORB. It remains to be seen if a particular CORBA system becomes a
ubiquitous system infrastructure.

4In fact, both Ninf and Netsolve predate the development of Jini

5. Performance Evaluation

We now compare the performance of Ninf, Netsolve and
the CORBA systems for the benchmark applications in both
LAN/WAN settings.

5.1. Evaluation Environment

We employed the Ultra 60 (UltraSparc2 300MHz x2,
256MB) as the test server located at Tokyo Institute of Tech-
nology (TITECH)in Tokyo, Japan. The client was an Ultra2
(UltraSparc2 200Mhz x2,256MB) interconnected by a 100
Base-T network for the LAN setting. For the WAN setting,
the client SparcStation5 (MicroSparc2 85Mhz, 32MB) was
located at the Electrotechnical Laboratory approximately 90
kilometers away, The average ftp throughput between the
TITECH server and the ETL client was measured to be ap-
proximately 3 Mbps, largely stable irrespective of time of
day. We did most of the benchmark runs during nighttime
over the course of two weeks, with some SDPA benchmarks
requiring over an hour each.

5.2. Evaluation Methodologies

The two aforementioned applications have been em-
ployed in the evaluation. The time and communication
complexity of Linpack have already been discussed. In the
measurements, the performance is given in MFlops, which
includes the communication time necessary to send the ar-
guments and the results between the client and the server.
For SDPA, since the computational complexity cannot be
easily determined from data size, we took the standalone
benchmark result of the application, and normalized the re-
mote compute time with respect to the standalone time. Ad-
ditionally, data transfer time was obtained from the aver-
age bandwidth, and subtracted from the total compute time
when required.

We tested Ninf and Netsolve under default setting pro-
vided by the standard distribution, and also tuned them so as
to attempt to achieve best performance. For Ninf, we turned
off the metaserver for measurement stability. For both Ninf
and Netsolve, multiple benchmarks were taken varying the
following parameters:

· Ninf packet buffer size (Ninf only, default = 4KBytes),
· Kernel buffer size (For Ninf, in sync with Ninf packet

buffer size. For Netsolve, only kernel buffer size),
· The NODELAY option on/off (to attempt to disable the

Nagel algorithm),
· For SDPA, versions which utilize the remote filepointer

and versions which do not.

Unless otherwise noted, the results indicate the best per-
formance obtained.

5.3. Evaluation Results

5.3.1. Linpack Results

We first illustrate the performance results for Linpack in the
LAN setting. Figure 3 shows the effective measured per-
formance in MFLOPS, and Figure 4 shows the measured



communication throughput. The X-axis of the graphs show
the size n of the n × n matrix.
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In general for LAN, performance differences between
each system is quite small for larger problem sizes. This
is understandable since compute time will dominate in that
situation.

For smaller problem sizes, Ninf seems to be slightly dis-
advantaged over the ORB systems that are performing well,
even for IIOP communications both ways (TAO client +
OmniORB server versus OmniORB client + TAO server).
Ninf-on-Globus performs slightly less than Ninf or ORBs,
and Netsolve does not perform well. The reason becomes
apparent when we observe the communication throughput
in Figure 4; Ninf and both ORBs perform almost iden-
tically, achieving maximum throughput for 100Base-T of
10MBytes/sec around problem size 1000. Ninf is slightly
slower on smaller problem sizes. By contrast, Ninf-on-
Globus and Netsolve only achieve the peak of 6MBytes/sec.
The reason the throughput is poor for Netsolve for small

problem sizes is mostly attributed to the overhead of Agent,
which cannot be bypassed.
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We next show the results for Linpack in the WAN setting.
Figure 5.3.1 shows the effective measured performance in
MFLOPS, and 6 as well as 7 (magnified) show the measured
communication throughput.

In general, because of the slower link and higher latency,
communication becomes more dominant, affecting the per-
formance in greater degree compared to the LAN setting.
Thus for both Ninf and Netsolve under WAN setting (also
for LAN), tuning became crucial. We could not tune the
CORBA implementations, which is the subject of further
investigation.

For Ninf, the default 4K buffer sizes yield the best perfor-
mance and throughput compared to larger sizes. The addi-
tion of NODELAY increased performance slightly. For Net-
solve, the default setting without NODELAY proved to be
the best. Figure 8 shows how the change in the buffer size
alters performance for Ninf.
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TAO closely matches the best Ninf (with NODELAY).
For TAO client → TAO server communication, TAO uses a
private, high-performance communication protocol, which
seems to match the efficiency of dedicated Ninf protocols
for sending numerical sequences. Unlike the LAN set-
ting, The TAO client → Omni server5 using IIOP was
slower. This resulted in slower overall performance, even
for larger problem sizes where computation becomes dom-
inant. Graph indicates that even for size 1600, the perfor-
mance is impacted by approximately 20%.

Netsolve performed consistently less than Ninf or TAO,
being about the same as the IIOP case. In fact, this was the
case for the optimal case (which was the default) we have
been able to obtain with the tuning above. This is somewhat
mysterious to both us and the Netsolve team, since the ca-
pabilities, code structure, and the protocols of both systems
are similar, and we have not been able to pinpoint the case.

5We could not perform Omni-to-omni benchmark in WAN setting due
to unresolvable compilation error on the ETL end; we expect to fix this
problem and by the time of publication.

We are conducting some additional tests with Netsolve.
So far we have found that modifying the lower-level net-
working code of Netsolve to packetize data in the same
manner as Ninf does not help performance. In fact, we have
reasons to believe that the wire transfer time is almost the
same for both systems, and the speed difference could be
attributed to some other, unknown overhead. In fact some
of the more recent experimental versions of Ninf have ex-
hibited similar performance slowdown. As such, we are still
investigating the exact cause of the discrepancy between the
performance of Ninf vs. Netsolve, and some of the more
recent (and more complex) experimental versions of Ninf.
Such an investigation we believe, could be generally bene-
ficial for higher performance for all systems.

In contrast to LAN, when we observe the bandwidth
against raw TCP throughput, the best tuned result (16KByte
kernel buffer size + NODELAY) which achieves approxi-
mately 6.5Mbps, we see that both Ninf and TAO barely
achieves 1 Mbps. This could be due to various reasons, such
as marshaling cost, non-optimal use of TCP read/write ver-
sus kernel buffer, etc., but we have not pinpointed the prob-
lem. One hint is the discrepancy between the buffer sizes for
optimal performance for raw throughput (16KBytes) versus
Ninf (4KBytes). In fact, Ninf was significantly slower when
the kernel buffer size was set to 16KB.

5.3.2. SDPA Results

We show the results for SDPA for LAN setting in Figures 9
and 10, and the WAN setting in Figures 11 and 12.

For all of the systems, execution time was almost equiv-
alent, both for LAN and WAN, for very large problems re-
quiring almost an hour run. The throughput graphs, how-
ever, are vastly different among the systems. For LAN, the
Ninf system with the filepointer support is fastest, followed
by the CORBA systems. Here, as was with Linpack, IIOP
performed quite well, almost matching the private proto-
cols. Ninf without the remote filepointer support is sig-
nificantly slower than Ninf, or surprisingly, even Ninf-on-
Globus. Netsolve performance was slower, hinting that wire
transfer time is not the actual factor for performance differ-
ence. Here again the remote filepointer support excelled
performance.

For WAN, communication different was much smaller.
As is with Linpack, Ninf (with filepointer) and TAO formed
the faster group, while Netsolve, TAO→OmniORB, and
Ninf-on-Globus formed the slower group, but the through-
put difference was less than a factor of two. The tuning
parameters of Ninf and Netsolve were the same as Linpack.
Figure 13 shows the effects of throughput tuning for Ninf
and Netsolve.

6. Conclusion and Future Work

We performed side-by-side comparisons of RPC-based
numerical global computing systems, Ninf and Netsolve,
against existing high-performance CORBA systems, for
two types of global computing applications, Linpack which
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is representative of a typical network library, and SDPA,
which is representative of a standalone, long-running ap-
plication to be “globalized”. This is the first such research
to be done, and despite that there are much more compar-
isons that could be performed, we feel that we have identi-
fied some key issues relevant to the advantage of developing
dedicated global computing systems.

Qualitative as well as quantitative comparisons of the
system characteristics revealed advantages of Ninf and Net-
solve over CORBA systems. This is primarily due to the
fact that Ninf and Netsolve are tailored for numerical global
computing, whereas CORBA is a more general-purpose
RPC system. Some salient features of Ninf and Netsolve
includes support for globalizing typical numerical RPCs,
dynamic IDL management, and asymmetry of the systems.
This resulted in both Ninf and Netsolve being easier sys-
tem to program and maintain, for the applications we have
looked at.

Performance measurements of the systems revealed that,
for larger problems, the overall application performance
was not very different between the systems. This is pri-
marily due to the fact that, for larger problems sizes, the
application became computation dominant. For WAN set-
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ting, however, there was up to 20% performance difference
for Linpack.

Also, although Ninf as well as the CORBA systems per-
formed well in LAN setting, for WAN setting there was
significant headroom for throughput improvement. This is
despite considerable tuning effort attempted, such as mod-
ification of the kernel buffer size, NODELAY specification,
etc. Netsolve was consistently slower, and we are conduct-
ing further investigation of the cause.

IIOP performance was surprisingly competitive for the
high-performance CORBA systems we have tested. Al-
though this may not hold for all CORBA systems, never-
theless this is an additional benefit for CORBA, since high
interoperability does not come at the expense of high per-
formance. Thus, by all means CORBA should not be writ-
ten off, but certainly it could benefit from the characteristic
advantages of dedicated systems such as Ninf and Netsolve.

For future work, we would definitely like to increase the
number and the types of applications subject to benchmark-
ing. In particular, an application that calls multiple remote
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libraries in an asynchronous ways, or those that employ
more complex data types, are highly desirable. Also, other
aspects of global computing systems should be covered to
qualify the advantages of broader global computing plat-
forms such as Globus, Legion, AppLes, Condor, etc.
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