Applying Recursive Temporal Blocking
for Stencil Computations to
Deeper Memory Hierarchy

Toshio Endo (3=REEHIK)
GSIC, Tokyo Institute of Technology (RIR L3 K5F)

Stencil Computations

Important kernels for various simulations: fluid dynamics, material...

Phase-Field computation Air flow simulation
(2011 Gordon Bell)

/// i 1
ottt 2/ Time t Time t+1
i
_ 7
= 0
/;/ O

///\Q/

/D
L~=1.0 4 <

Stencil computations are GPUs computing fits well with

“memory intensive” =2 500~1000 GB/s memory BW!

A Simple Stencil Algorithm

/ N\
Temporal Loop [~
l
Compute |
Grid points
N

e G

Array for t=0, 2, 4... Array for t=1,3,5...

yd yd
S A S A
T 7 q T 7 q
q ;.:—1_0‘ | A0 =10
1 :’NZ} 1 1 1 ! 1 :’NZ}
gt gt
9% 9%
A A
g, - g,
///\‘-’ d ///\‘-5 /
/D /D
kN kN

L=1.0 L=1.0
(NX) (NX)

In CPU implementation,
spatial (x-, y-, z-) loops are here

In GPU implementation (our context),
millions threads compute grid points

Memory Hierarchy of GPU Machines

and Issues Tesla V00 GPU
GPU
GPUs are good in speed, cores %
but NOT in SIZE! |
cPU o
In simple implementations on GPUs, || s -
domain sizes are configured as %HB';"SZG:EW b Cl-Express

o . . DDR4 Host memory
=» Prohibits accurate simulation 192GiB

< (aggregated) GPU memory |J I/16GB/S

. R 2.4GB/s x 2
——— W 2.0GB/s x 2
. Intel Optane SSD P4800X
375GB x 2 = 750GB

Using multiple GPUs is a solution
e But we are still limited by “GPU memory capacity X #GPUs”
* Larger capacity of lower memory hierarchy is not utilized

How about “Out-of-Core” Execution?

It looks promising to combine " femporal Loop)-- -
* High-speed of GPUs and jmm——
Loop over 1

» Large capacity of DDR/SSDs Sub-domains | !
- Out-of-core execution K
In stencil, we divide the domain into — X
sub-domains Grid pointsin |, ,
a Sub-domain L

But... E |
e 8GB domain (< GPU mem) = 31GUP/s i J--: |
* 64GB domain (< DDR) - 0.36GUP/s l
e 256GB domain (< SSD) - 0.24GUP/s \ o
Only 1% speed is TOO SLOW! Data movement among

(GUP/s: giga updated points per second) memory layers are omitted

Why Out-of-Core Execution is So Slow

* In stencil computations,
points the entire domain
are scanned every time step

— Bad access locality

Speed of out-of-core execution
is limited by bandwidth of PCI-
Express or SSD ®

Tesla V100 GPU

GPU
cores

— 900GB/s
M2 mem
cache 16GiB PCl-Express
I/16GB/S

ost memory
92GiB

R 2.4GB/s x 2
W 2.0GB/s x 2

el Optane SSD

375GB x 2 = 750GB

Objective

* To achieve high-speed and big stencil
computations
— Hardware: GPU + Optane 3D-XPoint SSD

* Optane is used to expand memory capacity
* Non-volatility is not used

— Middleware: Intel Memory Drive Technology
(IMDT)

— Algorithm: Stencil + Recursive temporal blocking
technique

Temporal Blocking

* Simple stencil implementation

time t

has bad access locality

— Spatial loop in temporal loop

DI INIW U] -

VIV]IVY]Y

* With temporal blocking, a
smaller domain is computed

space X

for multiple (k) steps at once

N

[Wolf 91] [Wonnacott 00] [Datta 08]...
[Endo 14, 16] 0

time t
a4
w

o

—>Better access locality!

Note: Block shape is not

. B Time t+1
rectangle” for data dependency

Time t

space X

020,0
x-1 x x+1

v

Several Temporal

Blocking Methods

4 Outer Temporal _
loop (Nt/k times)

/ N

Loop over
Sub-domains

4 Inner Temporal N

loop (k times)

Compute
Points in sub-dom

.}
C }-!
(}--

T

wavefront
ef
ﬁk
>
trapezoid X
el
ﬁk
>
diamond X
A
t
ﬁk
>
X

All of them are using a single blocking
factor k

- Not best for multiple memory layers
- “Recursive” approach works better

Recursive Temporal Blocking

* Frigo has proposed recursive temporal
blocking [Frigo et al. ICS 05]

— Objective is to harness multiple cache layers

— Programmers do not have to consider each layer
explicitly ©
* Only parameter to be configured is a threshold th to
stop recursion

[Q] Is it effective on multiple memory layers
including NVMe SSDs?

Recursive Temporal Blocking Algorithm
(Slightly modified from Frigo’s)

lmﬂk
S

r: Region to be computed
Comp(r)‘{/ (space x time)

k = height of r; :
w = width of r;

it (W < th)‘{\ th: Threshold
Compute r on GPU;

time cut
else if (W < 4*k) { /
(rl, r2) = timecut(r); ///7;\\\

time t

comp(rl); comp(r2); AN

}

else { i
(rl1,r2,r3) = spacecut(r);/////SlOalcecu
comp(rl); comp(r3);

comp(r2);

9! VAT

Implementation

A simple 3D-7point stencil has been implemented
Domain region is divided only in z-dimension
* Leaf computation on a GPU: NVIDIA CUDA is used

* Memory movement among memory layers
— Automatic movement is better for programmability

HBM2 GPU memo
NVIDIA UnifM Hand coding

DDR4 host memory
Intel Memory Drive Technology

Optane SSD

Experimental Environment

Intel Xeon Gold
6140 x 2

CPU
cores

cache

Tesla V100 GPU
GPU

L2S
6MB

HBM2 mem
16GiB

I_/

cores >

"

PCI-Express
16GB/s

DDR4 Host memory

192GiB

R2.4GB/s x 2
W 2.0GB/s x 2

; [~
) NTEL OPTANE™ § I

Intel Optane SSD P4800X

375GB x 2 = 750GB

Experimental Conditions

e Domain sizes
— 8GB, 64GB, 256GB

* The followings are compared
— Base: Base implementation

— Sxxx: With temporal blocking with single k
e xxx is temporal block size k
* 532,564, 596, 5128

— Rxxx: With recursive temporal blocking

* xxx is a threshold to stop recursive calls
* R8MB to R1024MB

Results: 8GB Domain

Improved by effects

[GPU memory] of GPU caches

— 67.7GUP/s with
ost memory 64MB threshold
SSD 8GiB

o
o

Temporal Blocking Recursive Temporal Blocking

~]
o

__ 60
Q)
B 50 3OSGUP/S I
£ 49 B!
o s
o 30
o
20
10
0
e N © VO X R QR ®
& i o S &S SN
R SR U

GUP/s: giga updated points per second

Results: 64GB Domain

GPU memory 23. OGUP/s
host memory

SSD

64GiB

[
U

Temporal Blocking Recursive Temporal Iocklng

©

e N

& PP W &é\ q;@ b@% '1§\ ‘X\
x,@'»

&

= [
wu o

=
o

peed (GUP/s)

Only 0.36GUP/s ®

S
(=) &)

R\
%@x%bm%
R Ao

GUP/s: giga updated points per second

Results: 256GB Domain

(.)
GPU memory
host memory 20.1GUP/s
SSD y 256GiB
25 Temporal Blocking Recursive Temporal Blocking

Speed (GUP/s)
[=]
(§5] o wu (=]
[— N
I C——
s —
e ———
————
[———
o
S —
oy

0

[0 ™ b D > N, N N N N N
<

GUP/s: giga updated points per second

Summary

* Toward high-speed & big stencil computations,
a recursive algorithm efficiently harness
memory hierarchy

— HBM2 GPU memory + DDR4 host memoy +
Optane SSDs

— Also it works well with GPU cache !

Issues & Future Work

Out-of-core performance (20.1GUP/s) is still 30% of
In-core performance (67.7GUP/s)
The implementation is still in the early stage.
We need to improve it by
— Overlapping computation and data movement
— Comparing automatic movement and manual movement
— Considering memory access alignment on GPUs
— Combining existing optimizations such as 3.5D blocking

Using multiple GPUs, multiple nodes...

Using newer NVM technologies, including 3D-XPoint
based DIMMs

