
The Scalable Petascale Data-Driven Approach
for the Cholesky Factorization

with multiple GPUs

Yuki Tsujita, Toshio Endo, Katsuki Fujisawa
Tokyo Institute of Technology, Japan

ESPM2 2015@Austin Texas, USA

1

What is the Cholesky factorization?

• The Cholesky factorization is a factorization of a real
symmetric positive-definite matrix into the product of a
lower triangular matrix and its transpose

• Statement
A=LLT(A∈Rm×m)

• The time complexity of the Cholesky is O(m3)

A L
LT

2

SDPARA: Our Target application

• Dense Cholesky factorization is the important
kernel of SDPARA GPU ver.[Fujisawa et al. 2011]

• SDPARA GPU ver.
– Application to solve SDP(SemiDefinite Program)
– Offload a part of its calculations to GPU

3

Year n m CHOLESKY
(Flops)

2003 630 24,503 78.58 Giga

2010 10,462 76,554 2.414 Tera

2012 1,779,204 1,484,406 0.533 Peta

2014 2,752,649 2,339331 1.713 Peta

Table: Performance record of CHOLESKY of SDPARA

Existing approach I：
Synchronous Implementation
[Fujisawa et al. IPDPS 2014]

• Block Cholesky factorization
– The input data is divided into the blocks

• The calculations proceed in each block
– The blocks are assigned to the processes by

two dimensional block cyclic division
• Processes do calculations of the only assigned data

• Each iteration proceeds synchronously
– The data are transferred from CPU to GPU at the

beginning of each iteration
– If a process has no task in a certain iteration, it has to

wait for the other processes finishing without doing
anything

L0

A11

A21 A22

L0 L21

L11

�A22
4

The DAG of the Cholesky factorization

• Kernels are divided into fine-grained tasks
– Basically each task proceeds asynchronously

• PCIe comm. performs only when it needs
• Inter-process comm. performs

in Point-to-Point way
• We found the performance may decrease

in extremely large scale case

Existing approach II：
Data-Driven Implementation
[Tsujita&Endo JSSPP 2015]

5

DPOTR
F

DTRSM

DSYRK

DGEM
M

intra-process
dependency
inter-process
dependency

proc 0 proc 1 proc 2 proc 3

• Large problem size(m>2M)
– Use capacity of host memory to put the matrix

data[Tsujita,Endo JSSPP2015]

• High performance(>1.7PFlops)
– Use multiple GPUs and reduce PCIe

communication by GPU memory aware
scheduling[Tsujita,Endo JSSPP2015]

– Solve the communication bottleneck by
introducing the scalable communication

6

Our Target

Contribution

7

• Goal
– Performance improvement of the multi-node multi-GPU

Cholesky factorization
• Approach

– Data-Driven scheduling to reduce data movement
(presented@JSSPP2015)

• Scheduling tasks in an application
• Task selection to improve GPU memory reusability

– The MPI communication pattern for the scalability
improvement

• Achieve the performance of 1.77PFlops with 1360 nodes

Existing method Ⅰ
（Synchronous）

Existing method Ⅱ
(Data-Driven) Proposed method

Data driven × ✓ ✓

PCIe Comm
reducing

×
(Naïve)

✓
(Swap)

✓
(Swap)

MPI Comm
Scalability

✓
(Group)

×
(Point-to-point)

✓
(Scalable

communication)

Overlap of
calculations &

communications
✓ ✓ ✓

8

Implementation overview

• GPU memory-aware scheduling
– Task selection considering the reusability of GPU

memory

• Point-to-Point asynchronous MPI
communication

• GPU memory management by swapping
– select an unnecessary data as a victim

9

Our Basic Data-Driven
Implementation

(Existing Approach II)

Worker thread & Ignition thread

• MPI process has several worker thread and one
ignition thread

• Worker
– Executes tasks
– Process has two or three worker per one GPU in order to

achieve overlapping of calculation, PCIe and MPI simply

• Ignition
– checks arrival of notice messages from other processes
– handles data request

• All threads in a process shares a single task queue
10

Task Execution

11

MPI Process 1

Task A

Receive data
request

Send data

MPI Process 2

Receive data

cudaMemcpy

Execute on GPU

Send notice of task
end

Firing

Send data
request

worker2

Firing

ignition2

Task B

data

request

Notice
worker1 ignition1

Task C

MPI Process 3

Notice
Firing

ignition3 worker3

T1

T1

T2

12

The pitfall of Data-Driven

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20

Sp
ee

d
(T

Fl
op

s)

Number of Nodes

Synchronous Data-Driven

0

100

200

300

400

500

600

0 100 200 300 400 500

Sp
ee

d
(T

Fl
op

s)

Number of Nodes
SYNC (QAP5) SYNC (QAP6) SYNC (QAP7)

D2 (QAP5) D2 (QAP6) D2 (QAP7)

As problem size or number of
the nodes increases,

the performance decreases in
data-driven execution

By Data-Driven implementation,
we get better performance

The suspected bottleneck is a
concentration of MPI

communication

Not only does our approach
suffer from this problem !

Synchronous implementation uses MPI_Bcast for data transfer

But in Data-Driven implementation
•Each task runs asynchronously -> MPI_Bcast, MPI_Ibcast: ×
•When many processes request the same tile,
Point-to-Point communication is executed 2√P times

The existing data-driven shows less performance in high parallel situation

13

The pitfall of Data-Driven

For scalable data transfer, we create
a broadcast tree structure dynamically

・・・

2√P

T

• Presupposition
– Data send is occurred only when a process receive

requests from other processes
– The order of data requests is unsettle

• For scalable data transfer,
We make CSlist(Client-Server list)

– one CSlist for one tile
– CSlist has clients and corresponding servers
– When a process receives requests, checks CSlist
・Server: send data ・Others: forward to its server

– When a process sends data, forces a part of its clients on
requestor 14

Scalable Communication

Tile A

C 2 3 4 5
S 1 1 1 1

CSlist

15

Scalable Communication

Tile A

Process 1
Process 2

Process 3 Process 4

Process 5

1. request

C 2 3 4 5

S 1 1 1 1

CSlist

16

Scalable Communication

C 2 3 4 5

S 3 - 1 1

Tile A

Process 1
Process 2

Process 3 Process 4

Process 5

Tile A

C 2 3

S 3 -

2. data send

CSlist

17

Scalable Communication

C 2 3 4 5

S 3 - 1 1

Tile A

Process 1
Process 2

Process 3 Process 4

Process 5

Tile A

C 2 3

S 3 -

3. data send

1. request CSlist

2. request(forward)

18

Scalable termination detection
A process cannot exit even if all of its tasks has been finished

→ Process may still receive requests for its owned data from
other running processes

The detection of process’s termination becomes difficult !

we solve this by using CSlist
CSlist shows “which client has been requested this tile, or not yet”
So there is no further request message, when CSlists for all local tiles become empty
By using CSlist we can detect process’s termination without especial communications

Tile A

Process 1

Process 2

Process 3
Process 4

Process 5

C 2 3 4 5

S - - - -
If all servers in the CSlist

become empty
its tile has been sent to all

processes that need it
C 2 3

S - -

Tile A

Experiment Conditions
• We use 1360 nodes of TSUBAME2.5

19

node architecture of TSUBAME 2.5

CPU Intel Xeon 2.93 GHz (6 cores) x 2

CPU memory 54GiB

GPU NVIDIA Tesla K20X × 3

GPU memory 6GiB

• Three MPI processes per a node
• One GPU per a MPI process(3 GPU/node)
• Tile Size:2,048 x 2,048
• GPU memory:5,000MiB per a GPU
• NVIDIA CUDA 7.0 and CUBLAS 7.0

Performance Evaluation

• Compared Implementations

20

• Evaluation
– Scalability evaluation
– Extremely Large Scale

• Problem size
QAP5: m=379,350 QAP6: m=709,275
QAP7: m=1,218,400 QAP9: m=1,962,225

Existing approach Ⅰ
（Synchronous: SYNC）

Existing approach Ⅱ
(Data-Driven:DD)

Proposed method
(Proposal)

PCI Comm
Reducing × ✓ ✓

MPI Comm
Scalability

✓
(Group)

×
(Point-to-point)

✓
(scalable

communication)

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500

Sp
ee

d
(T

Fl
op

s)

Number of Nodes
SYNC (QAP5) DD (QAP5) Proposal (QAP5)

SYNC (QAP6) DD (QAP6) Proposal (QAP6)

SYNC (QAP7) DD (QAP7) Proposal (QAP7)

Conduct scalability evaluation on TSUBAME2.5 using until 400 nodes(3 GPUs per a node)

21

Scalability Evaluation

By Data-Driven + Tree Comm.
37% performance improvement
695 TFlops on 400 nodes with
1200 GPUs

Without Tree Comm.
Performance largely decrease
than SYNC
(communication bottleneck)

22

Extremely Large Scale
• Conduct scalability evaluation on from 400 nodes to 1360

nodes (3GPUs per a node)

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 500 1000 1500

Sp
ee

d
(T

Fl
op

s)

Number of Nodes
SYNC (QAP7) Proposal (QAP7)
SYNC (QAP9) Proposal (QAP9)

1.775PFlops
on 1360 nodes
with 4080 GPU by
our approach

Related work
• StarPU: a unified platform for task scheduling on heterogeneous multicore

Architectures[Cédric Augonnet et al.]
– A DAG scheduling framework for heterogeneous environments
– Allows for each task to run either on CPUs or GPUs according to the resource

utilization in order to improve the performance
– But StarPU does not have scalability improvement techniques as our approach

• DAGuE: A generic distributed DAG engine for high performance
computing[George Bosilca et al.]
– DAG(Direct Acyclic Graph) scheduler for distributed environments with GPUs
– The Cholesky factorization is one of their target application
– But it is not clear how DAGuE treats memory objects when GPU memory is full

23

• The solution of the scalability issues in typical data
driven implementation by introducing scalable data
transfer method and termination detection method

• Compared with the synchronous implementation,
37% performance improvement on 400 nodes and
1,200 GPUs of TSUBAME2.5 supercomputer

• Achieved 1.775PFlops on 1360 nodes and 4080
GPUs of TSUBAME2.5 supercomputer

24

Conclusion

• Use both CPU & GPU for kernel calculations
• Comparative experiments with related works
• Construct the ideal task selection model and

conduct comparative experiments with it
• Apply our approach to other applications

25

Future Work

	The Scalable Petascale Data-Driven Approach for the Cholesky Factorization �with multiple GPUs
	What is the Cholesky factorization?
	SDPARA: Our Target application
	Existing approach I：�Synchronous Implementation�[Fujisawa et al. IPDPS 2014]
	Existing approach II：�Data-Driven Implementation�[Tsujita&Endo JSSPP 2015]
	Our Target
	Contribution
	Implementation overview
	Our Basic Data-Driven Implementation� (Existing Approach II)
	Worker thread & Ignition thread
	Task Execution
	The pitfall of Data-Driven
	The pitfall of Data-Driven
	Scalable Communication
	Scalable Communication
	Scalable Communication
	Scalable Communication
	Scalable termination detection
	Experiment Conditions
	Performance Evaluation
	Scalability Evaluation
	Extremely Large Scale
	Related work
	Conclusion
	Future Work

