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Abstract—Recent high performance computer architecture has
deeper memory hierarchy including 3D stacking memory and
non-volatile memory. In order to achieve higher application
performance, optimizations in application algorithm level are
required. This paper takes stencil computations as the target
application, and focus on a technique called temporal blocking. In
order to consider multiple hierarchy, we apply recursive temporal
blocking alorithm. By using it, high performance is obtained
without hand tuning considering memory architecture parameter.
The evaluation of this approach is done on a server equipped
with GPU device memory of HBM2, DDR4 host memory and
3D-XPoint based SSD.

I. INTRODUCTION

Access performance and capacity of memory systems have
strong direct impacts on performance and scales of simulations
in weather, medical and disaster measurement area. However,
it is hard for a single memory layer to achieve both since
the improvement of capacity and/or bandwidth of memory
is slower than that of processors [1]. For example, current
high-end GPGPU achieves memory bandwidth of near 1TB/s
with 3D stacked DRAM technique, however, memory capacity
per accelerator is limited to 8 to 32 GiB, which is much
smaller than that of DDR memory of typical high performance
servers as shown in Figure 1. Conversely, recent non-volatile
devices with Flash or 3D-XPoint technology [2] have around
1TB capacity. On the other hand, they are implemented as
disk devices, and even with high performance devices, access
performance is limited to a few GB/s due to PCI-express bus.

Our targe applications are stencil computation kernels,
which are a class of computations frequently used in simula-
tions with time evolution including fluid dynamics simulations,
structure analysis of materials and so on. They are memory
bandwidth centric, and thus many stencil-based applications
have higher speed performance on general purpose GPU
(GPGPU) clusters[3], [4], [5], [6] than on general CPU clus-
ters. However, the problem sizes have been limited by capacity
of GPU device memory.

In order to realize extremely fast and large scale simulations,
we need approaches to harness deeper memory hierarchy;
high performance of upper memory layer and large capacity
of lower layer should be exploited. In order to achieve that,
memory access locality of the algorithm should be considered,
and a technique called temporal blocking [7], [8], [9], [10],

Fig. 1. Memory hierarchy of an exemplar GPGPU machine from the
viewpoint of GPU cores. Here 3D-XPoint based Optane SSDs with bandwidth
of >2GB/s are equipped. This figure illustrates a compute node used in our
performance evaluation.

[11], [12] have been explored. With temporal blocking, the
simulated area is divided into blocks both in temporal di-
mension and spatial dimensions to improve memory access
locality. We have demonstrated this technique is useful to
improve stencil performance in ”out-of-core” scales while
harnessing high performance of GPUs[13], [14].

While temporal blocking is useful, it requires parameter tun-
ing of temporal/spatial block sizes, which considers property
of memory architecture. The costs of tuning get even higher
if we take deeper memory hierarchy into consider, in order
to configure block sizes for each memory layer [15], [16].
If the implementation of blocking is programmed manually,
programming costs also get higher.

An approach that does not require architecture aware pa-
rameters is the cache oblivious stencil algorithm [17]. Here
the simulated region that consists of temporal dimension and
spatial dimensions are divided recursively. While the algorithm
was originally designd for cache access improvement, we ex-



pect this approach effectively supports deep memory hierarchy
because we do not have to specify parameters for different
layers.

The objectives of this paper are as follows. We implement
a stencil kernel with recursive temporal blocking algorithm
for memory systems that consists of HBM2 device memory,
DDR4 host memory and 3D-XPoint SSDs. Through the per-
formance evaluation using this implementation, the recursive
approach has advantages in speed performance over non-
recursive (called single temporal blocking in this paper) on
deep memory hierarchy. Also we discuss that configuration of
a threshold to finish recursive call affects cache locality.

The current implementation is a simple 3-dimensional 7-
point stencil, we expect that this approach will pave the road
towards extreme large-scale and high-performance simulations
on deep memory hierarchy with non-volatile memory.

II. STENCIL COMPUTATIONS AND TEMPORAL BLOCKING

A. Stencil Computations

Stencil computations are commonly found kernels in CFD
and engineering simulations. The target area to be simulated is
expressed as a regular grid, and all grid points are computed
in each time step. In order to simulate time evolution, time
steps are repeated. In each time step, all the grid points are
calcuated by using values of adjacent points in the previous
time step. In this section, we focus on very simple ”three-
point” stencil computation on one dimensional grids1. The
simplified algorithm is as follows.

for (t = 0; t < nt; t++)
for (x = 1; x < nx-1; x++)

f[(t+1)%2][x] := c1 * f[(t%2)][x-1] +
c2 * f[(t%2)][x] +
c3 * f[(t%2)][x+1]

Here a technique known as double buffering used; f[0]
represents simulation data for ”even” time steps, and f[1]
corresponds to odd time steps. Update of a single point at
x requires data of previous points at x − 1, x and x + 1 as
shown in Figure 2, introducing neighbor dependency.

Ovbiously the above implementation has less memory ac-
cess locality, since the entire arrays are traversed for every time
step. Thus when the total size of arrays exceed the capacity of
upper memory layer (GPU device memory or cache memory),
it suffers from heavy data movement.

B. Temporal Blocking

In order to improve memory access locality, a technique
known as temporal blocking (or time-space tiling) has been
proposed [7], [8], [9], [10], [11], [12]. With temporal blocking,
we divide the arrays into blocks in space dimensions. Then
we execute the computation of a single block for several (k)
time steps at once, which improves locality. Here k is called
temporal block size. The basic idea is simple, we need to

1though we will use ”3-dimensional seven-point” stencil on three dimen-
sional grids in the evaluation

Fig. 2. A single point update in 1-dimensional 3-point stencil and 3-
dimensional 7-point stencil.

take care of neighbor dependency. In order to preserve the
dependency, we cannot use ”rectangle” block shape. Instead,
various shapes have been proposed, such as parallelogram
shape and trapezoid shape [11] as shown in Figure 3. In the
figure, the numbers in blocks represents possible execution
order.

Between these two shapes, parallelogram shape tends to
introduce longer dependency chain among blocks, and thus
trapezoid shape has advantages for scalable parallel execu-
tions. This paper mainly focuses on blocking with trapezoid
shape.

Roughly speaking, when block size is well tuned, access
amount to lower memory layer is reduced to 1/k of the base
case without blocking. Thus larger k is desirable for speed
performance, however, we cannot choose infinitely large k
for the following reason. In order to compute a single block
efficiently, the memory footprint size (w in the figure) should
not exceed the upper memory capacity. Due to the property of
shapes shown in the figure, the following relations must hold:
w > k in parallelogram shape and w > 2k in trapezoid shape.

In order to support deep memory hierarchy efficiently,
several researchers have tried blocking with mutiple levels
[15], [16]. However, this approach requires tuning of block
sizes for each level considering capacity of each memory layer.

C. Recursive Temporal Blocking

An approach that does not require architecture aware pa-
rameters is the cache oblivious stencil algorithm described by
Frigo et al [17], called recursive temopral blocking hereafter.
Here the region to be computed are divided recursively both
in spatial dimension and temporal dimension.

The algorithm starts with the entire block, which is repre-
sented as a product space of spatial area and temporal range
to be computed. The algorithm divides current target block



Fig. 3. Examples of block shapes in temporal blocking (one-dimensional
space).

Fig. 4. Block division methods in recursive temporal blocking.

by using either ”time cut” or ”space cut” illustrated in Figure
4. If the footprint of the current block is sufficiently larger
than block height (for example w > 2k), the block is ”space
cut”. Otherwise, the block is ”time cut”. The divisions are
recursively repeated until the algorithm reaches a leaf case. In
Frigo’s work, a leaf case corresnponds to a block with height
k of 1.

In this paper, we prefer trapezoid shapes that support paral-
lelism among blocks. For this direction, we slightly modified
space cut method as shown in the lower part of Figure 4. Here
space cut is possible if w > 4k.

III. IMPLEMENTATION

This section describes our prototype implementation of
stencil code with recursive temporal blocking for deep memory
hierarchy. The code computes 3-dimensional (x, y and z) space
with 7-point stencil, where a single point update requires
neighbor 7 points in the previous time step as illustrated in
the lower figure in Figure 2. Each array element has float data
type (single precision). For the simplicity of implementation,
we currently divide blocks only in z-dimension and t (time)
dimension. Our target system architecture is a comput node
equipped with NVIDIA GPU and Intel 3D-XPoint based SSDs
shown in Figure 1.

A. Implementation of Recursive Algorithm

In the original Frigo’s algorithm, the recursive partition
is repeated until height of a target block (the block size in
temporal dimension) becomes 1. However, we found that this
causes too small partition, which introduces higher costs for
recursive function call. Also if a block is too small, many cores
on a GPU are not efficiently utilized. Instead, in our algorithm,
recursive partition stops if the footprint of the current block
is smaller than a pre-defined threshold. In this aspect, our
method is not parameter-tuning free. However, we consider
configuring a single threshold is still much easier than tuning
block sizes for each memory layer. The effects of varying the
threshold are evalulated in Section IV.

The computation kernel on the leaf case is implemented
using NVIDIA CUDA programming environment [18]. A
compute kernel running on the GPU takes two pointers to
partial arrays for double buffering, and updates all inner points.
In the compute kernel, CUDA threads are utilized to harness
massive number of CUDA cores in a GPU. Also threads are
aligned so that they can perform coalesced memory accesses.

B. Management of Memory Hierarchy

Our main target is out-of-core cases, where the total size of
arrays exceeds both GPU memory capacity and host memory
capacity. We need to seek for a memory management method,
which can support out-of-core cases. For this objective, we
surveyed automatic memory management methods provided
by NVIDIA and Intel. NVIDIA Unified memory mechanism
[18] provides automatic data movement functionality between
device memory and host memory, while Intel Memory Drive
Technology (IMDT) transparently expand capacity of host
memory by harnessing capacity of 3D-XPoint based Optane
SSDs. If these two worked simultaneously, we could enjoy
automatic data transfer among device memory, host memory
and SSDs. Unfortunately, we found that the machine may
crash when Unified memory and IMDT are used in the current
system software (see Table I).

To avoid this issue, our current implementation uses only
IMDT, while data movement between device memory and
host memory is done by manual coding. Each of two arrays
for double buffering is allocated by malloc, which may
be larger than capacity of physical host memory. In the
recursive algorithm, if footprint of the current target block is



TABLE I
THE COMPUTE NODE USED FOR EVALUATION

GPU NVIDIA Tesla V100
SP peak perf. (TFlops) 15.7
Device memory BW (GB/s) 900
Device memory size (GiB) 16

# of GPUs/node 2 (1 used)
CPU Intel Xeon Gold 6140
# of CPUs/node 2
CPU-GPU connection PCIe gen3 x16

Peak BW (GB/s) 16+16
Host memory size (GiB) 192
SSD Intel Optane SSD DC P4800X

Size (GB) 375
Read BW (GB/s) 2.4
Write BW (GB/s) 2.0
Read latency (us) 10
Write latency (us) 10

# of SSDs/node 2
OS CentOS 7.3
System software CUDA 9.1

NVIDIA driver 390.30
IMDT 8.5.1955

smaller than device memory, contents of the block are copied
(swapped-in) to device memory explicitly using CUDA APIs
(cudaMemcpy). Note that recursive partitioning may repeated
even after swapping-in, until each block gets smaller than the
abovementioned threshold.

C. Current Limitations

The implementation described so far realizes stencil compu-
tation that supports larger scale than host memory. The current
prototype implementation has the following limitations, which
will be improved in the future.

• While we use 3-dimensional arrays, they are divided
only in z-dimension. Frigo et al. have described multi-
dimensional recursive partition, which would improve
access locality.

• Computation and data movement between device and
host are not overlapped. Since our implementation is
based on trapezoid shape that can coexist with inter-block
parallelism, this can be improved relatively easily.

• Only a single GPU is utilized for computation. Thus
while we use intra-block parallelism by CUDA threads,
inter-block parallelism is not utilized currently.

IV. PERFORMANCE EVALUATION

A. Evaluation Conditions

Our performance evaluation has been conducted on a
GPGPU node shown in Table I. Its memory hierarchy has been
shown in Figure 1. The device memory capacity of 16GiB and
the host memory capacity of 192GiB. In this paper, a single
GPU is used for computation. The node is equipped with two
Optane SSDs, which are used automatically as host memory
expansion by IMDT.

In the next subsection, the following algorithms are com-
pared.

• Base means the base stencil algorithm without temporal
blocking.

• Single (Sxx) means the stencil with temporal blocking
with a single block size, as shown in ”Trapezoid” in
Figure 3. The spatial block size is set so that the footprint
of a block fits the device memory capacity. Several
temporal block sizes k are compared.

• Recursice (Rxx) means the recursive temporal blocking.
We configure several thresholds to stop recursive process-
ing.

For each condition, we compare execution speed in ”the
number of updated points per second”, which is denoted as
”GUP/s” (giga updated points per second) later.

B. Evaluation

The graphs in Figure 5 show the performance of the stencil
program for several array sizes. In the first graph, the simulated
space size is 1024 × 1024 × 1024, and the total size of
double arrays is 1024 × 1024 × 1024× sizeof(float) ×2 =
8GiB, which corresponds to ”in-core” case since it is smaller
than GPU device memory of 16GiB. In this condition, we
observe the Base case achieves 30.5GUP/s. Here the effective
bandwidth is 30.5×109× sizeof(float) ×2 = 244GB/s. ”Single
(Sxx)” algorithm is the same as ”Base” in in-core case,
and we see it shows the same performance. On the other
hand, ”Recursive (Rxx)” achieves better performance, because
recursive algorithm can harness GPU cache effectively. The
speed depends on the threshold, and it is 67.7GUP/s with
64MB threshold, which is 2.22times fater than ”Base” or
”Single”.

The second graph shows computation of 2048×2048×2048
space, where total array size is 64GiB. It is larger than GPU
device memory and smaller than physical host memory. The
performance of Base case is critically low; only 0.36GUP/s.
We observe temporal blocking is useful for performance im-
provement, and S128 achieves 20.1GUP/s. The performance is
higher with larger temporal block size, however, the execution
failed with block size larger than 128. The recursive algorithm
shows improved performance and reaches 23.0GUP/s with
256MB threshold. These speeds will be improved if limitations
on the current implementation described in Section III are
solved. Especially, the execution time of 60% or more are
consumed by data copy between device memory and host
memory, even in R128MB, optimizations in data movement
will have large impacts. We also observe the sensitivity of
varying threshold weaker than in 8GB scale. The reason will
be investigated in future.

The third graph shows large computation of 2048× 2048×
8192 space, where total array size is 256GiB, which is larger
than physical host memory. Here the program suffers from
access costs to Optane SSD via IMDT. Thus the performance
of ”Base” case, 0.24GUP/s, is even slower than above. ”Sin-
gle” temporal blocking improves the performance, however,
the highest value is 12.1GUP/s with block size of 96. With
”S128”, the execution failed since it failed to make block
shapes with k = 128. We observe ”Recursive” algorithm



Fig. 5. Performance evaluation with various problem sizes. Each graph com-
pares ”Base” algorithm without temporal blocking, ”Single (Sxx)” temporal
blocking with various temporal block sizes and ”Recursive (Rxx)” temporal
blocking with various thresholds.

achieves 20.2GUP/s with 256MB threshold, which is 1.67
times faster than S128. The performance gap between ”Re-
cursive” and ”Single” is larger than in 64GB scale, which
demonstrates that recursive algorithm has advantages with
deeper memory hierarchy including non-volatile memory with
near terabytes capacity.

V. RELATED WORK

Non volatile memory devices have been widely attracted
attention since they fill the performance/capacity gap between
traditional DRAM and hard disks. There are lots of software
projects and products that harness Flash; some use them as
accelerators of hard disks, such as DDN’s Infinite Memory
Engine 2. On the other hand, this work uses NVM devices in

2http://www.ddn.com/products/infinite-memory-engine-ime14k/

order to expand available capacity of host memory and GPU
device memory for scientific applications.

Temporal blocking for stencil computations have a long
history and have been implemented in various computer ar-
chitectures [7], [8], [9]. While most previous papers have
focused on improving cache hit ratio, Mattes et al. and we
have previously demonstrated the effects of (completely hand
written) temporal blocking in order to reduce data transfer
costs between device memory and host memory[10]. While
based on these results, our objective is to support multi-tier
memory hierarchy, GPU device memory, host memory and
NVM, while reducing swapping costs.

Adapting stencil computation to multi-tier hierarchy has
been done by Midorikawa et al.[15] implemented and eval-
uated out-of-core stencil computations that consider CPU
cache, host memory and flash devices. This approach requires
block sizes tuning for each memory layer. Thus they also
implemented auto-tuning mechanisms considering memory ar-
chitecture parameters. On the other hand, one of our objectives
is to minimize number of parameters to be tuned.

VI. CONCLUSION

This paper has discussed performance of huge scale stencil
computations in order to assess the applicability of 3D-XPoint
based NVM devices to scientific simulation applications. In or-
der to harness deep memory hierarchy efficiently, improvement
of memory access locality, temporal blocking technique in our
context, is mandatory. Especially recursive temporal blocking
algorithm well fits deep memory hierarchy that consists of
GPU device memory, host memory and NVM devices. The
recursive approach achieves 1.67 times better performance
than a simpler temporal blocking algorithm in ”out-of-core”
case.

In addition to improvements of the current prototype im-
plementation, there are several directions to be explored in
future.

• To integrate the locality improvement technique into
stencil execution frameworks/DSLs [19], [20], [21] or
polyhedral compiler tools [22], [23]. These integration
will be required for real simulation applications with large
code bases to realize extremely large and fast executions.

• This work used 3D-XPoint based SSD devices, which are
essentially block devices. In near future, byte-addressable
NVM devices will be available; we are going to assess
and evaluate the perforamcne impact of recursive block-
ing approach on such new devices.
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