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Abstract—Remote Memory Access (RMA) is a useful commu-
nication interface to develop high-performance applications with
complicated communication patterns. However, the data scales
of such applications are still limited by the totally available main
memory capacity.

To accommodate extreme scale executions of those applica-
tions, we developed vGASNet, which is an RMA-based commu-
nication library that exploits the capacity of non-volatile memory
(NVM) on each node. With vGASNet, NVM devices on nodes
compose a large shared address space. Under this model, the
key for good application performance is to reduce bandwidth
bottlenecks. First, since NVM is much slower than DRAM,
reducing the amounts of NVM accesses is important. For this
purpose, vGASNet regards DRAM of each computation node
as a cache of NVM. Next, one of bottleneck sources in RMA
is caused by access contention. In order to mitigate its effects,
vGASNet adopts cooperative cache mechanism, which make
multiple caches of an object on several nodes. Our evaluation
using vGASNet shows the above cache mechanism improves the
scalability of RMA.

Index Terms—Non-volatile memory, Remote memory access,
Cache, Cooperative caching, GASNet

I. INTRODUCTION

Programming models based on Remote Memory Access
(RMA) communication are known to ease to develop high-
performance big-data applications including de novo genome
assembly [1] and large-scale matrix manipulations [2]. Their
advantages come from the model where distributed memories
on multiple compute nodes are virtually integrated into a
global memory pool, which are accessible from all nodes.
However, the data scales of such applications are still limited
by the totally available main memory capacity. To exceed
this limitation, we focus on usage of non-volatile memory
(NVM) including Flash SSD, which are widespreading to-
ward the post-Moore era. Several supercomputers such as
TSUBAME [3], [4] and Beacon [5] are equipped with node-
local NVMs into computing nodes. To utilize their capacity,
many researchers have developed memory management or
communication libraries for NVMs [6]–[15]. However, few
works have focused on RMA functionalities.

This paper describes design and implementation of a novel
RMA-based communication library, named vGASNet. The ba-
sic idea of vGASNet is to compose a single memory pool from
multiple node-local NVMs across all application processes,
called ranks. vGASNet is designed to have similar interface

to that of GASNet, which is a commonly used RMA com-
munication library [16]. While this model achieves extremely
large global memory pool, we need to mitigate performance
overhead caused by heavier access costs of NVM than those
of DRAM since NVMs tend to have less access bandwidth
and larger latency. Towards this objective, vGASNet regards
DRAM (main memory) on compute nodes as cache pools.

While vGASNet can reduce NVM access with DRAM
cache, there is still performance bottleneck especially on large
scale supercomputers. When many ranks are going to fetch the
same data object, a naive way would be that the owner rank
sends the data to all requester nodes. However, this is not
scalable for two reasons; (1) the avaialble cache (main memory
in our context) capacity is limited when only owner node
caches the data. (2) communication congestion occurs on the
owner node. With regard to (2), several PGAS systems such
as XcalableMP [17] provides group communication interface
to programmers, in order to utilize optimized communication
algorithms. However, this approach tends to compromise on
easiness of programming complicated communication pat-
terns.

From the above discussion. the cache mechanism of vGAS-
Net adopts cooperative-caching approach [18], which enables
a rank to utilize the caches of other ranks. This is originally
proposed in the context of file systems, and have shown to
improve scalability of several distributed file systems. For
better scalability, this approach may create multiple caches
of a single object among multiple nodes. Since our focus is
RMA based parallel programming, not file systems, we need to
be more rigid in maintaining data coherency between multiple
caches. We use a cache coherence protocol named MOESI-F
protocol, a combination of MOESI and MESIF, inspired by
protocol on multicore processors.

We conducted performance evaluation of vGASNet with
our cache mechanism on 42-node cluster equipped with node
local SSDs. As vGASNet has similar interface to GASNet,
it can be easily integrated with high level partitioned global
address space systems. Our evaluation includes evaluation of
benchmark written in UPC++ [19]. Through the evaluation,
we show that vGASNet achieves scalable performance.

Our main contributions are as follows:
• Designing and implementing vGASNet, a RMA-based

communication library harnessing memory hierarchy to-
wards extreme scale applications.
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• Proposing a scalable cache mechanism.
• Integration of vGASNet and UPC++ PGAS runtime and

performance evaluation.

II. GASNET

A. GASNet Overview

As we described above, vGASNet interface is based on
GASNet, an existing RMA-based communication library.
GASNet is used by various parallel programming systems such
as UPC [20], UPC++ [19], and Legion [21]. GASNet provides
high performance RMA communication by harnessing under-
lying APIs such as Verbs for InfiniBand, PSM for Omni-Path,
or uGNI for Cray Aries/Gemini systems.

A program on top of GASNet consists of distributed several
application processes, called ranks hereafter 1. Each rank has
a special region, called remote access segment hereafter. A
remote access segment is accessible from other ranks via
GASNet’s APIs.

GASNet provides two kinds of APIs, Core API and Ex-
tended API. Core API includes basic functionalities such as
initialization of GASNet library itself, allocation of remote
access segments and functions related to active messages [22],
which is the main communication protocol of Core API. The
Extended API functions provide RMA and have a reference
implementation using active messages. With high-performance
network such as InfiniBand, Extended API functions utilize
RMA functionalities on hardware primitives.

B. Core API

Each rank calls gasnet_init() to initialize GASNet,
and then gasnet_attach(). The latter function has two
meanings, (1) to register handlers for active messages (AM),
and (2) to initialize its remote access segment. The size of
remote access segment should be smaller than the available
main memory capacity.

After that each rank can communicate with each other
by using AM. When a rank sends an AM with a handler
kind to another rank, the destination rank executes the cor-
responding handler function, which have been registered by
gasnet_attach(). An AM is sent by Core API functions
such as gasnet_AMRequestMedium0().

A rank can obtain base pointers and sizes of
remote access segments of all ranks by calling
gasnet_getSegmentInfo().

C. Extended API

Extended API provides high-level operations including
put/get RMA functions, which enables access to remote access
segments owned by other ranks. gasnet_put() is used to
copy local data into remote access segment of another rank.
Contrarily, gasnet_get() copies data on remote access
segment of another rank to local memory. Each function is
given a pointer on the local memory, the rank accessed, a
pointer on the remote memory, and the size of the data.

1In the GASNet manual, the term “node” is used. However, this paper uses
“rank” to distinguish processes and physical compute nodes.
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Fig. 1. Software stack of vGASNet

The followings are properties about memory access on
GASNet.

• Data outside a remote access segment is not accessible
from other ranks.

• Each node can access freely both to its own data inside
the remote access segment and outside the remote access
segment locally in the default configuration.

III. VGASNET

A. Overview

vGASNet is a RMA-based library based on GASNet and
the software stack is shown as fig. 1. vGASNet provides
GASNet-like interface functions such as vgasnet_put()
and vgasnet_get() to the upper layer, which is typically
a PGAS runtime such as UPC++. vGASNet utilizes the
underlying original GASNet library in order to harness high-
performance RMA facilities, while some GASNet functions
are directly used by the upper layer.

On vGASNet, remote access segment of each node is
allocated on the NVM of the node, which may be larger than
DRAM capacity. Currently, the segment is implemented as a
file on the NVM. The segment can be accessed by the other
nodes using vGASNet functions.

vGASNet partitions DRAM on each node into three parts,
local memory region, page cache pool and communication
buffer as in figures 2 to 5. The page cache pool (“cache”
in figures), which consists of pages with a fixed size, con-
tains partial copy of NVMs. The cache pool is maintained
by vGASNet internally and not accessed by the application
explicitly.

Each node has a table in order to maintain the rank of the
owner node of each cache page. The owner node of a cache
page is a node that owns the original page on its NVM. Each
page has its own reader-writer lock, which allows concurrent
access for get operations, while put operations require exclu-
sive access. The cache consistent policy of vGASNet is relaxed
consistency; all caches are synchronized when memory barrier
functions such as vgasnet_barrier_wait() are called.

The current implementation does not guarantee thread-
safety, while the original GASNet does. We plan to solve it
in the future.

B. Get Operation

The overview of get operations such as vgasnet_get()
is drawn as fig. 2 and fig. 3. Here Rank A is being to copy
from the data D (gray box) to the local (i.e. not shared among
the ranks) memory region L. We assume D is included by a
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Fig. 2. Basic get operation of vGASNet
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Fig. 3. Get operation of vGASNet with cooperative-caching

page P (white boxes contain D), which is stored in the NVM
of its owner, Rank B. The figures also show a cache manager
of each rank, which is a module that communicates with other
ranks. The all messages exchanged among cache managers are
passed using gasnet_AMRequestMedium0().

When rank A invokes a get operation, it firstly checks
whether P is cached in its local cache pool. If it is, rank
A simply copies it to L locally. Otherwise, the get operation
works as follows: (1) Rank A allocates a page for P in its
cache pool. This may cause eviction of an old cache page. (2)
Rank A sends Rank B a request message to get P .

Next, Rank B checks any other ranks has the cache of P .
To achieve this, each rank maintains a list of nodes that have
cache for each page on NVM. If Rank B finds it is not cached
by others, the sequence continues as in fig. 2: (3) Rank B reads
P from its NVM to the communication buffer. (4) Rank B puts
the buffer to the cache pool of rank A with gasnet_put().
(5) Rank B notifies rank A that the request has been completed.
(6) Rank A copies from D as a part of the cache of P to L.
(7) Rank A notifies Rank B that Rank A now has a cache of
P .

If P is cached by Rank C, we can harness cooperative-
caching. The following operations occur as in fig. 3. (3) Rank
B forwards the request to Rank C. (4) Rank C puts the content
of P to the cache pool of Rank A with gasnet_put(). (5)
Rank C notifies Rank A that the request has been completed.
Steps (6) and (7) are same as above.

!"#$% &$#'( )*++(, !"#$% &$#'( )*++(,

-./ -./

&$#'(01$2$3(,

45607%%"#$8(

4960/(::$3(

4;60<($=

4>60-"8?+@

4A60&"B@

<$2C07 <$2C0)

D<7/ D<7/

&$#'(01$2$3(,

4E603$:2(8FB*846

Fig. 4. Basic put operation of vGASNet
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Fig. 5. Put operation of vGASNet with cooperative-caching

C. Put Operation

The overview of put operations such as vgasnet_put()
is drawn as figures 4 and 5. Rank A is being to copy the data
L in its local access segment into D (gray box). D is included
by a page P , whose owner is Rank B.

Unlike a get operation, each put operation invokes com-
munication to the owner regardless the status of local cache
for cache coherency. A put operation starts with: (1) Rank A
allocates a page for P in its cache pool if the cache does not
exist. (2) Rank A sends Rank B a message to get P .

Here Rank B checks if P is cached by other ranks. If not,
the following operations are done as in fig. 4: (3) Rank B reads
P from its NVM to its communication buffer. (4) Rank B puts
the buffer to the cache pool of rank A with gasnet_put().
(5) Rank B notifies rank A that the request has been completed.
(6) Rank B records that rank A has the cache of P . (7) Rank
A stores the content of L into D as the cache of P .

If Rank B sees P is cached by others (it may be cached
by A), the following operations are done as in fig. 5: (3)
The owner forwards the request to rank C. (4) Rank C
puts the content of P to the cache pool of Rank A with
gasnet_put(). (5) Rank C notifies Rank B that the request
has been completed. (6) Rank B requests all ranks that have
cache of P (except Rank A) to invalidate them. Steps (7), (8),
(9) are the same as (5), (6), (7) in the former sequence.
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Fig. 6. State transition of the MOESI-F protocol

D. Local Memory Access

With the original GASNet, each rank can have access not
only to its local access segment but to its own remote access
segment. This is possible because the remote access segment
is allocated on DRAM. On the other hand, this causes an issue
on vGASNet, which allocates the remote access segment on
the node-local NVMs. We noticed that several applications use
this facility, thus we support it on vGASNet as follows.

Our current implementation is based on signal handling of
SIGSEGV. In vGASNet initialization, each rank allocates a
virtual memory address space for remote access segment using
mmap() specifying MAP_ANONYMOUS and PROT_NONE.

When rank A tries to access the segment first, a SIGSEGV is
invoked. In the SIGSEGV handler, si_addr (virtual memory
address at fault) is checked. If the address is out of the
remote access segment, the program is simply terminated.
Otherwise, the handler makes the page including si_addr
accessible as follows. (1) Using mprotect(), the handler
makes the virtual memory space of the page accessible. (2) If
no other rank has caches of the page, the handler loads the
page from its own NVM. Otherwise, the handler requests one
of the ranks that has the cache to send it. (3) For memory
consistency, all remote caches of the page are invalidated,
since the virtual memory space can be dirty and this page
is regards as “Modified” in rank A. (4) The handler records
that the target page is cached at the address si_addr itself.
This mechanism allows the virtual memory space can be used
as a cache.

Afterward, rank A may receive invalidate requests for the
cache page. In these cases, it writes the content of the virtual
memory space to the NVM. Then, the virtual memory is
protected with mprotect() again.

E. MOESI-F Protocol

MOESI-F protocol is the cache coherence protocol used in
vGASNet. The protocol is inspired by two practical protocols
of multicore processors. One protocol is MOESI protocol,
which is implemented in AMD multicore processors [23].
MOESI protocol allows the dirty cache not to be written-back
to the main memory when false-sharing access is caused. The
other protocol is MESI-F protocol, which is implemented in
Intel multicore processors [24]. MESI-F protocol assigns each
shared cache to a node which has the cache. Only assigned
node can transfer the cache to another node.

Shown as fig. 6, under MOESI-F protocol, each page transits
among five states.

Modified is a state which means the cache is dirty and
that any other nodes do not have the cache pointing to the
same cache line. When the cache is evicted, it is written back
to the NVM stored the original data. If a modified cache is
transferred to another node, the cache is changed to owned.

Owned is a state which means the cache is dirty and shared
among multiple ranks. When the cache is evicted, it is not
written back to NVM. Once a owned cache is written, the
cache is changed to modified.

Exclusive is a state which means the cache is clear and that
any other nodes does not have the cache pointing to the same
cache line. When the cache is evicted, it is not written back
to the NVM. If an exclusive cache is transferred to another
node, the cache is changed to shared. Once a exclusive cache
is written, the cache is changed to modified.

Shared is a state which means the cache is clear and shared
among multiple nodes. When the cache is evicted, it is not
written back to the NVM. Once a shared cache is written, the
cache is changed to modified.

Invalidate is a state which means the cache is invalidated.
This state is the initial state of the caches under the MOESI-F
protocol.

Moreover, the owner assigns each cache line with a node
which has the cache. The assigned cache is called forward in
addition to the other five states. Modified caches and exclusive
caches must be forward because these are only caches pointing
to their cache lines. Owned caches and shared caches can be
forward. The forward cache of a cache line is selected using
a stack-based array. The stack-based array consists of three
operations, push, access, remove. When an element is pushed,
the element is put on the top of the array. An access operation
returns the value of the top element. Then, the top element
is re-pushed the bottom of the array. A remove operation
erases the specified element from the array. Each cache line
is assigned to one of the stack-based array.

F. Cache Replacement Policy
The cache replacement policy of vGASNet is similar to

Least Recently Used (LRU). Although pure LRU uses only
one LRU queue, our policy additionally uses one FIFO queue.
Every cache is firstly enqueued into the LRU queue. When
cache pool is filled, vGASNet dequeues a cache from the
bottom of the LRU queue. In case that the cache is exclusive
or modified, the cache is enqueued to the FIFO queue, and
vGASNet tries to evict the next bottom cache of the LRU
queue. When the FIFO-based queue is larger than half of the
cache pool, the cache at the bottom of the FIFO-based queue is
evicted. An element of the FIFO queue is erased and enqueued
to the LRU queue when and only when the assigned cache line
is accessed.

IV. PERFORMANCE EVALUATION

A. Evaluation Setup
We evaluated vGASNet performance on TSUBAME-

KFC/DL, a 42-node cluster [4]. Each node has two Intel Xeon
E5-2620 v2 CPUs and two 480 GB node-local SATA SSDs
as NVM. All nodes connected with InfiniBand 4X FDR. The
GASNet version is 1.30.0.
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Fig. 8. Sequential access throughput

B. Preliminary Evaluation

To optimize the page size of vGASNet, we conducted a
preliminary evaluation. For this purpose, we implemented a
simple program that emulates our vGASNet protocol including
cooperative caching on top of GASNet.

We used three nodes in TSUBAME-KFC, node A, B, and
C. We observed the throughput when node A requests a page
whose owner is node B.

Fig. 7 shows the throughput in three cases. “NVM” denotes
a case where no node has caches of the page. Here the page
is read from node B’s NVM. “Cache” means that the page is
already cached in DRAM of node B. The page cache is sent to
node A without NVM access. “Cooperative-caching” denotes
a case where the page is cached in DRAM of node C. Here
the request from node A is forwarded from node B to node
C. For comparison reason, we also evaluated the throughput
of gasnet_get(). Here the page is placed on DRAM of
node B.

In fig. 7, we observe that throughputs of “Cache” and
“Cooperative-caching” are much better than that of “NVM”,
which suffers from NVM bandwidth directly. When a page
size is 1 MB or larger, throughputs of the two cases are
comparable to or better than gasnet_get(). Also, the gap
between “Cache” and “Cooperative-caching” are very small
with 1 MB page or larger, which shows that costs of request
forwarding is well hidden in this condition. Hereafter, we
adopt 4 MB, which achieves the maximum throughput in this
experiment, as a page size.
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Fig. 9. Random access throughput
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Fig. 10. False sharing performance

C. Basic Operations

1) Overview: To investigate vGASNet scalability, we per-
formed our benchmark programs developed with vGASNet
and GASNet. In each experiment, the all nodes get or put
a remote access segment in one of the nodes. To observe
scalability improvement by cooperative-caching, we developed
vGASNet without cooperative-caching (denotes “w/o CC” in
the graphs). The cache pool size was 16 GB. A node is
assigned to only one rank.

2) Sequential access: In this experiment, each node get a
datum on a continuous memory region in a rank sequentially.
In fact, the program gets the content of the remote access
segment with vgasnet_get() page by page, then measure
the time of the communication.

The result is shown as fig. 8. Compared with 1 node,
32 nodes under vGASNet obtained 3.23 – 11.1 times faster
throughput. This result shows that cooperative-caching reduces
the throughput of vGASNet when the data size is small due
to MOESI-F protocol overhead. However, these cases are that
the data is fitted in cache pool. Indeed, cooperative-caching
gains 1.34 – 1.92 times throughput when the size is larger
than cache pool size.

3) Random access: In this experiment, each node gets the
contents of a continuous remote access segment in a rank
randomly. Like sequential access experiment described above,
the program also gets the content of the remote access segment
with vgasnet_get() page by page, then measure the time
of the communication. However, the order of gotten pages is
shuffled.

The result is shown as fig. 9. Surprisingly, the throughputs of
multiple nodes are faster than sequential cases. This is because



6

!

"!

#!!

#"!

$!!

# $ % & #' ($

!
"
#$
%
#&

'
(
)"
*+
,
-
.%
/
0*
1*
2
*%
$*
(
%
3
"
04

2*%$*(%3"0

)*+,-. /012-2345 67.8398:34-

/012-23451;<=31>>? 67.8398:34-1;<=31>>?

Fig. 11. Weak scale performance per node of the DGEMM program

the orders of gotten pages are different among nodes. Since
each node caches different pages, the caches of the remote
access segment are distributed. Similarly, even if the data
size is smaller than cache pool, cooperative-caching provides
higher scalability.

4) False sharing: To estimate the performance when false
sharing is occurred, we developed a program which causes
false sharing. In this program, all nodes puts one byte data in
the same page simutaneously.

The result is shown as fig. 10. Except one node, vGASNet
with cooperative-caching is 23.5 – 33.7 times faster than
vGASNet without cooperative-caching. This is because the
node which has the cache should write back to the owner.
With cooperative-caching, the cache can be transferred to the
requesting node directly. On the other hand, vGASNet with
cooperative-caching is 138 times slower than GASNet. This
result tells that false sharing should be avoided as possible
even vGASNet supports it.

D. Integrating with UPC++

We integrated vGASNet with UPC++ (version 0.1), a practi-
cal PGAS library using GASNet. We used a DGEMM sample
program implemented in the UPC++ official repository.

The program calculates C = A×B using SUMMA [25]. A,
B, and C are square matrices of the same sizes. Each matrix
is divided into submatrices. Each block of C is calculated by
the rank whose NVM hold the block. The program is single-
threaded. Instead, our evaluation was conducted on 12 ranks
per node. The cache pool size was 2 GB. The size of each
submatrix was 512.

The weak scale peformance of the DGEMM program is
drawn as fig. 11. “GASNet” is the program using original
UPC++. In other words, “GASNet” does not use vGASNet.
“In memory” and “Out-of-core” are the programs using our
UPC++ with vGASNet. In “GASNet” and “In memory”, each
matrix size is 12288

√
N × 12288

√
N where N is the number

of nodes. On the other hand, the size is 24576
√
N×24576

√
N

in “Out-of-core”. In this experiment, the size of the remote ac-
cess segment of “GASNet” in each rank was 2 GB. Therefore,
executing “GASNet” with 24576

√
N × 24576

√
N matrices

was failed due to an out of memory error.
Although “Out-of-core” caused NVM accesses, we ob-

served that “Out-of-core” is 1.03 – 1.16 times faster than
“In memory”. The reason is that the computation time of

each submatrix is O(M3) although the communication time
is O(M2) where M is size of submatrix. Contrarily, on one
node, “Out-of-core” is 51 % slower than “GASNet”. In our
evaluation, a node can have duplicated caches, which point to
the same cache line. This is because each node has its own
cache pool and cache table. Both the pool and the table cannot
be accessed by another rank even if the rank is assigned to
the same node. This leads to not only wasting the cache pools
but also extra memory copies inside a node.

Like the throughputs of basic operations, adapting
cooperative-caching into vGASNet can improve its scalability.
Indeed, “In memory” is 1.12 – 1.59 times faster than “In mem-
ory (w/o CC)”. This is because some ranks access the same sub
matrices in this matrix multiplication program. Cooperative-
caching can avoid the congestion of communication caused
by simultaneously accessing to the same node. For the similar
reason, “Out-of-core” is 1.25 – 1.53 times faster than “Out-
of-core (w/o CC)”.

V. RELATED WORK

Many researchers have developed memory managed sys-
tems or communication libraries for NVMs [6]–[15]. Espe-
cially, Papyrus [12], [13] and HHRT [11] are available for
practical supercomputers such as TSUBAME and Beacon.
However, except ComEx-PM, they do not focus on RMA
functionalities. vGASNet accomodates RMA functionalities
such as vgasnet_get() and vgasnet_put(). ComEx-
PM [10] supports RMA functionalities featuring node-local
NVMs. However, cache mechanism of ComEx-PM depends
on Linux kernel VFS cache. In this study, we propose an
efficient cache mechanism for RMA-based communication
library optimized for node-local NVMs.

Cooperative-caching was firstly proposed by Dahlin et
al [18]. After that, many distributed filesystems have been
equipped with cooperative caching [26]–[31]. Like vGASNet,
Hwang et al. [26] proposed write-enabled cooperative caching
mechanism for NFS.

Ferguson et al. [32] proposed a cache mechanism for a
PGAS language. They adapted caching to RMA-based Put/Get
operations. Their cache mechanisms are not for NVMs.

VI. CONCLUSION

In this paper, we introduce the mechanism of vGASNet, an
RMA-based communication library. vGASNet considers NVM
as main memory. For performance improvement, vGASNet
also uses DRAM as a cache pool. Under vGASNet, each
rank uses not only local caches but also remote caches. This
methodology is called cooperative-caching. For introduction of
cooperative-caching to vGASNet, we propose a cache coher-
ence protocol, namely MOESI-F protocol. MOESI-F protocol
is a combination of two existing cache coherence protocols,
MOESI protocol and MOSI-F protocol. Our evaluation shows
our cooperative-caching mechanism can gain 1.12 – 1.53 times
performance measured by a DGEMM program.
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