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Abstract:  
MPI is gaining acceptance as a standard for message-passing in high-performance computing, due 
to its powerful and flexible support of various communication styles. However, the complexity of 
its API poses significant software overhead, and as a result, applicability of MPI has been 
restricted to rather regular, coarse-grained computations. Our OMPI (Optimizing MPI) system 
removes much of the excess overhead by employing partial evaluation techniques, which exploit 
static information of MPI calls. Because partial evaluation alone is insufficient, we also utilize 
template functions for further optimization. To validate the effectiveness for our OMPI system, we 
performed baseline as well as more extensive benchmarks on a set of application cores with 
different communication characteristics, on the 64-node Fujitsu AP1000 MPP. Benchmarks show 
that OMPI improves execution efficiency by as much as factor of two for communication-
intensive application core with minimal code increase. It also performs significantly better than 
previous dynamic optimization technique. 
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1. Introduction 

With the proliferation of MPPs and NOWs, standardized message passing interfaces such as PVM and 
MPI [6] are becoming increasing popular. They are used not only for writing new parallel applications, 
but also as a effective tool for parallelizing existing applications, as well as serving as a runtime message 
passing library for implementations of parallel languages, such as HPF. 

Since MPI was announced two years ago, it is gaining increasing popularity, thanks to its powerful & 
flexible support of communication, such as different communication contexts via communicators, various 
synchronous/asynchronous communication modes, derived datatypes, group communications, etc. There 
have been a number of recent implementations of MPI as well. But, due to the inherent design of its API, 
the incurred software overhead is large, even compared to previous message passing libraries such as P4 
or PVM. This is especially problematic when the hardware latency is low, because much of the benefits of 
fast networks are lost because of software overhead. This phenomenon not only applies to MPPs, but also 
to NOWs, where the availability of low-cost, low-latency networks such as the Myrinet is making low-
latency communication possible.  

As a result, application area of MPI has been somewhat restricted to regular, coarse-grained, and 
computation-intensive applications. In other words, attaining efficiency in fine-grained, irregular 
problems using MPI has been difficult. This is unfortunate, since standard message-passing libraries 
should encompass a wide variety of platforms and applications, including non-numerical applications, 
which are typically irregular and communication intensive.  

There has also been a string of work that has focused on reducing software overhead in message passing 
as much as possible [9]. Notably, with Berkeley Active Messages, the incurred software overhead is in the 
order of several microseconds. The drawback is the relative lack of power and flexibility, and portability 
to some extent. Programming with native Active Messages library is much more difficult compared to 



programming with MPI, because primitives are 'lower-level'. Furthermore, current Active Message does 
not support OS-level multithreading nor network heterogeneity well1.  

The question then is, would it be possible to have the best of both approaches, i.e., would it be possible to 
have a low-latency, high-performance message passing library, while retaining the flexibility and power 
of MPI? The answer is effectively yes---in this paper, we present our OMPI (Optimizing MPI) system, 
where much of the software overhead is eliminated with partial evaluation techniques, attaining 
performance which approaches that of Active Messages. C programs that contain MPI function calls are 
statically analyzed in order to determine which arguments are static, and specialized with respect to those 
arguments. Because the current partial evaluation techniques are not sufficiently powerful to eliminate all 
the software overhead, we propose a technique where partial evaluation is combined with selection of pre-
optimized template functions. As a result, OMPI guarantees generality and portability of MPI programs, 
while allowing architecture-specific optimizations to be incorporated at compile-time. OMPI itself is also 
semi-portable, in that only template functions need to be reimplemented for a particular architecture. This 
is in contrast to traditional research on MPI implementation, where optimizations were highly 
architecture-specific.  

To validate the effectiveness of our OMPI system, we performed some baseline benchmarks, and more 
extensive benchmarks on a set of application cores with different communication characteristics, on the 
64-node Fujitsu AP1000 MPP. The basic point-to-point latency improved from 338 microsec. to 76 
microsec., for communication intensive CG solver core, speedup of over a factor of two has been 
achieved. Even compared to traditional run-time optimization employing dynamic caching techniques, our 
OMPI system was consistently faster. The results show that our system is effective for various patterns of 
communication, significantly reducing the software overhead.  

The rest of the paper is as follows: Section 2 analyzes the source of software overhead in MPI and 
opportunities of elimination. Section 3 describes our OMPI system. Section 4 presents results of the 
benchmark. Section 5 covers some related work, and we conclude in Section 6.  

2. Analysis of Software Overhead in MPI and Opportunities of Elimination 

We first analize the source of the software overhead, identifying problems pertinent to message passing 
libraries in general, and those that are specific to MPI. We then investigate the opportunities for 
optimization by removing the overhead when static information is exploited. 

2.1. General Overhead 

For most message passing libraries, information on messages can only be obtained at runtime. As a result, 
the receiver's buffer must either be somehow allocated dynamically, and the received message must be 
copied into the buffer. More specifically, the receiver has only two alternatives: 

� If receive is posted before the actual message arrives, then the message is directly written into 
the receiver's buffers and not copied.  

� Otherwise, the system allocates a buffer, and messages are written into the buffer; when receive 
is subsequently called, the contents of the system buffer is copied into the user's buffer.  

Techniques to reduce the overhead typically has the sender specify the buffer address directly, such as is 
possible with the original Active Messages. However, software flexibility is lost as a result; for example, 
it will not be possible to filter message reception with message tags, as is possible with most message 
passing libraries. Also, programs must be strictly SPMD, in that addresses of functions must be the same 
among all the nodes. 

2.2. MPI-Specific Overhead 

The general philosophy of MPI design is to provide a rich set of features applicable to a variety of parallel 
applications. The characteristics of the resulting API of MPI is to have numerous arguments which are 
known to MPI only at runtime. For example, even the simplest point-to-point send/receive has six 
arguments, namely: 1) the address of the send/receive buffer, 2) message size, 3) message type, 4) ranks 



of sender/receiver processes, 5) message tag, and 6) communicator. While such API complexity allows 
sophisticated support of different application communication patterns, the MPI library embodies the 
overhead of dynamic allocation of work area, error checking and handling, etc., in addition to the general 
overhead of message passing libraries. 

MPI_Send(buf, count, type, dest, tag, comm) 
     void *buf;              /* Pointer to Send Buffer */ 
     int count;              /* Data Count */ 
     MPI_Datatype datatype;  /* Data Type */ 
     int dest;               /* Rank (Target Process) */ 
     int tag;                /* Message Tag */ 
     MPI_Comm comm;          /* Communicator */ 

MPI_Recv(buf, count, type, source, tag, comm, status) 
     void *buf;              /* Pointer to Receive Buffer */ 
     int count;              /* Data Count */ 
     MPI_Datatype datatype;  /* Data Type */ 
     int source;             /* Rank (Target Process) */ 
     int tag;                /* Message Tag */ 
     MPI_Comm comm;          /* Communicator */ 
     MPI_Status *status;     /* Status */ 

Figure 1: Example of MPI Calls MPI_SendMPI_SendMPI_SendMPI_Send, MPI_RecvMPI_RecvMPI_RecvMPI_Recv  

Here we identify the 4 sets of parameters, which we call communication sets, that are necessary for 
message passing. As described below, MPI incurs additional overhead compared to traditional, simpler 
message passing interfaces such as PVM, in order to obtain the communication sets. Later on we describe 
how OMPI utilizes the communication sets to optimize MPI code. 

CommBuf:  
Obtained directly.  

CommSize:  
Obtained from datatype and count. When datatype is a derived datatype, the processing 
becomes more complex because the datatype structure must be traversed to obtain the exact size of 
each unit of a datatype.  

CommNode:  
The physical node-id is obtained from the rank of the given process group specified by the 
communicator comm. When the process group is not the default, which contains all the nodes, 
some table lookup must be performed to obtain the rank --> node-id mapping.  

CommTag:  
Because MPI can specify both the tag argument and the tag specified by the communicator 
comm, the two must be combined to generate a unique tag.  

2.3. Analysis of Opportunities for Eliminating Software Overhead 

The problems with previous techniques have been that there are limitations in attempting to eliminate 
software overhead relying only on dynamic information available at runtime. By exploiting static 
information available at compile time, we can eliminate much of the software overhead as we will show in 
Section 3. Here, we analyze the various types of software overhead in detail, and discuss the opportunities 
of their elimination by utilizing static information. 

The source of software overhead due to lack of exploiting static information can be categorized into the 
followings:  

� Inapplicability of inter-buffer copy elimination techniques as seen in Active Messages.  
� Cost of dynamic buffer allocation/deallocation management.  
� Necessity of executing error checking and other dynamic conditionals.  



� Cost of computing the communication sets themselves.  

Thus, static determination of various MPI parameters will allow us to reduce the overhead by eliminating 
the computations costs incurred above. We further relate the cases when static information is known on 
the arguments and which of the costs above can be eliminated: 

Case 1 --- When CommSize (datatype and count) are known: 
� Elimination of run-time checks and computation of message size: 

This is especially effective for derived datatypes. Even for primitive datatypes, error checking can 
be eliminated. 

� Static allocation and re-use of message buffers: 
When the DMA controller is employed for non-blocking transfers other than the ready mode, the 
system will require its own message buffer. By allocating or scheduling the re-use of such buffers 
statically, overhead involving buffer management can be drastically reduced. 

� Selection of optimal message passing procedures: 
Various optimization techniques could be employed. As an example, packetization of small 
messages can be simplified; selection of push-based vs. pull-based messaging can be determined 
by message size2. When fast message passing hardware is available, such as Line-sending in 
AP1000 [4], sender buffering could be eliminated, etc. 

� Simplification/Elimination of Error Checking/Handling: 
There are other benefits besides elimination of error checking/handling code. For example, 
argument range errors could be detected at compile time, increasing system robustness. When 
there is reliable transport for short messages, the heavyweight transport that handles all message 
sizes could be bypassed. 

Case 2 --- When CommNode (the sender/receiver rank and the communicator) are known 
� Elimination of runtime computing of node-id: 

Compared to simpler message passing libraries such as PVM, taking the correspondence of 
communication contexts is a significant part of MPI message passing, as mentioned earlier. Much 
of the overhead can be eliminated if both rank and the communicator are known. Even if the rank 
is not known, search procedures could be specialized to a fixed rank number, etc. 

� Conversion of self-sending into local memory copy/Elimination of handlers: 
In order to take the correspondence between the sender and the receiver, communication contexts 
(usually called handlers) are created. For self-sending, which typically occurs in an SPMD 
program, message passing could be converted into local memory copy, and such handlers need not 
be created. 

� Simplification/Elimination of Error Checking/Handling: 
For the same reasons mentioned above. 

3. Optimizing MPI programs using partial evaluation 

In order to exploit the optimization opportunities analyzed in Section 2, we propose OMPI: a system 
which optimizes MPI programs using partial evaluation techniques. OMPI works as a preprocessor to 
programs written in C + MPI, is semi-portable, and do not require customized C compilers, operating 
systems, or hardware. As the benchmarks will later show, our proposal eliminates much of the overhead 
analyzed so far, achieving the speed approaching Active Messages, while retaining the generality, 
flexibility, and portability of the MPI. 

3.1. Overview of optimization architecture of OMPI 



Optimization architecture of OMPI, which already has been implemented as a prototype on AP1000, 
performs the following optimizations automatically, without end-user interventions: 

1. Static analysis is performed on the end-user source program written with C + MPI, obtaining static 
information of the arguments passed onto MPI.  

2. Using partial evaluation techniques, the source program is specialized with respect to the MPI 
library functions.  

3. The specialized source program is further optimized so that static information is fully exploited.  

Unfortunately, we have found that the static analysis/partial evaluation techniques available today are not 
sufficiently powerful to effectively eliminate software overheads. Thus, we propose an alternative 
approach that requires machine-specific optimizations to be prepared by the MPI implementor for the 
particular machine. To be more specific, pre-specialized functions, called template functions, that 
correspond to each case of possible static/dynamic arguments, are prepared. Then, instead of automatic 
specialization of MPI functions, we instantiate the template functions with current function argument 
information, and inline expand the instantiated function. As we shall see, this technique works quite well 
in practice. Furthermore, it has the added benefit of being able to incorporate optimizations that are not 
possible with straightforward partial evaluation techniques. The drawback is that template functions must 
be tailored for each specific architecture; however, the burden of doing so could be substantially resolved 
by re-use of existing code and employing tool support. 

3.2. Using SUIF for static analysis and partial evaluation 

OMPI is currently built by extending the SUIF compiler toolkit proposed by Monica Lam et. al. at 
Stanford University [5]. The toolkit consists of a definition of an intermediate program representation 
called SUIF (from where the name is derived), and a set of extensible compiler passes. Each pass takes 
SUIF representation of the program, and outputs SUIF representations with additional information 
regarding the performed analysis, and/or a result of performing program transformation. The library is 
implemented as an object-oriented class framework using C++, and is extensible using inheritance. One 
could add new information to the SUIF node objects, and implement new passes by building on top of 
existing passes. 

As mentioned above, OMPI is built as a preprocessor which passes the optimized MPI program to the 
backend C compiler of the target machine. We have found SUIF to be well-suited for the purpose, saving 
us considerable development time and achieving portability at the same time. Furthermore, as other 
research groups develop relevant optimizers, they could be integrated easily into our system to further 
optimize MPI programs.  

3.3. Optimization Passes 

Here we describe the optimization passes in more detail, as shown in Figure 2: 

1. The source program written in C + MPI is transformed into SUIF by a tool called scc provided by 
the SUIF system.  

2. An optimization pass called peval is applied to the SUIF representation, performing various 
static analysis and partial evaluation. Peval is OMPI's customized version of porky of SUIF, 
adding some features such as constant expression calculation and several specialized 
interprocedural analyses.  

3. A template selection pass tsel is applied, selecting and instantiating the appropriate template 
functions.  

4. Peval is further applied to the specialized SUIF program, propagating the static information 
inside the instantiated templates, and performing partial evaluation thereof.  

5. The optimized SUIF program is converted back into a C program by using the s2c of SUIF.  



 
Figure 2: Overview of Optimization Passes  

3.3.1. MPI Program Analysis/Optimization using PevalPevalPevalPeval 

Peval is our core analysis/optimization pass. It is implemented by re-using and extending upon many of 
the scalar optimizers available in SUIF. Traditional optimizations, such as constant folding, constant 
propagation, calculation of constant expression, forward propagation, induction variable detection, 
common sub-expression elimination, dead code elimination, unused symbols elimination, unused type 
definitions elimination, loop invariant expressions, loop invariant conditionals, control simplification, if 
hoisting, etc. are performed as source-to-source transformations. In our current system, we have already 
implemented interprocedural data-flow analysis4 for basic datatypes, but array analysis is still in the 
(array analysis is important for determining CommBuf and CommSize inside loops.). As noted earlier, the 
peval pass is run twice, before and after the tsel (template instantiation) pass. The former is run to 
gather as much information as possible for tsel; because all the necessary arguments are passed to the 
MPI library via arguments and not through globals, we have found that current analysis and optimizations 
available in peval to be often sufficient for making as good a selection of templates as possible. 

The post-tsel peval pass optimizes the internals of instantiated templates, which will be explained in 
the following sections.  

3.3.2. Template Instantiation with TselTselTselTsel 

The Tsel pass scans the source program from the beginning, and when it encounters an MPI call, it 
performs the following actions: 

1. Determine whether the arguments to the MPI call has been analyzed as a constant.  
2. Select a template function depending on static/dynamic argument information.  
3. Replace the MPI call with the instantiated template function call.  
4. Append the instantiated template function.  

In practice, however, forcing the MPI implementor to create template functions for every possible 
combinations of static/dynamic arguments is impractical even if we have semi-automated tools, due to 
combinatorial explosion. Instead, we employ a simpler policy for building and selecting template 
functions, based on communication sets described in Section 2. We group the arguments into those that 
determine CommSize, and CommNode and others, and only consider the entire communication set to be 



static if all the member arguments are static; otherwise, the communication set is considered to be 
dynamic. We further partition the static case of CommSize into short and long messages, and CommNode 
into local and remote nodes. By eliminating meaningless combinations, we obtain 9 cases of template 
functions as seen in Table 1, where X is the name of an MPI function. 

We note that not all the template functions need not be created. In fact, any function can be substituted by 
a conservative version w.r.t. its arguments being dynamic. For example, X_long could be safely 
substituted for X_long_remote.  

Table 1: List of building template functions 

The algorithm of selecting a template function depending on static/dynamic argument information is as 
below: 

1. Identify whether CommSize and CommNode is static or dynamic.  
CommSize is determined to be static if both datatype and count are constants, otherwise 
dynamic. Likewise, CommNode is determined to be static if both rank and comm are constants, 
otherwise dynamic.  

2. If CommSize is static, calculate the size of datatype. The actual CommSize value is obtained 
by the product of the size and count.  

3. Identify CommSize with long, if the value is bigger than the architecture specific threshold. 
Otherwise, identify with short  

4. If CommNode is static, the physical node-id is obtained from the rank of the given process group 
specified by the communicator comm. In OMPI runtime, the rank is numbered in order of the 
physical node-id, therefore, we can obtain the actual CommNode value easily.  

5. Identify CommNode with local or remote.  
6. According to the abstract value of CommSize (long or short or dynamic) and CommNode (local or 

remote or dynamic), select a template function from Table 1.  

Instantiation of template functions selected by the above algorithm results in inline expansion of the 
function. In the expansion, all the static arguments appeared in the original MPI call is embedded inside of 
the instantiated template function definition. We should also note that even with conservative selections, 
we still may get the benefits of partial evaluation because the static value of the arguments will be 
propagated within the instantiated template functions in the subsequent peval pass. 

3.4. An Example of MPI Optimization using Partial Evaluation 

As an example, consider MPI_Send in Figure 3. Suppose that the preceding peval has output SUIF 
program 3 which includes the instantiated template call in Figure 3(a), where the message count is 
statically determined to be 10, type to be MPI_INT, rank to be 2, and communicator to be the default 
MPI_COMM_WORLD. In this case, tsel selects the template function MPI_Send_Short_Remote, 
which is optimized for sending short messages to a fixed node-id. The library call is transformed into code 
as shown in Figure 3(b), where 0001 is an ID which identifies each instantiation. Finally, the macro and 
the template function is expanded as seen in Figure 3(c). (Macro definition is for readability purposes.) 
The inline expanded template function has all the constants embedded within the function, which will be 
subsequently passed onto the next peval pass. 



MPI_Send(buf, 10, MPI_INT, 2, tag, MPI_COMM_WORLD) 

(a) original MPI call 

MPI_Send_Short_Remote_0001(buf, 10, MPI_INT, 2, tag, MPI_COMM_WORLD)

(b) Transformed MPI call 

#define MPI_Send_Short_Remote_0001(buf, count, type, dest, tag, comm)
    MPI_Send_short_remote_0001(buf, tag) 
 
MPI_Send_short_remote_0001(_buf, _tag) 
{ 
        /* preamble */ 
        const          int _count = 10; 
        const MPI_Datatype _type  = MPI_INT; 
        const          int _dest  = 2; 
        const     MPI_Comm _comm  = MPI_COMM_WORLD; 
 
        /* body */ 
        .... 
} 

(c) Specialized and expanded MPI call 

Figure 3: An example of MPI optimization via Partial Evaluation  

Instantiation of specialized template functions does increase code size. However, since the expansion of 
MPI functions is not recursive, the only potential problem is expansion of loops and recursive functions 
with embedded MPI calls. OMPI avoids this problem by limiting loop expansions to 4 iterations and not 
expanding mutually recursive functions more than once; as a result code increase is almost proportional to 
the original code size, and is minimal in practice so far. 

4. Performance Measurements 

In order to validate the effectiveness of our OMPI system, we performed some baseline benchmarks, and 
also more extensive benchmarks on application cores. The results show that our system is effective for 
various patterns of communication, and significantly reduces the software overhead, even compared with 
traditional optimization techniques. 

We chose Fujitsu AP1000 as a target of our prototype implementation. As mentioned earlier, 
communication performance of AP1000 relative to its processor performance is considerably higher 
(25MBytes/sec node-to-node vs. 25Mhz Sparc IU + FPU). Thus, small software overhead will dominate 
loss in communication performance. AP1000 facilitates two modes of message communication. One is 
interrupt-based, and employs the DMA controller. Although the startup overhead is large, the send is 
nonblocking. The other is Line-sending, where values contained in a cache line could be sent directly with 
explicit cache flushing, eliminating the need for copying, interrupts, and DMA setup. On the other hand, 
the sender must block until the entire line is sent. Also, although the receive is transparently done into a 
ring buffer without interrupts, the value must be copied.  

As a baseline for comparison, we chose MPICH [7], which is a public domain MPI implementation by 
Argonnne National Laboratory and Mississippi State University. In order to port MPICH onto AP1000, 
one only needs to implement to lower-level ADI functions. Since MPICH relies heavily on the 
performance of ADI functions, it is critical for performance comparisons that ADI functions are 
implemented efficiently. We reused the source code of tuned native AP1000 message passing libraries to 
achieve this requirement.  

4.1. Comparison against dynamic caching optimization 



As mentioned earlier, dynamic caching of arguments is a more orthodox and simpler implementation 
technique compared to ours. More specifically, each MPI function would have its own cache that holds 
the arguments of its previous calls, and when there is a cache hit, the following optimizations become 
possible in order to eliminate the overhead: 

� Error checking could be eliminated.  
� Parameter checks for other dynamic optimizations could also be eliminated.  
� Message buffers could be reused  

In order to validate the effectiveness of our approach against dynamic caching techniques, we also 
customized MPICH to incorporate such optimization for comparison purposes. To effectively implement 
dynamic cache in MPI calls, we employed the PCR (Persistent Communication Request) feature of MPI. 
The intended use of PCR is in inner loops, where the same MPI function is invoked repeatedly; there, 
instead of specifying the arguments each time in the iteration, a set of arguments could be registered with 
PCR using calls such as MPI_Send_Init and MPI_Recv_Init, and could be invoked repeatedly 
with MPI_Start. By using PCR, dynamic cache can be easily implemented as follows: 

� Preamble upon MPI function call: 
Check if the arguments are cached; this is achieved with a cache manager handle as illustrated in 
Figure 4, and checking whether the stored arguments match or not. If it matches, it is a hit, and is a 
miss otherwise.  

� Cache Miss: 
Register the called MPI function and the arguments with PCR. Create the communication handle, 
and store the arguments, the function ID, and a pointer to the PCR. Finally, invoke the 
communication with PCR.  

� Cache Hit: 
Obtain the PCR from the cache manager handle, and invoke the communication.  

 
Figure 4: Cache manager handle  

For derived datatypes, the argument comparison in the preamble could be costly, as the entire dynamic 
data structure must be traversed. The simple solution is not to cache such arguments; an alternative 
strategy is to use a fast but conservative matching function; for example, for systems where the operating 
system could trap on writes, any writes to a page containing a buffer could invalidate a match by setting 
some flag. 

4.2. Implementation Specifics of OMPI on AP1000 

In order to customize our system on AP1000, we need to create the template functions, and tailor the 
selection heuristics of tsel. 

In the current prototype, template functions for the 9 cases involving the communication sets were hand-



created. Because we do not yet have tool support for creating template functions, only a small subset of 
MPI has so far been implemented. Here describe the specifics for MPI_Send and MPI_Recv. For 
MPI_Send, the templates for five cases have the specializations/optimizations described in Table 2. The 
remaining 4 cases (X_long_remote, X_short_remote, X_long_local, X_short_local) 
were created by combining the optimizations. Similarly, for MPI_Recv, the specializations/optimizations 
are described in Table 3, and likewise the remaining 4 cases were derived by their combination. 
Optimizations in other MPI functions are similar, which has given us confidence that at least some semi-
automated tool could be created to greatly ease the task of template creation.  

We also make a note here that, X_generic(i.e. unoptimized) template functions of OMPI are essentially 
the same as the corresponding MPICH implementations both in the robustness (e.g. error checking) and 
execution time.  

Table 2: Specializing MPI_SendMPI_SendMPI_SendMPI_Send for AP1000 

  

Table 3: Specializing MPI_RecvMPI_RecvMPI_RecvMPI_Recv for AP1000 

  

We also tailor the selection heuristics of tsel. When there are multiple message transports, selection of 
the transport is dependent on CommSize and the characteristics of the underlying message passing 
architecture. On AP1000, in general it is better to employ Line-sending for short messages, whereas 
DMA+Interrupts is preferable for long messages. For the 64-node platform we employed, our tests 
showed that the threshold is at 60 Kbytes. This threshold is used for determining whether either 
_short_ or _long_ would be faster. 



4.3. Baseline Performance Comparisons 

We first compare the baseline performance by conducting the basic ping-pong benchmark. In order to 
obtain realistic figures for a multiprocessing environment, message reception is via interrupts and not 
polling. We tested both the latency and throughput; here, we only introduce the latency figures (Figure 5), 
as the throughput basically converges to be identical at approximately 60 Kbytes of message size (which 
was chosen as the threshold). 

The leftmost two columns indicate the performance of native AP1000 message passing library for sending 
a null message. DMA requires 193 microsec. vs. 37 microsec. for Line-sending, and we can see, both 
hardware and software setup time of DMA is significantly greater. Line-sending latency is close to what 
one obtains from Active Messages (Latency for polling-based Active Messages on AP1000 has been 
reported to be approximately 9 microsec.[8]).  

The middle three columns are dynamic cache optimized MPI. The software overhead for the initial setup 
time (i.e., cache miss) is significantly greater compared to DMA, but for cache hits involving basic 
datatypes, both software and hardware overhead is reduced significantly, coming close to that of DMA. 
Software overhead reduction is mainly due to elimination of error checks and dynamic computation of 
target nodes from communication set, as PCR allows such communication contexts to be cached and 
passed almost directly to the underlying DMA routine. On the other hand, software overhead for derived 
datatype is significant, due to the interpretation/traversal overhead for cache comparison check mentioned 
earlier, nullifying the gains obtained with caching.  

The rightmost columns are OMPI results. The 'Generic' column is when there is no static information 
available; 'CommNode' and 'CommSize' indicate the cases where the respective communication sets are 
identified to be static; and 'Both' means that both are known statically. Here, we see that even with partial 
information, our optimizations result in significant overhead reduction. In particular, when CommSize is 
known, since our message is below the 60Kbytes threshold, the Line-sending was selected, which greatly 
reduces the mandatory hardware latency (from 112 microseconds to 24 microseconds). For the 'Both' 
case, the results are dramatic: both hardware and software overhead have been reduced to 1/4 of the 
unoptimized generic case, down to 76 microsec. from 338 microsec. Although the software overhead is 
still larger than the native AP1000 message passing library, we strongly believe that we could close this 
gap with further improvements in partial evaluation.  

Figure 5: Ping-Pong overhead result  

4.4. Numerical Applications Core Benchmarks 

We next compare the performance of MPI optimizations in a typical numerical applications core. We 
chose three benchmarks with very different communication patterns and computation vs. communication 



ratio. They are as follows: 

� MM: 1024 x 1024 Matrix Multiply based on (Cyclic(16), Cyclic) submatrice distribution. 
Communication size is 16 Kbytes, communication pattern is regular, and is highly compute 
intensive.  

� LU: Linpack 1000x1000 matrix LU-factorization with single pivot row selection and (Cyclic(8), 
Cyclic) distribution. Communication size is 1 Kbytes, and communication pattern cannot be 
entirely determined statically due to run-time pivot selection. Less compute intensive compared to 
MM.  

� CG: Conjugate Gradient solver over a 128 x 128 sparse matrix. Dot distribution is employed. 
Communication size is one floating number, communication pattern is regular, and is highly 
communication intensive.  

We compared the execution times of the above benchmarks for generic (unoptimized), dynamic cache 
optimized, and OMPI. Furthermore, the execution times were categorized into time spent for computation, 
time spent within MPI executing library code, and time spent within MPI waiting for barrier and 
communication synchronization. Figure 6 presents the results. For MM, speedup is minimal, because the 
speedup obtained within MPI library is only a very small fraction of the entire execution time. Still, OMPI 
won by a small margin. For CG, the other extreme, OMPI was able to win by a significant factor over 
both generic and cache implementations, with 53% reduction in execution time. 

An interesting result was obtained for LU; we initially speculated that this benchmark would be 
disadvantageous for OMPI, as the communication pattern cannot be determined at compile time. The 
result surprisingly indicated otherwise, significantly improving over the generic MPI and winning over 
dynamic cache MPI by a notable factor. Closer analysis revealed that the PCR cache was being 
invalidated due to irregularity in the communication pattern of LU, and also that the cost of cache 
management was adding considerable overhead. By tuning the dynamic cache optimization, e.g., by not 
relying on the PCR, such overhead could be reduced. Still, the benchmark shows that, even for irregular 
communication, our partial evaluation strategy eliminates considerable portion of software overhead of 
MPI.  

 
Figure 6: Numeric application result  

5. Past Reports of Fast MPI Implementations on MPPs 

As far as we know, all the efforts to lower communication latency in MPI have been to tune the libraries 
so that their software overhead becomes minimal, given the fact that all the arguments are dynamic. None 
have employed static compiler techniques to improve performance. 

Franke and Hochschild report [1] that the lowest latencies achieved with their MPI implementations on 
SP1 and SP2 are 30 microsec. and 40 microsec. respectively, with throughputs of 9 Mb/sec. and 
35Mb/sec. However, the figures are based on polling, and do not apply to multi-process environments in 



practice. In such as case, interrupt-based implementation must be used, where the overhead increases to 
200 microsec.  

MPI/DE [2] is a implementation of MPI on NEC's Cenju-3 MPP, where the underlying operating system 
is Mach 3.0. Because Mach has kernel-supported threads which could be notified via kernel upcalls, 
interrupt handling could be made faster. Konishi reports that lowest latencies are 60 microsec., 90 
microsec., and 140 microsec. for polling-based, upcall-based, and standard interrupt-based 
implementations, respectively. However, because Cenju-3 that network DMA controllers operate in 
physical space while MPI/DE works in logical space and no user-level facilities are provided for 
performing the necessary translation, the messages must always be copied between user buffers and 
kernel buffers, incurring significant overhead. Furthermore, polling-based implementation is not useable 
in a multi-process setting, and upcall optimization is not portable in that it relies heavily on Mach 
functionalities.  

Sitsky describes the implementation of MPI on AP1000 [3], where the underlying CellOS is slightly 
modified, and the broadcast network is utilized to lower group communication. Still, the latency are 
reported to be 171.8 microsec. and 64 microsec. for the in-place method similar to DMA+Interrupts and 
the protocol method respectively, and the throughput are 2.69 Mbytes/sec. and 14.83 Mbytes/sec for the 
in-place method and the protocol method respectively, indicating that hardware performance is not well 
utilized.  

6. Discussions and Future Work 

We have presented OMPI, a compile-time optimizer for MPI that eliminates much of the communication 
overhead using partial evaluation techniques. Performance benchmarks show that, even compared to 
traditional dynamic optimization techniques, our system is faster by substantial margins, especially for 
communication-dominant computations in an high-performance hardware interconnect setting. 

There are still technical issues to be worked out as future research. Some issues we share in common with 
elaborate compilation techniques, such as separate compilation and debugging of optimized code. We 
believe that solution techniques in advanced compilers could be applied. Furthermore, since the user can 
always fall back to non-optimized version of MPI, it is possible for the user to fully debug his code before 
applying OMPI.  

There are other static optimization techniques that could be applied. For example, we could perform more 
extensive static analysis, such as variable range checking, which would be effective in eliminating many 
of the checks even if we do not have full static information. Another is communication rescheduling; even 
a simple algorithm would be effective in grouping the communication, and applying techniques such as 
message vectorization and piggybacking [10]. More elaborate communication rescheduling techniques 
will allow further optimizations. We are also considering combining our techniques with dynamic 
optimization techniques.  

One of the current technical challenges with our MPI optimization is how to ease the effort of 
implementation of template functions. Currently, we are taking three approaches to this problem. One is 
classic software engineering, that is to separate out the machine-independent optimizations from machine-
specific optimizations. Another is semi-automated tool support: a software tool could aid the user in 
specializing his code, by semi-automatically generating the code the user starts out with, given the 
static/dynamic distinctions of the arguments. The tool could also be supplied with the characteristics of 
the underlying hardware and operating system (latency/bandwidth of different network interfaces, 
polling/interrupt-driven/buffered, single/multiprocessing, etc.) and further select or eliminate parts of 
code, in a similar manner as the current partial evaluator.  

Another interesting approach is to implement the core functionality of a subset of MPI, and implement 
more sophisticated functionalities be implemented in terms of the core subset, and optimized via our MPI 
optimizer by expanding them all out with partial evaluation. By taking care not to implement MPI 
functions to be mutually recursive, such recursive expansion via partial evaluation should terminate in a 
few iterations. Indeed, the MPI standard defines an official subset, whereby other MPI functionalities 
could be implemented---we must investigate whether the official subset will be just enough for our 
purpose, in terms of its functionality and the speed of the resulting implementation.  



Finally, it is an interesting research and design issue how much of the new features currently proposed for 
MPI 2.0 could be superseded by optimization techniques such as ours. Indeed, some of the new proposals 
are fundamentally beneficial, such as threads, but there could be some features which might not be 
necessary, and would otherwise will have unsatisfactory effect on the current execution model and/or the 
MPI API.  
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Footnotes 

 1 Some of these issues will be addressed with Active Messages 2.0. 

 2 This optimization has been suggested by Marc Snir, but has not been implemented yet in our current 



system.  

 3 As noted earlier, the SUIF representation is not textual; the described code has been retransformed back 
to C for readability.  

 4 Interprocedural analyses can be easily implemented, using the Global Symbol Table of SUIF, which 
provides method to access symbols and procedures across program hierarchy.  
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