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What is the Cholesky factorization?

• The Cholesky factorization is a factorization of a real 
symmetric positive-definite matrix into the product of a 
lower triangular matrix and its transpose

• Statement
A=LLT(A∈Rm×m)

• The time complexity of the Cholesky is O(m3) 
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SDPARA: Our Target application

• Dense Cholesky factorization is the important 
kernel of SDPARA GPU ver.[Fujisawa et al. 2011]

• SDPARA GPU ver.
– Application to solve SDP(SemiDefinite Program)
– Offload a part of its calculations to GPU
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Year n m CHOLESKY
(Flops)

2003 630 24,503 78.58 Giga

2010 10,462 76,554 2.414 Tera

2012 1,779,204 1,484,406 0.533 Peta

2014 2,752,649 2,339331 1.713 Peta

Table: Performance record of CHOLESKY of SDPARA



Existing approach I：
Synchronous Implementation
[Fujisawa et al. IPDPS 2014]

• Block Cholesky factorization
– The input data is divided into the blocks

• The calculations proceed in each block
– The blocks are assigned to the processes by 

two dimensional  block cyclic division
• Processes do calculations of the only assigned data

• Each iteration proceeds synchronously 
– The data are transferred from CPU to GPU at the 

beginning of each iteration
– If a process has no task in a certain iteration, it has to 

wait for the other processes finishing without doing 
anything
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The DAG of the Cholesky factorization

• Kernels are divided into fine-grained tasks
– Basically each task proceeds asynchronously

• PCIe comm. performs only when it needs
• Inter-process comm. performs 

in Point-to-Point way
• We found the performance may decrease 

in extremely large scale case 

Existing approach II：
Data-Driven Implementation
[Tsujita&Endo JSSPP 2015]
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• Large problem size(m>2M)
– Use capacity of host memory to put the matrix 

data[Tsujita,Endo JSSPP2015]

• High performance(>1.7PFlops)
– Use multiple GPUs and reduce PCIe 

communication by GPU memory aware 
scheduling[Tsujita,Endo JSSPP2015]

– Solve the communication bottleneck by 
introducing the scalable communication 
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Our Target



Contribution
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• Goal
– Performance improvement of the multi-node multi-GPU 

Cholesky factorization
• Approach

– Data-Driven scheduling to reduce data movement
(presented@JSSPP2015)

• Scheduling tasks in an application
• Task selection to improve GPU memory reusability

– The MPI communication pattern for the scalability 
improvement

• Achieve the performance of 1.77PFlops with 1360 nodes



Existing method Ⅰ
（Synchronous）

Existing method Ⅱ
(Data-Driven) Proposed method

Data driven × ✓ ✓

PCIe Comm
reducing

×
(Naïve)

✓
(Swap)

✓
(Swap)

MPI Comm
Scalability

✓
(Group)

×
(Point-to-point)

✓
(Scalable 

communication)

Overlap of 
calculations & 

communications
✓ ✓ ✓
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Implementation overview



• GPU memory-aware scheduling
– Task selection considering the reusability of GPU 

memory

• Point-to-Point asynchronous MPI 
communication

• GPU memory management by swapping
– select an unnecessary data as a victim
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Our Basic Data-Driven 
Implementation

(Existing Approach II)



Worker thread & Ignition thread

• MPI process has several worker thread and one 
ignition thread

• Worker
– Executes tasks
– Process has two or three worker per one GPU in order to 

achieve overlapping of calculation, PCIe and MPI simply

• Ignition 
– checks arrival of notice messages from other processes
– handles data request

• All threads in a process shares a single task queue
10



Task Execution

11

MPI Process 1

Task A

Receive  data 
request

Send  data

MPI Process 2

Receive data

cudaMemcpy

Execute on GPU

Send  notice of task 
end 

Firing

Send  data 
request

worker2

Firing

ignition2

Task B

data

request

Notice
worker1 ignition1

Task C

MPI Process 3

Notice
Firing

ignition3 worker3
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The pitfall of Data-Driven
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As problem size or number of 
the nodes increases,

the performance decreases in 
data-driven execution

By Data-Driven implementation,
we get better performance

The suspected bottleneck is a
concentration of  MPI 

communication

Not only does our approach 
suffer from this problem !



Synchronous implementation uses MPI_Bcast for data transfer

But in Data-Driven implementation
•Each task runs asynchronously -> MPI_Bcast,  MPI_Ibcast: ×
•When many processes request the same tile,  
Point-to-Point communication is executed 2√P times

The existing data-driven shows less performance in high parallel situation
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The pitfall of Data-Driven

For scalable data transfer, we create
a broadcast tree structure dynamically

・・・
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• Presupposition
– Data send is occurred only when a process receive 

requests from other processes
– The order of data requests is unsettle

• For scalable data transfer, 
We make CSlist(Client-Server list)

– one CSlist for one tile
– CSlist has clients and corresponding servers
– When a process receives requests, checks CSlist
・Server: send data ・Others: forward  to its server

– When a process sends data, forces a part of its clients on 
requestor 14

Scalable Communication

Tile A

C 2 3 4 5
S 1 1 1 1

CSlist
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Scalable Communication

Tile A

Process 1
Process 2

Process 3 Process 4

Process 5

1. request

C 2 3 4 5

S 1 1 1 1

CSlist



16

Scalable Communication

C 2 3 4 5

S 3 - 1 1

Tile A

Process 1
Process 2

Process 3 Process 4

Process 5

Tile A

C 2 3

S 3 -

2. data send

CSlist
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Scalable Communication

C 2 3 4 5

S 3 - 1 1

Tile A

Process 1
Process 2

Process 3 Process 4

Process 5

Tile A

C 2 3

S 3 -

3. data send

1. request CSlist

2. request(forward)
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Scalable termination detection
A process cannot exit even if all of its tasks has been finished

→ Process may still receive requests for its owned data from 
other running processes

The detection of process’s termination becomes difficult !

we solve this by using CSlist
CSlist shows “which client has been requested this tile, or not yet”
So there is no further request message, when CSlists for all local tiles become empty
By using CSlist we can detect process’s termination without especial communications

Tile A

Process 1

Process 2

Process 3
Process 4

Process 5

C 2 3 4 5

S - - - -
If all servers in the CSlist

become empty
its tile has been sent to all 

processes that need it
C 2 3

S - -

Tile A



Experiment Conditions
• We use 1360 nodes of TSUBAME2.5
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node architecture of TSUBAME 2.5

CPU Intel Xeon 2.93 GHz (6 cores) x 2

CPU memory 54GiB 

GPU NVIDIA Tesla K20X × 3

GPU memory 6GiB

• Three MPI processes per a node
• One GPU per a MPI process(3 GPU/node)
• Tile Size:2,048 x 2,048
• GPU memory:5,000MiB per a GPU
• NVIDIA CUDA 7.0 and CUBLAS 7.0



Performance Evaluation

• Compared Implementations
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• Evaluation
– Scalability evaluation
– Extremely Large Scale

• Problem size
QAP5: m=379,350 QAP6: m=709,275
QAP7: m=1,218,400 QAP9: m=1,962,225

Existing approach Ⅰ
（Synchronous: SYNC）

Existing approach Ⅱ
(Data-Driven:DD)

Proposed method
(Proposal)

PCI Comm
Reducing × ✓ ✓

MPI Comm
Scalability

✓
(Group)

×
(Point-to-point)

✓
(scalable 

communication)
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Conduct scalability evaluation on TSUBAME2.5 using until 400 nodes(3 GPUs per a node)

21

Scalability Evaluation

By Data-Driven + Tree Comm. 
37% performance improvement
695 TFlops on 400 nodes with 
1200 GPUs 

Without Tree Comm. 
Performance largely decrease 
than SYNC
(communication bottleneck)
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Extremely Large Scale
• Conduct scalability evaluation on from 400 nodes to 1360 

nodes (3GPUs per a node)
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1.775PFlops
on 1360 nodes 
with 4080 GPU by 
our approach



Related work
• StarPU: a unified platform for task scheduling on heterogeneous multicore 

Architectures[Cédric Augonnet et al.]
– A DAG scheduling framework for heterogeneous environments
– Allows for each task to run either on CPUs or GPUs according to the resource 

utilization in order to improve the performance
– But StarPU does not have scalability improvement techniques as our approach

• DAGuE: A generic distributed DAG engine for high performance 
computing[George Bosilca et al.]
– DAG(Direct  Acyclic Graph) scheduler for distributed environments with GPUs
– The Cholesky factorization is one of their target application
– But it is not clear how DAGuE treats memory objects when GPU memory is full
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• The solution of the scalability issues in typical data 
driven implementation by introducing scalable data 
transfer method and termination detection method

• Compared with the synchronous implementation, 
37% performance improvement on 400 nodes and 
1,200 GPUs of TSUBAME2.5 supercomputer

• Achieved 1.775PFlops on 1360 nodes and 4080 
GPUs of TSUBAME2.5 supercomputer 
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Conclusion



• Use both CPU & GPU for kernel calculations
• Comparative experiments with related works
• Construct the ideal task selection model and 

conduct comparative experiments with it
• Apply our approach to other applications
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Future Work
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