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1) Motivations

The growing computational power of high performance computing (HPC) systems
enables increasingly larger simulations. However, as the number of system components
increase, the overall failure rate of systems increases. Further, the mean time between
failures (MTBF) of future systems is projected to be on the order of tens of minutes or
hours [1, 2, 3] at exascale. The main objectives are to identify bottlenecks in the current
design approach from the highest level, algorithms, to the lowest level, system design,
which prevents applications to run at exascale. Our works focus on the indirect
performance/scalability improvements achievable with fault tolerant techniques and an
enhanced resilient network layer, rather than the direct improvements achievable via
source code redesign.

Checkpointing is one of indispensable fault tolerance techniques, commonly used by
HPC applications that run continuously for hours or days at a time. A checkpoint is a
snapshot of application state that can be used to restart execution if a failure occurs.
However, when checkpointing large-scale systems, tens of thousands of compute nodes
write checkpoints to a parallel file system (PFS) concurrently, and the low I/0
throughput becomes a bottleneck. Although simple, this straightforward checkpointing
scheme can impose huge overheads on application run times.

2) Researches (Our way of addressing the problem)

Asynchronous Checkpointing System: We developed an asynchronous checkpointing
system to minimize checkpointing overhead/workload to PFS (Figure 1). The
asynchronous checkpointing system solves the problem through agents running on
additional nodes that asynchronously transfer checkpoints from the compute nodes to
the PFS. Our asynchronous checkpointing model optimize the checkpointing frequency
(Figure 2). Our approach has two key advantages. It lowers application checkpoint
overhead by overlapping computation and writing checkpoints to the PFS. Also, it
reduces PFS load by using fewer concurrent writers and moderating the rate of PFS 1/0
operations.
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Exploration of Multi-tier Storage Design with Burst Buffer: We explored multi-tier
storage design for resilient architecture using burst buffers. Burst buffers have been
proposed to alleviate the problems of /0O operations to a shared PFS [4, 5]. A Burst
buffer is a new tier in the storage hierarchy to fill the performance gap between node-
local storage and the PFS, and is shared by a subset of compute nodes. The new tire can
absorb the bursty [/0 requests from applications and thus can reduce the effective load
on the PFS. We considered using burst buffers from different viewpoint, and tried to
improve system resiliency with burst buffer storage design. With burst buffers, an
application can store checkpoints on a smaller number of dedicated burst buffer nodes,
so the probability of lost checkpoints is decreased. We explored how burst buffers can
improve efficiency and resiliency compared to using node-local storage instead of burst
buffers based on a performance model combined with our multi-level asynchronous
checkpoint/restart model.
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FMI (Fault Tolerant Messaging Interface): We proposed FMI for fast and transparent
recovery. FMI is a survivable messaging interface that uses fast, transparent in-memory
checkpoint/restart and dynamic node allocation. With FMI, a developer writes an
application using semantics similar to Message Passing Interface (MPI). The FMI
runtime ensures that the application runs through failures by handling the activities
needed for fault tolerance, such as checkpointing, failure detections, and recoveries. All
of this motivates the need for a survivable messaging runtime system. Such a system
should be able to maintain processes and connections that are unaffected by the failure
while starting and integrating replacement processes as needed.
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Figure 5: Overview of FMI



Fail-in-Place Large scale Network Design: As a first stage, we built a tool chain (Figure
6), which allows us to simulate the performance of different routing algorithms on state-
of-the-art network topologies. This was combined with an injection of network failures
to make design decisions for a future fail-in-place network. Fail-in-place networks will
enable high communication performance, a crucial component for application
scalability, while being extremely resilient for non-critical network failures, which
increases the system availability for scientific simulations and decreases the need for
application level resiliency.
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Figure 6 : Toolchain to evaluate the network throughput of a fail-in-place network

Lossy compression for fast checkpint/restart : To reduce checkpoint and restart
time, we explored application-level lossy compression approach based a wavelat
transformation [6] . Although lossy compression can introduce errors to the simulation
data after a restart, applications can proceed and produce approximate results even
with high failure rate (Figure 7).
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Figure 7 : Application-level lossy compression using a wavelet transformation

3) Results (what did we learn, what did you produce?)

Asynchronous Checkpointing System: Our asynchronous (or Non-blocking)
checkpointing system coupled with a multi-level checkpoint/restart technique
maintains a given application efficiency with significantly lower PFS requirements than
simple synchronous (or Blocking) checkpointing, which write checkpoints such that all
processes write their own checkpoints concurrently, and are blocked until the
checkpoint operation completes. Especially, our results show that combining
asynchronous and multi-level checkpointing results in highly efficient application runs
with low PFS bandwidth requirements.
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Exploration of Multi-tier Storage Design with Burst Buffer: The key contributions of
this work include an InfiniBand-based file system (IBIO) that exploits the bandwidth of
burst buffers, and exploration showing how system resiliency improves from the use of
burst buffers, and uncoordinated checkpinting. Especially, these contributions can
benefit system designers in making the trade-offs in performance of components so that
they can create efficient and cost-effective machines for future extreme scale systems.
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FMI (Fault Tolerant Messaging Interface) : The key contributions include a simplified
programming model to enable fast, transparent fault tolerance based on
checkpoint/restart; implementation of a runtime that withstands process failures and
allocates spare resources; a new overlay network structure called log-ring for scalable
failure detection and notification; and demonstration of the fault tolerance and
scalability of FMI even with a MTBF of 1 minute. Especially, our implementation of FMI
has failure-free performance that is comparable with MPI, and our experiments with a
Poisson equation solver show that running with FMI incurs only a 28% overhead with a
very high mean time to failure of 1 minute.
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with log-ring overlay network

Fail-in-Place Large scale Network Design: In conclusion of our simulations, the
change of the routing algorithm from the currently used Up*/Down* routing to DFSSSP
routing on TSUBAME2.5 would not only lead to a higher performance of the MPI_Alltoall
on the fault-free network, as shown in Fig. 2, but also will increase the fail-in-place
characteristic of the network. Both will support the efforts to achieve exascale scientific
simulations.
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Lossy compression for fast checkpint/restart : Our preliminary studies show that our
lossy compression approach can reduce size of simulation data of a real climate
application, NICAM, to 12-13% with 0.2 to 0.8 of errors on average error.
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4) Meeting (other than the monthly conf calls and the G8 ECS workshops)
* Meeting with Franck Cappello at Titech, ANL-UIUC and INRIA, 2th-4th June 2012
* Meeting with John Dennis at Titech, 31th March 2014
* Meeting with Leonard Bautista Gomez at Titech, 31th March 2014

5) Visits (visiting partners or hosting partners other than G8 ECS workshops)
* Ana Gainaru (Ph.D. at University of Illinois), June 2012 to August 2013

6) Impact
Publications:

[SMK12] Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de
Supinski, Naoya Maruyama and Satoshi Matsuoka, "Design and Modeling of a Non-
blocking Checkpointing System", In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis 2012 (SC12), Salt Lake, USA,
Nov, 2012.

[SSS13] Takafumi Saito, Kento Sato, Hitoshi Sato and Satoshi Matsuoka, "Energy-aware
[/0 Optimization for Checkpoint and Restart on a NAND Flash Memory System", In the
Workshop on Fault-Tolerance for HPC at Extreme Scale 2013 (FTXS2013) in conjunction
with the International Symposium on High Performance Parallel and Distributed
Computing (HPDC13), New York, USA, June, 2013.

[SMM13] Kento Sato, Satoshi Matsuoka, Adam Moody, Kathryn Mohror, Todd Gamblin,
Bronis R. de Supinski and Naoya Maruyama, "Burst SSD Buffer: Checkpoint Strategy at
Extreme Scale", IPS] SIG Technical Reports 2013-HPC-141, Okinawa, Sep, 2013.

[SMM14] Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de
Supinski, Naoya Maruyama and Satoshi Matsuoka, "FMI: Fault Tolerant Messaging
Interface for Fast and Transparent Recovery", In Proceedings of the International



Conference on Parallel and Distributed Processing Symposium 2014 (IPDPS2014),
Phoenix, USA, May, 2014.

[SMM14-2] Kento Sato, Kathryn Mohror, Adam Moody, Todd Gamblin, Bronis R. de
Supinski, Naoya Maruyama and Satoshi Matsuoka, "A User-level InfiniBand-based File
System and Checkpoint Strategy for Burst Buffers"”, In Proceedings of the 14th
[EEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid2014), Chicago, USA, May, 2014. (Best Paper Finalist)

[SSE14] Naoto Sasaki, Kento Sato, Toshio Endo and Satoshi Matsuoka, "Exploration of
Application-level Lossy Compression for Fast Checkpoint/Restart”, In HPC in Asia
Workshop in conjunction with the International Supercomputing Conference (ISC'14),
Leipzig, Germany, June, 2014.

7) Future plans for the next 18 months (please look carefully at the tasks and
deliverable)
Our objectives in the next 18 months are related to part of task 3.3 and D3.3:

Asynchronous Checkpointing System: We will integrate the asynchronous
checkpointing system with SCR (Scalable Checkpoint/Restart), which was developed by
LLNL.

Exploration of Multi-tier Storage Design with Burst Buffer: We will integrate the
asynchronous checkpointing system with SCR (Scalable Checkpoint

FMI (Fault Tolerant Messaging Interface): Although the current FMI prototype has
demonstrated promising results, it not yet complete enough to support a broad range of
applications. Future FMI will support [/0 interfaces like MPI [/0, restoring
communicators along with checkpoints, exploit multi-level checkpointing.

Fail-in-Place Large scale Network Design: A next step will be a detailed analysis of
the communication layer of the applications and a co-design phase to match the needs of
the applications with the underlying network infrastructure, i.e., topology and routing
algorithm.

Lossy compression for fast checkpint/restart: We will reduce the errors, and
compression time.
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