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Stencil Computations

Important kernels for various simulations: fluid dynamics, material...

Phase-Field computation Air flow simulation
(2011 Gordon Bell)

/// i 1
ottt 2/ Time t Time t+1
i
_ 7
= 0
/;/ O

///\Q/

/D
L~=1.0 4 <

Stencil computations are GPUs computing fits well with

“memory intensive” =2 500~1000 GB/s memory BW!




A Simple Stencil Algorithm
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In CPU implementation,
spatial (x-, y-, z-) loops are here

In GPU implementation (our context),
millions threads compute grid points



Memory Hierarchy of GPU Machines

and Issues Tesla V00 GPU
GPU
GPUs are good in speed, cores %
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cPU o
In simple implementations on GPUs, || s -
domain sizes are configured as %HB';"SZG:EW b Cl-Express

o . . DDR4 Host memory
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Using multiple GPUs is a solution
e But we are still limited by “GPU memory capacity X #GPUs”
* Larger capacity of lower memory hierarchy is not utilized



How about “Out-of-Core” Execution?

It looks promising to combine " femporal Loop )-- -
* High-speed of GPUs and jmm——
Loop over 1

» Large capacity of DDR/SSDs Sub-domains | !
- Out-of-core execution K
In stencil, we divide the domain into — X
sub-domains Grid pointsin |, ,
a Sub-domain L

But... E |
e 8GB domain (< GPU mem) = 31GUP/s i J--: |
* 64GB domain (< DDR) - 0.36GUP/s l
e 256GB domain (< SSD) - 0.24GUP/s \ o
Only 1% speed is TOO SLOW! Data movement among

(GUP/s: giga updated points per second) memory layers are omitted



Why Out-of-Core Execution is So Slow

* In stencil computations,
points the entire domain
are scanned every time step

— Bad access locality

Speed of out-of-core execution
is limited by bandwidth of PCI-
Express or SSD ®
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Objective

* To achieve high-speed and big stencil
computations
— Hardware: GPU + Optane 3D-XPoint SSD

* Optane is used to expand memory capacity
* Non-volatility is not used

— Middleware: Intel Memory Drive Technology
(IMDT)

— Algorithm: Stencil + Recursive temporal blocking
technique



Temporal Blocking

* Simple stencil implementation

time t

has bad access locality

— Spatial loop in temporal loop
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* With temporal blocking, a
smaller domain is computed
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Several Temporal

Blocking Methods
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All of them are using a single blocking
factor k

- Not best for multiple memory layers
- “Recursive” approach works better




Recursive Temporal Blocking

* Frigo has proposed recursive temporal
blocking [Frigo et al. ICS 05]

— Objective is to harness multiple cache layers

— Programmers do not have to consider each layer
explicitly ©
* Only parameter to be configured is a threshold th to
stop recursion

[Q] Is it effective on multiple memory layers
including NVMe SSDs?



Recursive Temporal Blocking Algorithm
(Slightly modified from Frigo’s)
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r: Region to be computed
Comp(r)‘{/ (space x time)

k = height of r; :
w = width of r;

it (W < th)‘{\ th: Threshold
Compute r on GPU;

time cut
else if (W < 4*k) { /
(rl, r2) = timecut(r); ///7;\\\

time t

comp(rl); comp(r2); AN

}

else { i
(rl1,r2,r3) = spacecut(r);/////SlOalcecu
comp(rl); comp(r3);

comp(r2);
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Implementation

A simple 3D-7point stencil has been implemented
Domain region is divided only in z-dimension
* Leaf computation on a GPU: NVIDIA CUDA is used

* Memory movement among memory layers
— Automatic movement is better for programmability

HBM2 GPU memo
NVIDIA UnifM Hand coding

DDR4 host memory
Intel Memory Drive Technology

Optane SSD
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Experimental Conditions

e Domain sizes
— 8GB, 64GB, 256GB

* The followings are compared
— Base: Base implementation

— Sxxx: With temporal blocking with single k
e xxx is temporal block size k
* 532,564, 596, 5128

— Rxxx: With recursive temporal blocking

* xxx is a threshold to stop recursive calls
* R8MB to R1024MB



Results: 8GB Domain

Improved by effects

[GPU memory] of GPU caches
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Results: 64GB Domain
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Results: 256GB Domain
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Summary

* Toward high-speed & big stencil computations,
a recursive algorithm efficiently harness
memory hierarchy

— HBM2 GPU memory + DDR4 host memoy +
Optane SSDs

— Also it works well with GPU cache !



Issues & Future Work

Out-of-core performance (20.1GUP/s) is still 30% of
In-core performance (67.7GUP/s)
The implementation is still in the early stage.
We need to improve it by
— Overlapping computation and data movement
— Comparing automatic movement and manual movement
— Considering memory access alignment on GPUs
— Combining existing optimizations such as 3.5D blocking

Using multiple GPUs, multiple nodes...

Using newer NVM technologies, including 3D-XPoint
based DIMMs



