
Predicting Scalability of Parallel Garbage Collectors

on Shared Memory Multiprocessors

Toshio Endo, Kenjiro Taura, and Akinori Yonezawa

Department of Information Science, Faculty of Science

University of Tokyo

7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan

fendo, tau, yonezawag@is.s.u-tokyo.ac.jp

Abstract

This paper describes a performance prediction model
of parallel mark-sweep garbage collectors (GC) on
shared memory multiprocessors. The prediction model
takes the heap snapshot and memory access cost pa-
rameters (latency and occupancy) as inputs, and out-
puts performance of the parallel marking on any given
number of processors. It takes several factors that af-
fects performance into account: cache misses costs,
memory access contention, and increase of misses by
parallelization. We evaluate this model by compar-
ing the predicted GC performance and measured per-
formance on two architecturally di�erent shared mem-
ory machines: Ultra Enterprise 10000 (crossbar con-
nected SMP) and Origin 2000 (hypercube connected
DSM). Our model accurately predicts qualitatively dif-
ferent speedups on the two machines that occurred in
one application, which turn out to be due to contentions
on a memory node. In addition to performance analy-
sis, applications of the proposed model include adaptive
GC algorithm to achieve optimal performance based on
the prediction. This paper shows the e�ect of automatic
regulation of GC parallelism.

1 Introduction

The performance of tracing garbage collectors (GC)
such as mark-sweep GC and copying GC is heavily af-
fected by the characteristic of memory architecture, be-
cause GC incurs a large number of memory accesses.
Especially, the impact of memory performance is sig-
ni�cant when several processors cooperatively perform
GC work on parallel machines. We have reported
that the performance of such parallel GC is sometimes
severely limited on distributed shared memory (DSM)

machine, while it achieves good scalability on symmet-
ric multiprocessors (SMP) [6, 5].

There are many factors that a�ects parallel GC per-
formance: memory access contention, task stealing,
and so on. The goal of this paper is to analyze the e�ect
of each factor quantitatively. For this purpose, this pa-
per proposes a performance model of parallel GC. The
predictor takes a heap snapshot at GC starting time
as input and architecture parameter, and outputs the
running time of the mark phase on any given number
of processors. We evaluate the validity of this model
by comparing the predicted performance and the real
performance obtained through experiments on parallel
machines. The experiments are done on two shared
memory machines: the Sun Enterprise 10000 (crossbar
connected SMP) [3] and the SGI Origin 2000 (hyper-
cube connected DSM) [10].

Applications of our work include construction of
an adaptive GC algorithm, which regulates itself to
achieve the best performance. For example, GC will
be able to regulate the number of processors that are
devoted to collection, by using the predicted result.

Section 2 shows our parallel GC, which is the tar-
get of prediction. Section 3 describes our prediction
method. Section 4 compares the predicted performance
and the real performance, and Section 5 mentions re-
lated work.

2 Parallel Mark-Sweep Garbage Col-

lector

We focus on our parallel mark-sweep GC for shared
memory machines, which we have formerly developed
[6]. Our GC is a parallel extension to Boehm-Demers-
Weiser conservative GC library [2]. When any thread
detects memory shortage, it suspends all application
threads, and then several GC threads cooperatively

performmarking and sweeping. They perform dynamic
load balancing to achieve scalability.

GC threads traverse the graph of all live objects in
the heap with the lazy task creation (LTC) strategy
[11]; each GC thread traverses objects in depth-�rst,
by using its own task pool, called mark stack. When
a GC thread �nds its mark stack empty, it tries to
steal a task from other mark stacks. If the attempt is
successful, it steals one task from the bottom of the
target stack, and restarts marking. The mark phase
terminates when all stacks become empty.

3 Prediction Method

3.1 Overview

Our predictor takes a heap snapshot at GC starting
point as input, and shows the predicted running time
of mark phase with P processors. Figure 1 shows the
overview of our method.

1. We collect some information about GC workload
and memory access pattern by inspecting the heap
snapshot (Section 3.4). Then we estimate TP ,
which is the running time that excludes cache miss
costs.

2. We estimate the number of cache misses on paral-
lel execution QP . This may be larger than that on
serial execution Q1, because of task stealing. QP
is estimated through analysis of live cache lines
(Section 3.5).

3. We calculate the cache miss cost on parallel exe-
cution MP by using Mean Value Analysis(MVA).
GenerallyMP is larger than the miss cost on serial
execution M1, because of access contention (Sec-
tion 3.6).

4. Finally, we obtain the overall running time TMP as
TMP = TP +QPMP .

3.2 Assumption

We make the following assumptions to simplify the
model. We believe the e�ects of them on typical heap
snapshots is small.

� On DSM, we assume that a certain memory region
is accessed by any processor at same probability.
In other words, we assume the task stealing sched-
uler is oblivious to locality.

� We ignore the costs of cache invalidation.

T1

T ∞

P

TP

Q1

M1

SO

TP
M

Data from heap snapshot
Architecture parameter

Cilk model

MVA
Vj

MP

NS

L

QP

Figure 1. Overview of our performance prediction
method. TMP is the �nal result; the marking time
with access costs and contention costs.

� We ignore the overlap between memory access la-
tency and other computational instructions.

3.3 Architecture Parameters

This section describes the basic memory access costs
of parallel machines. We letM1 be the round-trip time
of memory access request without contention costs, and
SO be the occupancy time of the receiver memory node
by each request. We have determined them through
benchmark tests that aggressively access memory.

Origin 2000 SGI Origin 2000 (O2K) DSM ma-
chine consists of several nodes, each of which in-
cludes two R10000 processors and one memory
node. We used a 64 processors machine for exper-
iments. Each 16KB memory page becomes local
to the processor that �rst touched the page. This
rules may incur unbalanced memory distribution.

Enterprise 10000 Sun Enterprise 10000 (E10K)
SMP machine has 64 Ultra SPARC processors and
16 memory nodes. Memory regions are automati-
cally located fairly among all memory nodes.

The access costs on these machines are shown in
Table 1.

2

O2K

local remote
access type M1(ns) M1(ns) SO(ns)

read 270 > 590 230
RW 850 > 1400 490

E10K

access type M1(ns) SO(ns)
read 560 250
RW 610 420

Table 1. Memory access cost on O2K and E10K,
obtained from benchmark tests. `RW' stands for
atomic read-modify-write access.

3.4 Heap Inspection

We obtain parameters that represent workload and
memory access pattern by inspecting heap snapshot.

First, we obtain the total computation work T1 and
the depth of live object graph T1 from the living object
graph. Intuitively, T1 is the serial running time and T1
is the minimum running time with an in�nite number
of processors. Both T1 and T1 exclude cache misses
costs. Now we can estimate TP , which is predicted
parallel marking time without costs of cache misses, as
TP = T1=P + T1. This estimate comes from the Cilk
performance model [1].

Next, we keep track of memory access pattern by
simulating the serial mark phase, and feed the pattern
to the cache simulator. Thus we obtain the number of
serial cache missesQ1, and the number of average living
cache lines L during mark phase. On DSM, we also
obtain the distribution of target of memory accesses
Vj . We let Vj be the ratio of access requests to the j
th memory node, to all requests in the machine. This
is used for estimation of access contention costs.

Finally, we estimate the total number of task steal-
ing NS in parallel execution with P processors. It is
di�cult to know a precise value of NS beforehand,
because of nondeterminism. Our predictor adopts a
rough estimate of NS ; NS = Plog(T1).

3.5 Number of Cache Misses

We derive the number of cache misses on parallel
execution QP from the number of serial cache misses
Q1. In LTC style execution, the computation order is
preserved in most cases between serial execution and
parallel execution. The exception is caused by task
stealing; tasks which were contiguous in serial execu-

Parallel execution (two task steals)

steal steal

Serial execution

Time

Cache miss Cache hit

Life of cache line

Time

Q1 = 5

QP = Q1+4 = 9

Figure 2. The behavior of cache lines, in serial
execution and parallel execution.

tion may be performed by di�erent processors in par-
allel execution.

Figure 2 shows the behavior of cache lines during se-
rial execution and parallel execution of the same work-
load. Black and gray circles correspond to cache misses,
and white ones are cache hits. The circles arrayed hor-
izontally stand for accesses to a single cache line. In
serial execution, we have �ve cache misses in this case.
In parallel execution, suppose two task steals (vertical
lines in the �gure) occur during this execution. Then
three task groups separated by two vertical lines are
executed by distinct processors, which have respective
cache memories. Thus some memory accesses are no
more contiguous and the total number of cache misses
is larger than Q1.

The predictor estimates QP as QP = Q1 + NSL,
where NS is the total number of task steals and L is
the average number of live cache lines. Intuitively, we
assume each task steal incurs about L additional cache
misses.

3.6 Cost of Cache Misses

This section estimates the cache miss costs on par-
allel execution MP , from sequential access costs M1.
We utilize MVA to account for access contention. This
paper describes only contention at memory nodes. To
estimates contention costs, we use the occupancy time

3

So and the access distribution Vj , which may be unfair
among memory nodes on DSM.

The frequency of incoming access requests to j th
memory node is VjQP =T

M
P , where TMP is overall run-

ning time. Thus the average waiting time of each
access request at j th memory node is SO�=(1 � �),
where � = SOVjQP =T

M
P . Here we obtain MP as

MP = M1 + SO�=(1 � �). Because MP depends on
the �nal result TMP , the de�nition of MP is recursive.
The predictor uses the Newton method to calculate it.

4 Experimental Results

This section compares the predicted performance of
parallel mark phase by our model with the measured
performance on parallel machines. We show the aver-
age speed of the mark phase of several GC invocations
through the execution of parallel application programs.
We use three parallel application programs: BH, Cube,
CKY. They are written by using StackThreads/MP
[12], a �ne-grain thread library for C/C++.

BH simulates the motion of several particles by using
the Barnes-Hut algorithm. Our BH implementation is
not completely parallelized; only one thread creates the
data structure to keep track of motion of the particles.
Thus most live objects are located on a certain main
memory node in O2K.

Cube searches an approximate solution of the Ru-
bik's cube puzzle in breadth �rst fashion. Because all
threads allocate the state records in parallel, live ob-
jects are distributed in all memory nodes in O2K.

CKY takes sentences written in natural language
and the syntax rules of that language as input, and
outputs all possible parse trees for each sentence [9].

4.1 Evaluation of Predicted Performance

Figure 3 and Table 2 compare the predicted re-
sult and the real performance on O2K and E10K. The
graphs show GC speed-up by parallelization. \Real"
refers to the measured speed-up and \Pred" refers to
the speed-up predicted by our predictor. \Pred(QP =
Q1)" corresponds to another prediction that ignores
miss increase by parallelization. \Pred(MP = M1)"
ignores access contention cost.

In BH on O2K, our GC achieves only 10 fold speed-
up, while it achieves much better scalability on E10K.
The predicted graph succeeds in capturing the di�er-
ence between the two machines. The graph shows that
there is a signi�cant gap between \Pred(MP = M1)"
and \Pred" on O2K; we can see that the access con-
tention heavily degrades the performance. Without
contention costs, the model can never predict behavior

application pred pred
/machine pred (MP =M1) (QP = Q1)

BH/O2K +15 % +260 % +49 %
Cube/O2K +38 % +77 % +140 %
CKY/O2K +24 % +28 % +31 %
BH/E10K +22 % +24 % +24 %
Cube/E10K +23 % +26 % +41 %
CKY/E10K +6.8 % +7.1 % +9.4 %

Table 2. The di�erence between predicted perfor-
mance and real performance with 48 processors.

overhead error error
predictor (1PE) (1PE) (48PE)
slow ver. 760 % -2.4 % +15 %
fast ver. 7.4 % +23 % +260 %

Table 3. Overhead and accuracy of two predic-
tors, in BH/O2K. Overhead is the ratio of pre-
diction time to running time of mark phase.

of the measured performance; this result justi�es our
model that takes contention costs into account.

In Cube on O2K, the \Pred(QP = Q1)" is far from
\Pred", thus we can see that Cube su�ers from e�ects
of miss increase by parallelization.

Table 2 shows the error of predicted result with 48
processors. In all cases, the predictor tends to output
faster speed than \Real"; the errors are 7 to 38%. This
result suggests that there are still some performance
limiting factors that our model does not account for
yet.

4.2 Overhead of Predictor

To utilize the predicted result for online optimiza-
tion, the predictor itself must be fast enough. However,
the predictor we have described is slow (\slow ver."
in Table 3), because it tracks all memory accesses and
feeds them to a cache simulator. We have made another
predictor that is faster, but less accurate (\fast ver." in
the table). The fast predictor takes the amount of live
objects and Vj as input, rather than all memory ac-
cess pattern. Therefore, it tends to underestimate the
number of cache misses. We use this predictor for an
adaptive GC algorithm in next section. Slow version is
still be useful to analyze GC performance in detail.

4

0

10

20

30

40

50

0 10 20 30 40 50
of processors

G
C

sp
ee

d-
up

0

10

20

30

40

50

0 10 20 30 40 50
of processors

G
C

sp
ee

d-
up

0

10

20

30

40

50

0 10 20 30 40 50
of processors

G
C

sp
ee

d-
up

0

10

20

30

40

50

0 10 20 30 40 50
of processors

G
C

sp
ee

d-
up

0

10

20

30

40

50

0 10 20 30 40 50
of processors

G
C

sp
ee

d-
up

0

10

20

30

40

50

0 10 20 30 40 50
of processors

G
C

sp
ee

d-
up

Cube/O2KBH/O2K

BH/E10K Cube/E10K CKY/E10K

CKY/O2K

Real Pred Pred(MP=M1) Pred(QP=Q1)

Figure 3. GC Speed-up. Graphs compare real speed-up(\Real") and predicted speed-up(\Pred").

4.3 Adaptive GC algorithm

One of the application of our performance model is
construction of adaptive GC algorithms. As an exam-
ple, this section describes automatic regulation of GC
parallelism. For some applications such as BH on O2K,
it is meaningless to devote too many processors to GC.
In such cases, we use less processors than the num-
ber speci�ed by user. By reducing processors, other
processes may gain pro�t in multiprogramming envi-
ronment.

Table 4 shows the result of regulation of parallelism.
In \full", GC always use all of speci�ed processors. In
\Adapt", GC uses the predicted result of the fast pre-
dictor to �nd su�cient number of processors. The bot-
tom row of the table shows the average number of used
processors in \Adapt". We can see that only 22 proces-
sors are su�cient to achieve almost same performance
as that with 48 processors in this case.

5 Related Work

There are many pieces of work on performance anal-
ysis on parallel machines that mention the importance
of communication costs. The major part of the re-
searches focus on programs that have regular struc-
tures, on which it is easier to estimate communication

speci�ed processors 8 16 32 48
GC speed-up / full 3.8 4.9 6.1 6.3
GC speed-up / adapt 3.8 4.5 5.8 6.0
avg. used processors 8.0 12.4 19.9 21.8

Table 4. The result of automatic regulation of GC
parallelism, in BH/O2K.

costs than on irregular programs.

The Cilk performance model [1, 8] estimates the par-
allel running time of both regular and irregular pro-
grams that are executed in LTC strategy. We utilize
this model to estimate TP , the parallel running time
without cache misses cost. The recent model [8] by
Frigo analyzes the costs of cache misses. However,
current Frigo's model ignores contention costs, which
heavily degrade the performance of parallel programs,
especially on DSM. Frigo's model accounts for the in-
crease of cache misses by parallelization. However, it
tends to overestimate the increase, because it estimates
the number of cache misses as QP = Q1 + O(HNS),
where H is the number of all cache lines each processor
has. In our model, QP = Q1 + LNS , where L is the
number of live cache lines, which depends on applica-
tion behavior.

5

One of performance models that use MVA is the
LoPC model [7]. It is based on the LogP model[4], and
accounts for contention costs. We calculate miss costs
with a similar method to the LoPC model.

6 Conclusion

This paper proposed a performance prediction
model for a parallel garbage collector on shared mem-
ory parallel machines. This model takes a heap snap-
shot at GC starting time as input, and estimates paral-
lel running time of mark phase. This model takes con-
tention costs of memory accesses into account, which
are especially important on DSM. It also accounts for
the increase of cache misses by task stealing in parallel
execution.

We have compared the predicted GC performance
with the measured performance through experiments
on two parallel machines: E10K SMP and O2K DSM.
The prediction error of parallel marking time with 48
processors is 7 to 38%. In BH application, which incurs
unfair memory location, the GC scalability on O2K is
much worse than that on E10K. Without taking con-
tention costs into account, the model can never explain
behavior of the performance. As an example of appli-
cations of our model, we have shown the experimental
result of automatic regulation of GC parallelism.

The future work includes improving the accuracy
of prediction. In addition to accuracy, the predictor
should be fast when we use it for online optimization.
We also plan to apply our model for general parallel
application programs. It would be interesting to inves-
tigate how we can manage programs with more com-
plex synchronization pattern and memory access pat-
tern than GC.

References

[1] Robert D. Blumofe, Christopher F. Joerg,
Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: An e�-
cient multithreaded runtime system. The Journal
of Parallel and Distributed Computing, 37(1):55{
69, August 1996.

[2] Hans-Juergen Boehm and Mark Weiser. Garbage
collection in an uncooperative environment. Soft-
ware Practice and Experience, 18(9):807{820,
1988.

[3] Alan Charlesworth, Nicholas Aneshansley, Mark
Haakmeester, Dan Drogichen, Gary Gilbert, Ricki
Williams, and Andrew Phelps. The Star�re

SMP interconnect. In Proceedings of ACM/IEEE
Conference on High Performance Networking and
Computing (SC97), November 1997.

[4] David Culler, Richard Karp, David Patterson, Ab-
hijit Sahay, Klaus Erik Schauser, Eunice Santos,
Ramesh Subramonian, and Thorsten von Eicken.
LogP: Towards a realistic model of parallel com-
putation. In Proceedings of ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Pro-
gramming, 1993.

[5] Toshio Endo. A scalable mark-sweep garbage
collector on large-scale shared-memory machines.
master thesis, Department of Information Science,
The University of Tokyo, February 1998.

[6] Toshio Endo, Kenjiro Taura, and Akinori
Yonezawa. A scalable mark-sweep garbage col-
lector on large-scale shared-memory machines. In
Proceedings of ACM/IEEE Conference on High
Performance Networking and Computing (SC97),
November 1997.

[7] Matthew I. Frank, Anant Agarwal, and Mary K.
Vernon. LoPC: Modeling contention in parallel al-
gorithms. In Proceedings of ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Pro-
gramming, pages 276{287, June 1997.

[8] Matteo Frigo. Portable High-Performance Pro-
grams. PhD thesis, Department of Electrical Engi-
neering and Computer Science, Massachusetts In-
stitute of Technology, June 1999.

[9] T. Kasami. An e�cient recognition and syntax al-
gorithm for context-free languages. Technical re-
port, Air Force Cambridge Research Lab, 1965.

[10] James Laudon and Daniel Lenoski. The SGI Ori-
gin: A ccNUMA highly scalable server. In Pro-
ceedings of the 24th International Symposium on
Computer Architecture, pages 241{251, 1997.

[11] E. Mohr, D. Kranz, and R. Halstead. Lazy task
creation: a technique for increasing the granular-
ity of parallel programs. In Proceedings of the
1990 ACM Conference on Lisp and Functional
Programming, pages 185{197, June 1990.

[12] Kenjiro Taura, Kunio Tabata, and Akinori
Yonezawa. StackThreads/MP: Integrating futures
into calling standards. In Proceedings of ACM
SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pages 60{71, May 1999.

6

