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ABSTRACT
The Cholesky factorization is an important linear algebra
kernel which is used in the semide�nite programming (SDP)
problem. However, the large computation costs for Cholesky
factorization of the Schur complement matrix (SCM) has
been obstacles to solve large scale problems. This paper
describes a brand-new version of the parallel SDP solver,
SDPARA, which has been equipped with a Cholesky fac-
torization implementation and demonstrated 1.7PFlops per-
formance with over two million constraints by using 4,080
GPUs. The performance and scalability is even more im-
proved by introducing a data-driven approach, rather than
traditional synchronous approach. Also we point out that
typical data-driven implementations have limitation in scal-
ability, and demonstrate the e�ciency of the proposed ap-
proach via experiments on TSUBAME2.5 supercomputer.
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1. INTRODUCTION
The semide�nite programming (SDP), which involves a pos-
itive semide�nite symmetric matrix variable and/or a linear
matrix inequality as its constraints, is not merely an exten-
sion of linear programming (LP) to the space of symmetric
matrices but has played a signi�cant role in the �eld of math-
ematical optimization programming(MOP) for more than
two decades due to its wide-range applications such as non-
convex optimization[1], combinatorial optimization[2], struc-
tural optimization[3], quantum chemistry[6, 5], sensor net-
work location, and machine learning. The semide�nite pro-
gramming (SDP) problem is a predominant problem in math-
ematical optimization. The primal-dual interior-point method
(PDIPM)[13, 12, 14, 16, 17] is one of the most powerful algo-
rithms for solving SDP problems, and many research groups
have employed it for the development of software packages.

The SDPA (SemiDe�nite Programming Algorithm) [13], one
of the �rst SDP software packages which implement PDIPM,
has been developed and maintained by Fujisawa et al. over
two decades. As applications of SDPs broadened, we need
high performance for larger scale SDPs. SDPARA (SemiDef-
inite Programming Algorithm paRAllel version) [11, 9] is a
parallel version of SDPA, which runs on multiple CPU cores
and/or processors and shared and/or distributed memory
environment with MPI 1 .

One of bottleneck routines of SDPARA is called CHOLESKY,
which corresponds to the Cholesky factorization of the Schur
complement matrix (SCM). This routine has traditionally
used a parallel linear algebra library, ScaLAPACK2. More
recently, we have developed a GPU version [7, 18], to largely
accelerate the CHOLESKY routine based on technologies in
[25]. This version successfully solved the largest SDP prob-
lem (which has over 2.33 million constraints), creating a new
world record; the performance of CHOLESKY was 1.713
PetaFlops in double precision [18], using 2,720 CPUs and
4,080 GPUs on the TSUBAME2.5 supercomputer at Tokyo
Institute of Technology.

The objective of this paper is further improvement of the
above petascale implementation. While it has been already
scalable, we found that there are still rooms to reduce the
amount of PCIe communication between host and device.
Also since the computations are synchronous, the perfor-
mance tends to be a�ected by the MPI costs largely.

In order to improve this situation, we integrate the data
driven approach, where the tasks are divided into block/tile
level[19, 23]. This approach has been considered promis-
ing, since it can overlap computation and communication in
asynchronous ways. Also reduction of PCIe communication
amount is possible by maintaining memory coherency in a
tile-wise way[22].

However, even up-to-date data driven implementations still
have latent bottlenecks on larger scale environments, such
as the TSUBAME2.5 supercomputer, which has more than
1,000 computing nodes. This paper proposes techniques to
improve scalability, which are:

1SDPA and its variants can be obtained un-
der the GPL license from the following web site:
http://sdpa.sourceforge.net/
2http://www.netlib.org/scalapack/



• A scalable data transfer method in solving data de-
pendency, which is especially important when the de-
pendency graph includes nodes with large (dozen of)
fan-out

• A scalable termination detection method

Through the performance comparison, we demonstrate the
optimized implementation achieves 27% performance im-
provement over the previous ones.

2. PDIPM
This section brie�y describes the primal-dual interior-point
method (PDIPM) and that Cholesky factorization is time-
consuming part of it. For detailed description, refer to pre-
vious papers [11, 12, 13, 14, 16, 17].

We regard Rn×n as n2-dimensional Euclidean space. Let
Sn denote the set of all n × n symmetric real matrices; Sn

forms an n(n + 1)/2-dimensional linear subspace of Rn×n.
For each pair of X and Z in Rn×n, X • Z stands for the
inner product ofX and Z, i.e., Tr XTZ, the trace ofXTZ.
We write X ≻ O if X ∈ Sn is positive de�nite, and X ⪰ O
if X ∈ Sn is positive semide�nite. Here O denotes the n×n
zero matrix.

Let C ∈ Sn, Ai ∈ Sn (1 ≤ i ≤ m) and bi ∈ R (1 ≤ i ≤ m).
Consider the semide�nite program and its dual:

P : minimize C •X
subject to Ai •X = bi (1 ≤ i ≤ m), X ⪰ O.

D : maximize
m∑
i=1

biyi

subject to
m∑
i=1

Aiyi +Z = C, Z ⪰ O.


(1)

We assume that the set of n×n symmetric matrices Ai (1 ≤
i ≤ m) is linearly independent. This implies that m ≤
n(n + 1)/2. We say that (X,y,Z) is a feasible solution
(an interior-feasible solution, or an optimal solution, respec-
tively.) of the SDP (1) ifX is a feasible solution (an interior-
feasible solution, i.e., a feasible solution satisfying X ≻ O,
or a minimizing solution, respectively) of P and (y,Z) is
a feasible solution (an interior-feasible solution, i.e., a fea-
sible solution satisfying Z ≻ O, or a maximizing solution,
respectively) of D.

Next, we show a generic primal-dual interior-point method
for the SDP, on which SDPA and SDPARA are based.

Step 0: Determine a stopping criterion, and choose an fea-
sible or infeasible initial point (X0,y0,Z0) such that
X0 ≻ O and Z0 ≻ O. Let (X,y,Z) = (X0,y0,Z0).

Step 1: If the current point (X,y,Z) satis�es the stopping
criterion, output it and stop the iteration.

Step 2: Choose a search direction (dX, dy, dZ).

Step 3: Choose a primal step length αp and a dual step
length αd such that

X + αpdX ≻ O and Z + αddZ ≻ O.

Let

X = X + αpdX and (y,Z) = (y,Z) + αd(dy, dZ).

Step 4: Go to Step 1.

In SDPA and SDPARA, the most time consuming part is
Step 2, which is further divided into the ELEMENTS rou-
tine, where all elements of SCM is computed, and the CHOLESKY
routine, where we obtain the Cholesky factorization of SCM.
The time complexities of ELEMENTS and CHOLESKY by
O(mn3+m2n2) and O(m3), respectively, where n andm are
de�ned as follows, (1) n: the size of the variable matrices
X and Y , and (2) m: the number of equality constraints in
the dual form D, which equals the size of the Schur Com-
plement Matrix (SCM). Among of two routines, the costs
of CHOLESKY, the target for improvement in this paper,
tend to dominate if the SCM is dense[7].

Table 1 shows the performance record of CHOLESKY of
SDPARA. In 2003 [11], we have released the SDPARA 1.0.1
and achieved 78.58GFlops. Our implementation with GPUs
achieved 1.713 PFlops for large-scale Cholesky factorization
using 4,080 GPUs in 2014 [18].

Table 1: Performance record of CHOLESKY of SDPARA
Year Paper n m CHOLESY

(Flops)

2003 [11] 630 24,503 78.58 Giga
2010 [4] 10,462 76,554 2.414 Tera
2012 [7] 1,779,204 1,484,406 0.533 Peta
2014 [18] 2,752,649 2,339,331 1.713 Peta

3. BACKGROUND AND MOTIVATION
3.1 GPGPU and TSUBAME2.5 Supercomputer
GPGPU(General Purpose Graphics Processing Unit) is a
technique to use computing resources of GPU (Graphics
Processing Unit) for a general-purpose calculation as well
as image processing. Compared with CPUs, GPUs are de-
signed to make throughput of computation higher; thus,
they have been successful in parallel computations with reg-
ular structures, including matrix operations. In this pa-
per, we use CUDA programming environment designed for
NVIDIA GPUs, however, the proposed techniques are ap-
plicable to other environments. Our new implementation
is evaluated on the TSUBAME2.5 GPGPU petascale su-
percomputer at Tokyo Institute of Technology, though SD-
PARA and the proposed techniques were developed for gen-
eral GPU supercomputers and clusters. Also the approach is
applicable to systems with Intel Xeon Phi, though we need
to replace accelerated BLAS kernels.

The main part of TSUBAME2.5 consists of 1408 HP Pro-
liant SL390s G7 computing nodes. Figure 1 shows the struc-
ture of each node, which has two Intel Xeon X5670 2.93 GHz
(six cores) CPUs, three NVIDIA Tesla K20X GPUs, 54 GB
(partly 96 GB) of DDR3 memory. Each node is connected to
interconnect via two QDR 40 Gbps In�niBand HCAs. Each
K20X GPU, which we mainly use for kernel computations,
has the peak performance of 1.31TFlops. The peak per-
formance of TSUBAME2.5 system is 5.76PFlops, including
3× 1, 408 K20X GPUs.



Figure 1: Structure of each HP SL390s G7 node used in
TSUBAME 2.5 with Intel Xeon CPUs and three NVIDIA
K20X GPUs.

While GPUs have higher computation throughput and mem-
ory bandwidth, they have limitations on memory size. The
device memory capacity is 6GB per GPU. while the host
memory can be expanded more easily (54GB on the TSUB-
AME nodes). Therefore in order to support larger scale com-
putation, we should harness the capacity of host memory.
However, we should consider costs of data movement be-
tween CPUs and GPUs (hereafter we call it PCIe communi-
cation). Since the bandwidth of PCI-Express (PCIe), 8GB/s
in our case, is much smaller than device memory bandwidth
(250GB/s on K20X), we have to reduce the amount of PCIe
communication for better performance.

3.2 Cholesky factorization and Parallel Imple-
mentations

The Cholesky factorization takes a symmetric positive de�-
nite matrix A, and outputs a lower triangle matrix L, where
A = LLT 3 . We assume A is a dense matrix whose size is
m×m.

The Cholesky factorization is a well known computation
and its parallel implementation has a long history. The
most well-known one is included in the ScaLAPACK par-
allel linear algebra library[24]. Here the matrix A is di-
vided into blocks with a uniform size nb × nb, which are
distributed among processes in two-dimensional block cyclic
method. The previous version of SDPARA used a multi-
GPU implementation based on this algorithm, though it is
enhanced with a communication overlapping method[7, 18].
The ScaLAPACK approach and its variants are used for
long, however, some drawbacks have been reported.

• The computation is done in a synchronous style; all
blocks owned by a single process are basically updated
at once. Thus the total performance tends to be heav-
ily a�ected by inter-node communication costs.

• When the routine is implemented for GPUs, it is harder
to reduce PCIe communication. Our previous imple-
mentation has assumed that all the matrix data is
available on host memory after each kernel �nishes.

3Although this section uses a denotation of A, it di�ers from
Ai in the previous section

We could reduce PCIe communication if the matrix
data can reside in device memory over several itera-
tions of the outer loop.

To overcome such drawbacks, several research groups adopt
the data driven approach[20, 23, 22]. Here, we change the
data format for the matrix; instead of the single rectangular
format, we let each process maintain several blocks (or tiles),
each of which is an array of nb × nb size.

Then the entire computation is done in an asynchronous
style. The Cholesky factorization computation is broken
down into the tile level, and each divided computation is
called a task. While we need to consider dependency among
tasks as shown in Figure2, such division enables to harness
more parallelism. In distributed environments, one task may
depend on some data that are produced by remote processes.
In such cases, inter-process communication is involved.

Figure 2: Direct Acyclic Graph(DAG) of the Cholesky fac-
torization

On GPGPU systems, we additionally have to consider the
memory hierarchy of device memory and host memory [21,
22]. If the input block is not available on the device mem-
ory, PCIe communication is involved. After all the input
blocks are available on the device memory, we can execute
the task. If the device memory is already full, some blocks
are swapped out to the host memory.

With this asynchronous, data-driven approach, it is known
that the performance is improved, since computation, MPI
communication and PCIe communication are naturally over-
lapped. However, it is unproven whether it is scalable up to
hundreds or thousands of nodes (as far as we know, DAGuE
and its successor, PaRSEC [23] are evaluated on 64nodes or
less).



3.3 Motivation for Scalable Data Driven Exe-
cution

We consider following elements with the data-driven imple-
mentations can become latent bottlenecks on larger scale
environments.

• Generally, data of a single tile may be consumed by
several processes. In Cholesky factorization, tile data
may used by (P + Q) processes, where (P × Q) cor-
responds to the size of process grid. If a single source
process sends data to the consumer process one by one,
the bandwidth of the source node becomes bottleneck.
In this point, the traditional implementation such as
Scalapack might have advantages, since this problem
has been avoided by using scalable MPI group com-
munication, such as MPI_Bcast. In data-driven ap-
proach, each consumer process may request the data
to source asynchronously, thus MPI_Bcast cannot be
used.

• Next, termination detection of each process is not triv-
ial. In data-driven implementations, each MPI process
can act both as data servers and clients. This property
makes a scalable implementation harder; a single pro-
cess cannot exit the computation loop, even after all
of its local tasks have been �nished. Thus a scalable
termination detection method is required.

4. DATA DRIVEN CHOLESKY FACTORIZA-
TION

This section brie�y explains our data-driven implementation
of the Cholesky factorization for GPGPU supercomputers.
For more details, refer to [22]. After describing the basic
data driven scheduling method, we improve its scalability in
the next section.

4.1 Basic Implementation
We divide the input matrix data A into the units called
"tiles", each of which has nb × nb size. The tiles are dis-
tributed among MPI processes in a two-dimensional block
cyclic style. Instead of holding all the tiles included in A, we
hold only tiles for the lower triangular part of A , because
Cholesky factorization assumes A as a symmetric matrix.
When the computation is started, the tile data is put on the
host memory.

Then each MPI process updates its local tiles in an asyn-
chronous style, conforming to the task dependency shown in
Figure 2. In order to maintain the task dependency, we let
each tile have additional variables as follows. First, each tile
maintains a variable to express its current running step; un-
like synchronous implementations, where each process has a
single loop iteration variables, each tile needs its step.

In our implementation, each MPI process consists of several
(two or three typically) worker threads and a ignition thread.
Relationships among threads and processes are illustrated
in Figure 3 (for simplicity, a process is shown with only one
worker thread). Each process has its task queue, shared by
all its threads, in order to manage the runnable tasks on the
process.

Figure 3: Threads and processes in our implementation.
The �gure also shows MPI Communication pattern when
a task is �nalized

Each worker thread repeats the following steps, task select,
localize, execute, and �nalize, continuously.

Task select It takes out a runnable task from the task queue
if exists; we let T be the target tile of the task. If the
task queue is empty, the calculation is blocked.

Localize Generally, execution of a task requires the output
data of the precedent tasks as inputs. We let Ti1, Ti2

be the result tiles of the precedent tasks 4. Then the
worker thread checks the state of tiles T, Ti1, Ti2 and
executes the corresponding operations as follows.

1. if the tile data is on device memory, nothing is
required.

2. if the tile data is not on device memory, but on
the local host memory, the tile data is copied to
device memory via PCIe bus. This may involve
swapping out operation, as described below.

3. if the tile data is neither on device memory nor
on local host memory, the worker thread sends a
request message to the owner process, and issues
MPI_Recv in order to receive the tile data. After
the data arrival, we execute as in Case 2.

Execute Now all the required tile data are available on GPU;
thus we execute the calculation task. The task is one of
DPOTRF, DTRSM, DSYRK or DGEMM, according
to the state of tile (Figure 2). It typically involves in-
vocation of a BLAS function on GPU. However, since
DPOTRF derives few bene�ts from GPU, it is exe-
cuted on CPU.

Finalize When a task A is �nished, the worker thread per-
forms operations for the following tasks, which require
the output of this task as shown in Figure 3. For this
purpose, the worker thread sends notice messages to
all processes that have following tasks of task A. These
messages are handled by receivers' ignition thread as
described below.

4In Cholesky factorization, each task depends on two tasks
or less.



We introduce multiple worker threads in order to achieve
overlapping of calculation, PCIe communication and MPI
communication in a simple implementation.

On the other hand the ignition thread continuously polls
request messages and notice messages from other processes,
and handles them as described in [22].

4.2 Memory Management
In our implementation, each process put data of all the tiles
owned by the process on the host memory. On the other
hand, the smaller GPU device memory is used like a "cache"
of the host memory; currently we use a simple coherency
protocol similar to the well-known MSI protocol. When a
process copies a tile data to GPU, it needs to evict another
tile if the device memory is full. Then one of residing tile on
GPU is selected as a victim, and copied back if its content is
newer than data on host memory (the data is DIRTY). For
selecting a victim tile, there are several possible strategies as
described in [22]. According to the preliminary experiment,
we use FIFO strategy in this paper.

4.3 Task Selection
As previously described, we manage the runnable tasks by
using the task queue per process. Since a task queue may
contain several runnable tasks, we need to make strategies
to select a task to be executed. After comparison of four
strategies, FIFO, Random, Greed, ByIJ [22], we selected
the Random strategy, where we take one of runnable tasks
randomly since it empirically shows good result.

5. SCALABILITY IMPROVEMENT
5.1 Scalable Data Transfer
As described in Section 3.3, in data-driven Cholesky factor-
ization, each tile may be consumed by P+Q processes, where
P is the number of process row and Q is the number of pro-
cess column. On TSUBAME2.5 supercomputer, the size of
process grid may be up to 68×60, thus sequential sending of
the same tile data for 68+60 times by a single source process
degrades the total performance. In order to avoid this bot-
tleneck, we did not use MPI-3 non-blocking collective com-
munication such as MPI_Ibcast, since in data-driven exe-
cution, the order of incoming messages are indeterministic.
Instead, we implemented a scalable data transfer method
based on the tree topology communication. Similar idea is
more popular in peer-to-peer area; thus convergence of HPC
technology and P2P technology become more important as
the supercomputers become larger towards Exascale.

For this purpose, we let processes maintain an additional
list structure per tile, called CSlist (client and server list).
The example is shown in Figure 4.

Step (1): We assume that Process 1 �nished a task on Tile
1, and knows all the processes (Processes 2 to 5) that
consume the tile. Then Process 1 prepares a CSlist
for Tile 1 as in Step (1) in the �gure. Each column
corresponds to a consumer process, whose "server" is
Process 1 itself. We assume that Process 1 received a
request message from Process 3 �rst.

Step (2): Since Process 1 received a request message, it has
to send data of Tile 1 to Process 3. Also it performs ad-
ditional tasks as follows. Process 1 updates its CSlist
so that partial clients (for example, half clients that
Process 1 knows) are directed to the current requester
(Process 3) as the server. In the �gure, CSlist on Pro-
cess 1 has a column {Client=2, Server=3}. In addition
to the tile data, Process 1 also sends the partial CSlist,
related to Process 3, to it. Now Process 3 can work as
a delegated data server.

Step (3): Next, we assume Process 1 received a request mes-
sage from Process 2 (note that other consumers do
not know the existence of delegated servers). Process
1 checks the CSlist, and �nds that the corresponding
server for Process 2 is Process 3. Thus it forwards the
request message to Process 3, instead of sending data
directly. When Process 3 receives the request message,
it sends data of Tile 1 to the original requester, Process
2.

The delegation/forwarding may occur in a recursive style,
if we have more consumers. This implementation tends to
make the hop count increase up to O(log2(P+Q)); however,
as shown in the next section, we surrender the advantage of
reducing the concentration of MPI communications.

This method arises another issue of `garbage collection'. In
the �gure, when can Process 3 discard the cache of Tile
1? In order to determine it, the ignition thread (receiver of
request messages) updates CSlist; if it handles the request
as a data server, it removes the original requester from the
CSlist. A process can discard the cache of a tile if (a) its
CSlist is empty and (b) all the local consumer tasks in the
process have been �nished.

5.2 Scalable Termination Detection
Another issue is termination detection of the entire Cholesky
factorization. A process cannot exit even after all of its local
tasks have been �nished, since it may still receive requests
for its data from other running processes.

As a �rst step, we implemented a simple method as follows.
If a process �nishes all local tasks, it sends �nished mes-
sage to all other processes. Each process counts the �nished
messages while polling possible request messages, until it re-
ceives �nished messages from all other processes. This sim-
ple implementation su�ers from bottleneck, since we need
O(P × Q)2 messages in the situation supposed in Section
5.1.

Scalability is improved by using the CSlist described in pre-
vious section. Each process maintains information about
`which clients have been requested this tile, and who have
not yet' in the CSlist. Thus for arbitrary process, it will not
receive further request messages when CSlists for all local
tiles (including cached tiles) become empty. Thus we can
do termination detection in a scalable style.

6. PERFORMANCE EVALUATION
This section describes the performance evaluation results
of the new version CHOLESKY for large-scale SDP prob-
lems on TSUBAME2.5 supercomputer; the system software



Step (1)

Step (2)

Step (3)

Figure 4: Scalable tree-type data transfer algorithm

con�guration is shown in Table 2. In the evaluation, three
GPUs per node are used for kernel computation, and each
GPU is mapped to a single MPI process. Each MPI process
consists of one ignition thread and four worker threads. As
the size of each tile, we choose nb = 2048 according to the
results of preliminary experiments.

SDP problems used in the evaluation are listed in Table 3.
Among them, the problem that produces largest matrix is
QAP10, where the SCM size is m = 2, 339, 331, which occu-
pies about 20TB in the triangular form.

Figure 5 shows the speed of CHOLESKY component by us-
ing up to 400 nodes (1200 GPUs). It compares three versions
of CHOLESKY:

• 2014: the synchronized implementation in SDPARA
7.6.0-G[18]

Table 2: System con�guration used in the experimentation
Compiler gcc 4.3.4
MPI MVAPICH 2.0rc1

(with support of
MPI_THREAD_MULTIPLE)

CUDA 6.5
BLAS (GPU) CUBLAS 6.5
BLAS (CPU) MKL 2013.1

Table 3: Problems used in the evaluation of CHOLESKY
Name SCM size (= m)

QAP5 379,350
QAP6 709,275
QAP7 1,218,400
QAP8 1,484,406
QAP10 2,339,331

• No-TREE: data-driven execution is introduced, but
tree-type communication is not introduced.

• Latest: our latest version with data-driven execution,
tree-type communication and scalable termination de-
tection.

According to the results, the performance of the latest ver-
sion reaches 642 TFlops with QAP7 problem by using 400
nodes (1200GPUs). Due to the property of Cholesky factor-
ization that computation complexity is O(m3) and commu-
nication complexity is O(m2), it is natural that larger prob-
lems enjoy better performance. When we compare three
versions, Latest achieve the best performance in all cases.
It shows 27% improvement over the 2014 version, for QAP7
problem with 400 nodes. On the other hand, the scalability
of No-TREE version is much worse, and it is even slower
than the old 2014 version. These results indicate the fact
that scalable group communication method is mandatory
for data-driven schedulers to obtain good scalability with
hundreds nodes or more.

Figure 5: Performance of GPU CHOLESKY obtained by
using up to 400 nodes (1,200 GPUs) on TSUBAME2.5.

Results with larger scale are shown in Figure 6, with up



to 1,360 nodes (4,080 GPUs), almost the whole system of
TSUBAME2.5. Unfortunately, due to the limited time when
we were allowed to use the whole system, we could not exe-
cute the latest version in this experiment. While the "With-
TREE" version is equipped with the tree-type communica-
tion, it does not have scalable termination detection, unlike
Latest version.

The graph shows that the "With-TREE" version achieves
1.510 PFlops for QAP10 problem with 1,360 nodes. This is
12% lower than 1.713 PFlops of 2014 version, thus we could
not renew our previous world record. Also we observe the
scalability of "With-TREE" is compromised with 700 nodes
or more. We need to investigate the reason for this; cur-
rently we consider this is due to lack of scalable termination
detection as mentioned above. If we executed the Latest
version on the whole system, considering the performance
ratio between Latest and 2014 with 400nodes, we expect
the performance around 1.713× 1.27 = 2.175 PFlops.

Figure 6: Performance of GPU CHOLESKY obtained by
using up to 1,360 nodes (4,080 GPUs) on TSUBAME2.5.

7. RELATED WORK
Our data driven scheduling method is strongly in�uenced by
DAGuE/PaRSEC by Bosilca et al. [19, 20, 23]. They have
presented a direct acyclic graph (DAG) scheduler for dis-
tributed environments with GPUs, and demonstrated that
the scheduler can execute applications including the Cholesky
factorization e�ciently. For the scalability issue, they have
mentioned the possibility of introducing e�cient collective
communication methods [20]; however, to our knowledge,
its integration and/or evaluation have not been published.
In this paper, we demonstrated that this issue is the key
to determine the scalability of implementation when we use
hundreds or thousands nodes. Also we could embed our
scalable data transfer and termination detection methods in
their implementation.

StarPU[21] is a DAG scheduling framework for heteroge-
neous environments. It allows for each task to run either
on CPUs or GPUs according to the resource utilization, in
order to improve the performance of execution of the whole
task graph. It also maintains data consistency, while miti-
gating data movement between CPUs and GPUs. However,

StarPU does not have scalability improvement techniques as
described in this paper.

In order to harness memory hierarchy of GPU memory and
CPU memory in a transparent style, authors have proposed
a runtime library called hybrid hierarchical runtime (HHRT)[26].
HHRT uses an oversubscription model; each GPU is shared
by multiple processes, and when GPU memory is full, data
of some processes are automatically swapped out. This
methodology is successful for stencil based applications, how-
ever, we did not adopt it for the Cholesky factorization. One
of the reasons is that using MPI communication between
processes on the same node degrades the overall performance
for this computation. Also the memory consumption would
be increased because of the lack of the mechanism for shar-
ing memory objects among processes. After these problems
are solved, we could integrate HHRT and the scheduling
methods in this paper.

8. CONCLUSION AND FUTURE WORK
We have described a scalable data driven implementation for
the optimization of the multi-node multi-GPU Cholesky fac-
torization, which is the most important kernel in SDPARA,
the petascale SDP problem solver. It solves the scalability
issues in typical data driven implementation by introduc-
ing scalable data transfer method and termination detection
method. In spite of these advantages, we do not spoil advan-
tages of data driven approaches; the communication amount
between CPU and GPU is reduced, and computation and
communication are overlapped. Compared with the syn-
chronous implementation, our implementation achieved 27%
performance improvement on 400 nodes and 1,200 GPUs of
TSUBAME2.5 supercomputer. Due to limited time for ex-
periments, the latest version cannot executed with the entire
system, however, we expect its performance will be more
than 2 PFlops.

In future, we will prove the scalability of the latest imple-
mentation with more than 1,000 nodes. Also we have dis-
covered that memory consumption of each process is inde-
terministic, which may incur host memory over�ow. We will
investigate relationship between task selection strategies and
changes of memory consumption. Also we will extend the
implementation so that it can harness non-volatile mem-
ory while harnessing deeper memory hierarchy e�ciently,
towards extreme scale SDP problems.
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