Grant-in-Aid for Scientific Research S (Kiban S)

[Fault Tolerant Infrastructure

Toward Billion of Parallelization and Exa-scale Supercomputer]

(Adopted FY2011)

1) Motivations

The growing computational power of high performance computing (HPC) systems
enables increasingly larger simulations. However, as the number of system components
increase, the overall failure rate of systems increases. Further, the mean time between
failures (MTBF) of future systems is projected to be on the order of tens of minutes or
hours [1, 2, 3] at exascale. The main objectives are to identify bottlenecks in the current
design approach from the highest level, algorithms, to the lowest level, system design,
which prevents applications to run at exascale. Our works focus on the indirect
performance/scalability improvements achievable with fault tolerant techniques and an
enhanced resilient network layer, rather than the direct improvements achievable via
source code redesign.

Checkpointing is one of indispensable fault tolerance techniques, commonly used by
HPC applications that run continuously for hours or days at a time. A checkpoint is a
snapshot of application state that can be used to restart execution if a failure occurs.
However, when checkpointing large-scale systems, tens of thousands of compute nodes
write checkpoints to a parallel file system (PFS) concurrently, and the low I/0
throughput becomes a bottleneck. Although simple, this straightforward checkpointing
scheme can impose huge overheads on application run times.

2) Researches (Our way of addressing the problem)

Asynchronous Checkpointing System: We developed an asynchronous checkpointing
system to minimize checkpointing overhead/workload to PFS (Figure 1). The
asynchronous checkpointing system solves the problem through agents running on
additional nodes that asynchronously transfer checkpoints from the compute nodes to
the PFS. Our asynchronous checkpointing model optimize the checkpointing frequency
(Figure 2). Our approach has two key advantages. It lowers application checkpoint
overhead by overlapping computation and writing checkpoints to the PFS. Also, it
reduces PFS load by using fewer concurrent writers and moderating the rate of PFS 1/0
operations.

Compute node Staging node Successful Successful
Computation /\Compuiation
Application k \]j 1
i g
SCR library ﬁ Successful Level= k
= computation or|
3 recovery L Level <k
= © T checkpointing Failures during
RDMA Buffers ~ 7! & computation or
7777777777 ! ol
1 L § Level= k Level <k checkpointing
,,,,,,,,, Failures during Failures during
Staging client i Staging server recovery recovery
Figure 1: Asynchronous Checkpointing Figure 2 : The basic structure of the

client/server using RDMA asvnchronous checknointing model

Exploration of Multi-tier Storage Design with Burst Buffer: We explored multi-tier
storage design for resilient architecture using burst buffers. Burst buffers have been
proposed to alleviate the problems of /0O operations to a shared PFS [4, 5]. A Burst
buffer is a new tier in the storage hierarchy to fill the performance gap between node-
local storage and the PFS, and is shared by a subset of compute nodes. The new tire can
absorb the bursty [/0 requests from applications and thus can reduce the effective load
on the PFS. We considered using burst buffers from different viewpoint, and tried to
improve system resiliency with burst buffer storage design. With burst buffers, an
application can store checkpoints on a smaller number of dedicated burst buffer nodes,
so the probability of lost checkpoints is decreased. We explored how burst buffers can
improve efficiency and resiliency compared to using node-local storage instead of burst
buffers based on a performance model combined with our multi-level asynchronous
checkpoint/restart model.

T 7 G ; ied
T 10 1 P
client client 2 m;
IBIO server thread

T L
IBIO server thread
2 4 2 4 3 Compute
WEE} |’“‘ W H;, | — node
= e —m
fosf—» W} o -]
ol =) fo 1
Chunkbuffers Wit threads Storae Reader threads Chunk bufters i=0 i>0
Figure 3 : IBIO Write/Read : four IBIO clients and one IBIO Figure 4 : Recursive structured storage
server model

FMI (Fault Tolerant Messaging Interface): We proposed FMI for fast and transparent
recovery. FMI is a survivable messaging interface that uses fast, transparent in-memory
checkpoint/restart and dynamic node allocation. With FMI, a developer writes an
application using semantics similar to Message Passing Interface (MPI). The FMI
runtime ensures that the application runs through failures by handling the activities
needed for fault tolerance, such as checkpointing, failure detections, and recoveries. All
of this motivates the need for a survivable messaging runtime system. Such a system
should be able to maintain processes and connections that are unaffected by the failure
while starting and integrating replacement processes as needed.

FMI rank (virtual rank)
User’s view

QOO®OWOOO

Leave Po) (P1 |||||||P8 P9| Join

Node 0 (failed) Node 1 Node 2 Node 3 Node 4

Figure 5: Overview of FMI

Fail-in-Place Large scale Network Design: As a first stage, we built a tool chain (Figure
6), which allows us to simulate the performance of different routing algorithms on state-
of-the-art network topologies. This was combined with an injection of network failures
to make design decisions for a future fail-in-place network. Fail-in-place networks will
enable high communication performance, a crucial component for application
scalability, while being extremely resilient for non-critical network failures, which
increases the system availability for scientific simulations and decreases the need for
application level resiliency.

Topology Generator Routing Engine Converter
C 1t network/LFT

Generate Load topology Generate traffic in(t’cl)w:)l\dllzleet;rformats
regular l | into IBsim pattern
topology) T

Inject faults w/o Run OpenSM P

. penSM to Check connectivit;

destroying enerate LFTs] Y Simulator

o g T based on LFTs
ang Sy Simulate traffic
existing act networl Reol " iz]

P 5 place LFTs with p

topology routing information I—V external routing OMNet++

Figure 6 : Toolchain to evaluate the network throughput of a fail-in-place network

Lossy compression for fast checkpint/restart : To reduce checkpoint and restart
time, we explored application-level lossy compression approach based a wavelat
transformation [6] . Although lossy compression can introduce errors to the simulation
data after a restart, applications can proceed and produce approximate results even
with high failure rate (Figure 7).

wavelet

transformation encoding

quantization

Application data L H L H L H”
(double) (double) | (double) (double) | (double) (double) | (double)
Sort &
Lossy transformation

lossy
transformation

Figure 7 : Application-level lossy compression using a wavelet transformation

3) Results (what did we learn, what did you produce?)

Asynchronous Checkpointing System: Our asynchronous (or Non-blocking)
checkpointing system coupled with a multi-level checkpoint/restart technique
maintains a given application efficiency with significantly lower PFS requirements than
simple synchronous (or Blocking) checkpointing, which write checkpoints such that all
processes write their own checkpoints concurrently, and are blocked until the
checkpoint operation completes. Especially, our results show that combining
asynchronous and multi-level checkpointing results in highly efficient application runs
with low PFS bandwidth requirements.

100 T 1
]
8 90 H | ——Non-Blocking(90%) | 09
g 80 ! I === Non-Blocking(80%) |— 08
= Non-Blocking(71 —
5 70 I’ ¥ onBlocking(70%) |_ 0.7 W PFS cost x1 / Non-blocking
3 I I Blocking (90%) - - ok
£ 60 ’, I ~ == Blocking (80%) g 06 PFS cost x1 / Blocking
3 " N
° 50 T I Blocing(70%) — @ 05 PFS cost x2 / Non-blocking
s / o - PFS cost x2 / Blocking
- o
@ 40 i E o4 .
a ' [V} PFS cost x10 / Non-blocking
3 30 /I / . 03 PFS cost x10 / Blocking
A —— -
e 10 = e
10 P 01
0 T 0
0 2 4 6 8 10 12 14 16])]
Failure rate x1 Failure rate x2 Failure rate x10

Scale factor of failure rate
Figure 9 : Efficiency of synchronous and asynchronous

Figure 8 : Required PFS throughput at
checkpointing

different failure rates

Exploration of Multi-tier Storage Design with Burst Buffer: The key contributions of
this work include an InfiniBand-based file system (IBIO) that exploits the bandwidth of
burst buffers, and exploration showing how system resiliency improves from the use of
burst buffers, and uncoordinated checkpinting. Especially, these contributions can
benefit system designers in making the trade-offs in performance of components so that
they can create efficient and cost-effective machines for future extreme scale systems.

——Read - Peak =%=Read - Local =*-Read - IBIO Read - NFS - R
—— Write - Peak =¥%=Write - Local ¥ Write - IBIO Write - NFS Coordinated Flat Buffer Uncoordinated Flat Buffer
45 ¥ Coordinated Burst Buffer =~ M Uncoordinated Burst Buffer
/a : 1
b=
g ¢ 09 -
@ 3.5 0.8
as)] 3 /\M
§25 7 06
£ 2 = S05 -
5 zrjﬁ — -
§ 1.5 ;;5:0-4 N
S S 203 -
@ x
R 0.2 —
£0.5
B 0.1 —
< 0 T T T T T T T T
E 0o 2 4 6 8 10 12 14 16 0
~ 1 2 10 50 100

of Processes

Figure 9 : Sequencial read and write throughput of
local1/0, and 1/0 with IBIO and NFS via FDR
InfiniBand networks

Scale factor (xF, xL.2)

Figure 10 : Efficiency of multilevel coordinated and
uncoordinated checkpoint/restart ona flat buffer
system and a burst buffer system

FMI (Fault Tolerant Messaging Interface) : The key contributions include a simplified
programming model to enable fast, transparent fault tolerance based on
checkpoint/restart; implementation of a runtime that withstands process failures and
allocates spare resources; a new overlay network structure called log-ring for scalable
failure detection and notification; and demonstration of the fault tolerance and
scalability of FMI even with a MTBF of 1 minute. Especially, our implementation of FMI
has failure-free performance that is comparable with MPI, and our experiments with a
Poisson equation solver show that running with FMI incurs only a 28% overhead with a
very high mean time to failure of 1 minute.

\ [1-byte Latency | Bandwidth (MB) | 2500

MPI 3.555 usec 3.227 GBJs “MPI

FMI 3.573 usec 3211 GB/s % 2000 | EFMI

5 MPI + C

. 04 5 1500 || EEMI+C
£ " FMI + C/R
: g
ER £ 1000
g8 5
> £ 500
E oo o
z 0o &7
5 0 500 1000 1500

48 96 192 384 768
of Processes

of Processes (12 processes/node)

Figure 12 : Himeno benchmark (Checkpoint

Figure 11 :Failure notification time size : 821MB/node, MTBF : 1 minute)

with log-ring overlay network

Fail-in-Place Large scale Network Design: In conclusion of our simulations, the
change of the routing algorithm from the currently used Up*/Down* routing to DFSSSP
routing on TSUBAME2.5 would not only lead to a higher performance of the MPI_Alltoall
on the fault-free network, as shown in Fig. 2, but also will increase the fail-in-place
characteristic of the network. Both will support the efforts to achieve exascale scientific
simulations.

DFSSSP ==
Fat-Tree ==

%‘ Up*/Down* ==

% 1.5 -

= %_} _

g

= 1

=

2

=

1)

g 0.5

'E .

0

012345678 012345678 012345678
Failures (Link and/or Switch) [in %]
Figure 13 : MPI_Alltoall runtime simulation for TSUABME2.5

using different routing algorithms while network failures
have been injected

Lossy compression for fast checkpint/restart : Our preliminary studies show that our
lossy compression approach can reduce size of simulation data of a real climate
application, NICAM, to 12-13% with 0.2 to 0.8 of errors on average error.

0.9
0.8
0.7 -

compressed size/original siz

123456 7 8 91011121314151617181920 12345678 91011121314151617181920

division # division #
Figure 14 :Ratio of compressed checkpoint size to Figure 15 : Average errors of uncompressed checkpoint to

original checkpoint size under increasing division # original value under increasing division #

4) Meeting (other than the monthly conf calls and the G8 ECS workshops)
* Meeting with Franck Cappello at Titech, ANL-UIUC and INRIA, 2th-4th June 2012
* Meeting with John Dennis at Titech, 31th March 2014
* Meeting with Leonard Bautista Gomez at Titech, 31th March 2014

5) Visits (visiting partners or hosting partners other than G8 ECS workshops)
* Ana Gainaru (Ph.D. at University of Illinois), June 2012 to August 2013

6) Impact
Publications:

[SMK12] Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de
Supinski, Naoya Maruyama and Satoshi Matsuoka, "Design and Modeling of a Non-
blocking Checkpointing System", In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis 2012 (SC12), Salt Lake, USA,
Nov, 2012.

[SSS13] Takafumi Saito, Kento Sato, Hitoshi Sato and Satoshi Matsuoka, "Energy-aware
[/0 Optimization for Checkpoint and Restart on a NAND Flash Memory System", In the
Workshop on Fault-Tolerance for HPC at Extreme Scale 2013 (FTXS2013) in conjunction
with the International Symposium on High Performance Parallel and Distributed
Computing (HPDC13), New York, USA, June, 2013.

[SMM13] Kento Sato, Satoshi Matsuoka, Adam Moody, Kathryn Mohror, Todd Gamblin,
Bronis R. de Supinski and Naoya Maruyama, "Burst SSD Buffer: Checkpoint Strategy at
Extreme Scale", IPS] SIG Technical Reports 2013-HPC-141, Okinawa, Sep, 2013.

[SMM14] Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de
Supinski, Naoya Maruyama and Satoshi Matsuoka, "FMI: Fault Tolerant Messaging
Interface for Fast and Transparent Recovery", In Proceedings of the International

Conference on Parallel and Distributed Processing Symposium 2014 (IPDPS2014),
Phoenix, USA, May, 2014.

[SMM14-2] Kento Sato, Kathryn Mohror, Adam Moody, Todd Gamblin, Bronis R. de
Supinski, Naoya Maruyama and Satoshi Matsuoka, "A User-level InfiniBand-based File
System and Checkpoint Strategy for Burst Buffers"”, In Proceedings of the 14th
[EEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid2014), Chicago, USA, May, 2014. (Best Paper Finalist)

[SSE14] Naoto Sasaki, Kento Sato, Toshio Endo and Satoshi Matsuoka, "Exploration of
Application-level Lossy Compression for Fast Checkpoint/Restart”, In HPC in Asia
Workshop in conjunction with the International Supercomputing Conference (ISC'14),
Leipzig, Germany, June, 2014.

7) Future plans for the next 18 months (please look carefully at the tasks and
deliverable)
Our objectives in the next 18 months are related to part of task 3.3 and D3.3:

Asynchronous Checkpointing System: We will integrate the asynchronous
checkpointing system with SCR (Scalable Checkpoint/Restart), which was developed by
LLNL.

Exploration of Multi-tier Storage Design with Burst Buffer: We will integrate the
asynchronous checkpointing system with SCR (Scalable Checkpoint

FMI (Fault Tolerant Messaging Interface): Although the current FMI prototype has
demonstrated promising results, it not yet complete enough to support a broad range of
applications. Future FMI will support [/0 interfaces like MPI [/0, restoring
communicators along with checkpoints, exploit multi-level checkpointing.

Fail-in-Place Large scale Network Design: A next step will be a detailed analysis of
the communication layer of the applications and a co-design phase to match the needs of
the applications with the underlying network infrastructure, i.e., topology and routing
algorithm.

Lossy compression for fast checkpint/restart: We will reduce the errors, and
compression time.

8) References
[1] Bianca Schroeder and Garth A. Gibson. Understanding Failures in Petascale Com-
puters. Journal of Physics: Conference Series, 78(1):012022+, July 2007

[2] Al Geist and Christian Engelmann. Development of Naturally Fault Tolerant Al-
gorithms for Computing on 100,000 Processors, 2002.

[3] John Daly et al. Inter-Agency Workshop on HPC Resilience at Extreme Scale,
February 2012.

[4] Ning Liu, Jason Cope, Philip H. Carns, Christopher D. Carothers, Robert B. Ross, Gary
Grider, Adam Crume, and Carlos Maltzahn. On the Role of Burst Buffers in Leadership-
Class Storage Systems. In Symposium on Mass Storage Systems and Technologies, MSST
2012, April 2012.

[5] Dries Kimpe, Kathryn Mohror, Adam Moody, Brian Van Essen, Maya Gokhale, Rob
Ross, and Bronis R. de Supinski. Integrated In-System Storage Architecture for High
Performance Computing. In Proceedings of the 2nd International Workshop on Runtime

and Operating Systems for Supercomputers, ROSS '12, 2012.

[6] A. Graps, “An introduction to wavelets,” Computational Sci- ence Engineering, IEEE,
vol. 2, no. 2, pp. 50-61, Summer 1995.

