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ABSTRACT
This paper describes an incremental conservative garbage
collector that significantly reduces pause time of an exist-
ing collector by Boehm et al. Like their collector, it is a
true conservative collector that does not require compiler
cooperation but uses virtual memory primitives (page pro-
tection) of operating systems for write barriers. While much
successful work has been done on incremental collectors in
general, achieving small pause time of the order of a few mil-
liseconds in such uncooperative settings has been challeng-
ing. Our collector combines several ideas that bound pause
times without introducing significant overheads. They in-
clude: (1) bounding the number of dirty (writable) pages
during concurrent marking, (2) adaptive repetition of con-
current marking phases, and (3) allocating objects in black
(marked) in later stages of a collection. With these tech-
niques, we have achieved the maximum pause time of 2.6–
4.5ms for five application benchmarks on 400MHz Ultra-
SPARC processors. They are up to forty times shorter than
the basic incremental collector similar to Boehm et al.’s.
The overhead (total work time) of our collector is 1.2–53%
to the stop-the-world collector and 9% or less to the basic
incremental collector.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors – memory
management (garbage collection)

General Terms
Performance

Keywords
conservative garbage collection, concurrent garbage collec-
tion, parallel garbage collection, memory management
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1. INTRODUCTION
Conservative garbage collector, first invented by Boehm

et al. [8], has been very successful. It can automatically re-
claim memory without involved cooperation from the com-
piler, such as using a particular representation of objects or
generating “pointer maps.” Both theoretical analyses and
empirical evidences show it is very efficient [5, 7, 10, 14, 15]
both in terms of space and time. It has been used in many
programming language implementations and C/C++ appli-
cations. Users (application or compiler writers) can easily
“built-in” a garbage collection without imposing almost any
condition, complexity, or performance penalty to the rest of
the system.

There are at least two rational reasons why prospective
users might still prefer implementing custom collectors to
using already robust and efficient conservative collector li-
brary available today [4, 21]. One is that allocation is more
expensive than the linear allocation used by true copying
collectors. The other is that conservative garbage collec-
tors are generally harder to make realtime (or incremen-
tal). By realtime or incremental, we mean a single pause
time of the application introduced by the garbage collector
is sufficiently small. A common threshold is a single-digit
milliseconds, making many multimedia applications work
non-disruptively. We do not know any existing conserva-
tive collector that satisfies this with today’s contemporary
CPUs (we used UltraSPARC 400MHz processors for our ex-
periments). This paper is about solving this problem and
making conservative collectors more widely useful.

Of course, realtime or incremental collections [2, 11, 27]
have been extensively studied in the past, and the basic ideas
to reduce pause time is known. See [19, 26] for good surveys.
The basic idea is to mark objects incrementally, maintaining
some invariants with appropriate read/write barriers so as
not to lose any live object. Most previous work, however,
assumes the compiler is able to insert fine-grain read/write
barriers as necessary, making them less amenable to our
problem setting.

For conservative collectors, necessary barriers are induced
by page protection hardware and its operating system sup-
port. Theoretically speaking, there is not qualitative differ-
ence between barriers induced by compiler-inserted code and
those by page protection signals, but since the cost of pro-
tecting a page is high and the protection can be introduced
only with a single page granularity or larger, design choices



are restricted in many ways. Achieving both efficiency (low
overhead) and small pause time has thus been challenging.

We are aware of three collectors [2, 6, 23] that focus on
incremental collection with page-wise protection only. The
algorithm by Appel, Ellis, and Li [2] uses read barriers, so it
will incur much overhead in practice. Furuso et al.’s collector
[23] uses only write barriers. However, because it is based on
snapshot-at-the-beginning algorithms, it may incur signifi-
cant space overhead. “Mostly parallel GC” by Boehm et al.
[6], which our design is based on, is more space-efficient, but
it does not have a good-enough pause time both in theory
and in practice, probably in favor of making overhead (total
work) small. In our experiences with this collector, pause
times of the order of 100ms (on UltraSPARC 400MHz) are
not unusual. We analyze the problem in depth and discuss
why it is not a trivial engineering issue to achieve both effi-
ciency and small pause times. Our collector significantly im-
proves pause times without introducing much overhead. In
our five application benchmarks, the maximum single pause
time is 4.5ms on the same processor.

Our collector implementation is based on our previous
work on scalable parallel collectors [14, 15]. The collector
presented herein is a “concurrent and parallel” collector [9,
13]. It is “concurrent” in the sense that collector threads run
concurrently with the application threads. It is “parallel”
in the sense that multiple collector threads participate in a
single collection. Our experimental results indicate that op-
erating systems used for our experiments have a bottleneck
in virtual memory operations for parallel applications. As
a result, our collector sometimes pauses individual threads,
rather than all threads, for a long time (up to 15ms). We do
not have a solution for this other than changing operating
system implementation.

The rest of the paper is organized as follows. Section 2
reviews principles behind reducing pause times of collectors
and discusses why it is challenging to reduce them in conser-
vative settings. Section 3 describes Boehm et al.’s collector
our design is based on. Section 4 describes our collector; it
explains our multiprocessor support and then details tech-
niques to reduce pause times. Section 5 evaluates the perfor-
mance of our collector, by using both sequential and parallel
programs. Section 6 mentions related work, and we conclude
in Section 7.

2. PRINCIPLES BEHIND BOUNDING PAUSE
TIME

2.1 Basics
This section reviews basic principles in reducing or bound-

ing pause time of tracing collectors and discusses why even
incremental collectors sometimes experience a long pause in
practice. Traditional stop-the-world collectors stop the user
program, mark all objects reachable from the root, and col-
lect unreachable objects. They stop the user program to
mark all objects atomically (i.e., without seeing changes in
the object graph). Incremental collectors shorten pauses by
making the collector mark the object graph while it is being
changed by the user program. Such algorithms must ensure
they never conclude objects that are actually reachable are
not.

There are two major approaches to ensuring the correct-
ness of incremental collectors, namely, “snapshot-at- the-

beginning” and “incremental update.” The former, includ-
ing the best-known algorithm by Yuasa [27], achieves the
correctness by ensuring that the collector visits all objects
reachable in the snapshot at the beginning of a garbage col-
lection and all objects created thereafter. To implement this,
it suffices to trap pointer updates and captures all point-
ers that are being overwritten, and mark all objects created
during marking. When marking is finished, the user pro-
gram can be resumed immediately. Therefore this approach
does not have much difficulty in reducing pause times. The
problem of snapshot-at-the-beginning is not in pause times,
but in the associated overhead, especially when implemented
with virtual memory approach. With this approach, a write
fault handler must copy the entire page at which the write
fault occurs. If the application writes to many pages, time
and space overhead for this copying may be prohibitive.
Therefore, this paper does not discuss this approach any
further.

The other approach, incremental update, is introduced by
Dijkstra et al. and Steel [11, 17]. To describe this approach,
we introduce the well-known tri-color abstraction. During
a collection, objects are one of three colors, white, grey, or
black. White objects have not been visited by the collector.
Grey objects have been visited, but their direct children
may not be. Finally, black objects have been visited and
their direct children are grey or black. For the sake of our
discussion, the root can be regarded as an object colored
grey at the beginning of a collection.

The basic invariant of a tracing collector is there are no
black to white pointers at any instant. The typical marking
process can be viewed as a process of picking up a grey object
O, coloring its white children grey, and then blackening O,
thereby maintaining the invariant. When we reach the state
in which the root is black, there are no grey objects in the
world, and the tri-color invariant (no black → white) holds,
we know all objects reachable from the root at that moment
are black, so all white objects are dead (unreachable).

An incremental update algorithm maintains this invari-
ant by trapping pointer writes to objects. When it traps
a pointer write that is about to create a pointer a → b, it
either (a) greys a if b is white, or (b) greys b if a is black.
Either approach is fine, but observe that (a) may starve the
collector because the application might repeatedly write to
a, keeping a grey forever. Also observe that with virtual
memory approach, (a) is the only practical choice, because
if we take approach (b), object a remains black after the
update, so further updates of pointers within a must still
be trapped hereafter. This means that the page that holds
object a must remain protected. Updating object a while
maintaining the page protected is already difficult, and even
if this is possible, it incurs high overheads if a is updated
often. With approach (a), on the other hand, object a be-
comes grey, so no further writes to a need be tracked so long
as a stays grey.

2.2 Root Set and Incremental Updates
Strictly maintaining the above invariant is too costly, how-

ever, especially for frequently written objects. One such ex-
treme is a part of the root set such as registers and the
current stack frame. Recall that a root is regarded as an
object and the correctness of the garbage collector relies on
the fact that the root is black when finishing a collection.



Maintaining the invariant for the root means we must ac-
tually trap every reads from memory (read barrier), because
reads are actually writes to registers. Since this is pro-
hibitively expensive in practice, practical implementations
use an alternative. They only trap writes to heap objects,
and assume the portion of the root writes to which are not
trapped may revert to grey at any time (unless the appli-
cation is stopped). We call such portion of the root non-
trapped area. Typically, it is registers and stacks.

In this framework, when a collector finds there are no
grey objects (other than the non-trapped area), it stops the
user program, examines the non-trapped area again as if it
is a grey object, and checks if all direct children are black.
If this is the case, a collection cycle is finished. There are
several possible actions to take in case the check fails. It
may recursively mark all descendents, or resume the user
program again concurrently with marking. We call this final
pieces of work “the final marking”.

Time for a final marking is not obviously bounded, whether
we can use a cooperative compiler or not. A scenario that
often occurs in practice is that the application creates a big
tree (graph) of objects, and makes it reachable only from a
register after a tracing begins. Since writes to registers are
usually not trapped, the collector finds these objects only
in a final marking. Note that snapshot-at-the-beginning ap-
proach would find it during normal tracing, because newly
allocated objects are immediately regarded as “marked”.

The situation is further complicated if we do not rely on
compilers that emit write barriers for individual writes, but
instead rely only on page protection. The main difference
is that, using compilers, it is efficient to trap all writes,
including those to the same object. Because of this, the
usual strategy is that, when an object reverts to grey by a
pointer update, the collector simply continues working and
makes it black again sometime later in the same marking
phase. Note that if another pointer to a white object is
written to it again, that write is trapped too without extra
cost. With only page protections, on the other hand, once
an object reverts to grey, it is very expensive to make it
black again, because it incurs the cost of visiting all marked
objects in the page and write-protecting it. We also have the
above starvation problem in a worse way; a single write to
a page by the application invalidates all the collector’s work
of blackening the page, namely, visiting all marked objects
in the page and coloring all direct children grey.

Hence, the usual strategy with page protection is that,
once an object reverts to grey, the collector leaves it (and
all objects in the same page) grey until the final marking.
Subsequent writes to them are not trapped. Such pages,
called dirty pages, are examined in the final marking, in
the same way registers and stacks are. In essence, incre-
mental collectors with page protection treat dirty pages as if
they are in the non-trapped portion of the root. This means
a final marking without cooperative compilers sees a much
bigger “pseudo root set” than with cooperative compilers.
With cooperative compilers, we can easily limit the size of
the non-trapped area. For example, it is trivially bounded
if the only non-protected area is registers. Also practically
important, even if we take no particular efforts to make it
bounded, it is usually not very big anyways (they are typ-
ically registers and stacks). With only page protections as
a means to write barriers, on the other hand, the problem
is severer because the number of non-protected pages eas-

ily grows very large, which is proportional to the number
of actively written pages. This is a part of the reason why
it has been a challenge to implement a good incremental
conservative collector.

In the following sections, we first examine Boehm et al.’s
conservative collector, which our work is based on, and de-
scribe how we modified it to reduce pause times without
introducing much overhead.

3. MOSTLY PARALLEL GC
Boehm et al. [4, 6] have implemented a concurrent mark-

sweep collector that does not require cooperative compilers
(i.e., compilers that emit write barrier code for collectors).
Their collector is based on an incremental update algorithm;
it needs to rescue white objects that may be reachable, at the
end of a collection cycle. This section describes features of
their collector relevant to this paper and discusses its pause
times.

3.1 Heap Structure
The user program consists of one or several threads that

share a single heap. To fulfill allocation requests from threads,
the system maintains free lists to hold unused regions. Threads
can access any allocated object in the heap. Each object
has a corresponding flag called mark bit. Mark bits are
placed in bitmaps out of the heap. We call objects whose
mark bits are set “marked” and other objects “unmarked.”
The collector maintains an array named mark stack to keep
track of marking task described below. The mark stack con-
tains references to wave-front objects of recursive tracing.
Unlike snapshot-at-the-beginning algorithms, new objects
allocated during GC cycles are regarded as “unmarked.”
Therefore, unlike snapshot-at-the-beginning approach, ob-
jects born during a collection and dead at the end of the
collection may be collected immediately.

3.2 Collection Algorithm
Any incremental mark-sweep collector requires notifica-

tion when a user thread updates a heap object. This inter-
action is called a write barrier and is introduced to ensure
that the collector finds all reachable objects. Mostly paral-
lel GC implements write barriers by making all heap pages
read-only with mprotect system call at the beginning of a
collection. When a user thread updates an object in a pro-
tected page, the operating system invokes a signal handler
defined by the collector. The collector maintains a data
structure named dirty pages set to record updated pages.

A GC cycle consists of following actions:

Initial and protect phase: When a GC cycle is started
by thread T , mark bits of all objects are cleared. Then
T sends signals to all other user threads to suspend
them. Threads that received a signal inform the col-
lector of their local roots (stack pointer and contents
of registers). T pushes all objects directly pointed to
by global variables and roots of all threads onto the
mark stack. It makes all pages in the heap read-only
by the mprotect system call and clears the dirty pages
set. Then all threads are resumed.

Concurrent marking phase: Each user thread performs
a fixed amount of marking task whenever it allocates
a new object. Marking objects can be done without



synchronization with other threads not performing al-
location at the same time. The thread pops a reference
to an object from the mark stack, pushes its unmarked
children, and sets their mark bits. When it performs
a certain amount of marking, it returns to the user
program.

When a thread finds the mark stack empty, the con-
current marking phase is finished; it goes on to the
final marking phase.

Write fault handler: During the concurrent marking phase,
the user program may update objects in protected
pages. Then the operating system invokes a signal
handler. The handler obtains the address of the up-
dated page and adds it to the dirty pages set. Then
it makes the page writable by mprotect and resumes
the user program.

Final marking phase: When the collector finds the mark
stack empty (i.e., no grey objects), it suspends all
threads. Then it performs marking recursively from
roots and marked objects in dirty pages. As described
below, this phase may take a long time.

Concurrent sweeping phase: Sweeping is performed con-
currently with application threads as they allocate new
objects. The collector inspects mark bits of all objects
and pushes unmarked objects onto free lists.

This collection algorithm sometimes exhibits a long pause
(bounded only by a proportion to the heap size), due to the
following problems.

Heap protection in the initial phase: It suspends all the
threads while mprotecting the entire heap. While pro-
tecting the entire heap is not as expensive as protect-
ing all pages individually, it still asymptotically takes
time proportional to the number of pages protected.
This problem is important especially for parallel pro-
grams on multiprocessors, because the cost of protect-
ing memory region shared by many processors is large
as shown in Table 1.

This can be easily fixed by mprotecting the heap con-
currently with the application. Observe that this does
not cause any correctness issue as long as we protect
each page before any object in it is marked black.

Recursive marking in the final marking: Before the col-
lector starts sweeping, it must ensure that all reachable
objects have been marked. This may not be the case
immediately after the concurrent marking phase, be-
cause user programs may have hidden some references
to white objects. As we have described, only non-
trapped area (the roots and dirty pages) may have
such references. Thus the final marking phase scans
the area to find references to white objects, and marks
them and their descendants. When no unmarked ob-
jects are found fortunately, the cost of the final mark-
ing phase is proportional to the size of the non-trapped
area, which is O(R + D), where R denotes the size of
the roots and D the number of dirty pages. The cost
in the worst case, however, may be much larger. Sup-
pose that the collector finds a single unmarked object
in scanning, and it is the root of a big tree whose size

Region size 1CPU 4CPUs 12CPUs
16MB 6.34(ms) 10.0(ms) 17.1(ms)
32MB 12.4 20.1 34.3
64MB 24.8 41.0 69.8

Table 1: The execution time of mprotect system call
on Sun Enterprise 4500 (Ultra SPARC processors
400MHz × 14, Solaris 8). Region size (16, 32, or
64MB) is the size of the region to protect and CPUs
the number of CPUs actively using these pages. The
cost of virtual memory operations increase as the
number of CPUs actively using the affected pages.

nearly dominates the entire heap. In this case, the cost
can be O(R + M), where M denotes the heap size.

We have described the early Mostly Parallel GC algo-
rithm presented in [6], in which the final marking al-
ways recursively marks all reachable objects, no matter
how long it takes. More recent GC library that Boehm
et al. have released [4] has an improved strategy to
shorten pauses; it aborts the final marking and re-
sumes the concurrent marking phase if the final mark-
ing takes more than 50ms. We will describe a simi-
lar technique in Section 4.2.2. However, unlike ours,
their implementation still limits the number of retries
to two, so the second final marking may take a long
time.

This collector algorithm exhibits another performance prob-
lem, when it is used by multithreaded parallel programs on
multiprocessors. Because only a single thread can perform
collection tasks, the collector may not be able to catch up the
allocation speed of user programs if we have a large number
of threads. This problem not only degrades the through-
put of applications, but may effectively prolong the pause
times because threads are blocked until collection tasks are
advanced enough. We can reduce the bottleneck of the col-
lection by using multiple collector threads.

4. OUR GC ALGORITHM
This section describes our extended collector algorithm

that solves the problems of the basic algorithm described
above. First, our collector supports multiple collectors in or-
der to achieve high scalability on multiprocessors. As shown
in Figure 1, several threads may simultaneously perform col-
lection tasks in parallel. All user threads are suspended dur-
ing the initial phase and termination check phase (which is a
substitute for the final marking phase). In other phases, col-
lector runs concurrently. Our parallel method is briefly de-
scribed in Section 4.1. Secondly, we shorten the initial phase
by protecting the heap concurrently in a separate phase just
after the initial phase. Last but not least, we reduce the
pause times induced by the final marking phase. In Section
4.2, we describe techniques to shorten the final marking.

4.1 Support for Multiprocessors
Our collector is a concurrent parallel collector like Cheng

et al.’s[9]; it supports multiple collector threads to efficiently
exploit multiprocessors. As Halstead [18] has described,
tasks of tracing collectors involve parallelism. Our collec-
tor exploits the parallelism as follows.
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Figure 1: Overview of a collection cycle in our collector. Collection tasks are done concurrently with ap-
plications except in the initial phase and the termination check phase, during which all user threads are
suspended. Several threads can perform collection tasks in parallel except in the protecting phase. The
concurrent marking phase and termination check may repeat several times.

Parallel marking: In many programs, the object graph
in the heap has enough width, thus marking the ob-
ject graph in parallel has an ample amount of paral-
lelism. Each thread in our collector maintains its own
mark stack and traces objects from its roots (i.e., stack
and registers). A race condition arises when multiple
threads visit a single object simultaneously. We re-
solve it by updating the mark bit of an object with an
atomic compare-swap instruction.

We have described elsewhere [14, 15] that a dynamic
load balancing is the key to achieving scalability. The
dynamic load balancing is performed by exchanging
contents of mark stacks among threads.

Each thread also maintains its own dirty pages set to
reduce bottleneck in handling dirty pages.

Parallel sweeping: While checking mark bits of distinct
objects can be done independently, a contention occurs
when multiple collector threads try to add unmarked
objects into a single free list. We can alleviate this
bottleneck by having each thread maintain its own free
list.

Unfortunately, we found that the concurrent protecting
phase cannot be done in parallel, at least in our environ-
ments. This is because Solaris operating system, which we
used for our experiments, seems to serialize mprotect sys-
tem calls invoked by multiple threads, even if each thread
operates on distinct memory regions. We have observed this
problem also in Linux and IRIX. For the same reason, write
fault handlers are also serialized.

4.2 Reducing Pause Times of the Final Mark-
ing

In the basic algorithm described in Section 3, the final
marking phase may prolong pause times. Tasks in the fi-
nal phase are classified into two groups: (1) scanning non-
trapped area, and (2) marking all unmarked descendants.
We reduce task (1) by scanning a part of dirty pages eagerly,
and postpone task (2) by repeating concurrent marking and
termination check.

The quick termination check is similar to the final mark-
ing. It visits objects pointed to by non-trapped area (the

root and dirty pages), recursively. Unlike the final marking,
however, it aborts after a prescribed amount of work has
been performed and then resumes the user program and the
concurrent marking. We repeat a concurrent marking fol-
lowed by termination check until the check finishes quickly.
As we have described, Boehm et al. have already introduced
the idea to repeat concurrent marking up to twice. Our al-
gorithm can be seen as a more sophisticated extension to
this strategy. We do not have a fixed bound on the number
of retries, but have a strategy so that a quick termination
check is likely to succeed in a small number of retries.

4.2.1 Bounding Dirty Pages
In the basic algorithm described in Section 3, we leave all

pages updated during a collection dirty until the final phase.
The overhead of this strategy is low because it invokes at
most two virtual memory operations (one protection at the
beginning of a collection and one unprotection on the first
write) for each page in a collection cycle. It is too expensive
to clean dirty pages immediately after mutation, because it
incurs more page protection costs. However, the larger the
number of dirty pages is, the longer the pause time in the
final marking tends to be.

We take a compromise; we bound the number of dirty
pages. We inspect the size of the dirty pages set whenever
we make a page dirty. If the size exceeds a predefined con-
stant number D′, we choose one of dirty pages and remove it
from the set (currently, we simply use FIFO strategy). We
then protect the page again and scan marked objects in it to
find unmarked direct children. While this technique incurs
more overhead on write fault handler and subsequent writes,
we can bound the size of non-trapped region to O(R + D′)
rather than O(R + M).

Determining the upper bound D′ has an impact both on
pause times and execution times. Although a small D′ tends
to reduce the amount of work in a quick termination check,
too small D′ would cause thrashing and increases protection
costs. Section 5 shows performance of benchmarks when we
bound dirty pages to sixteen pages.

4.2.2 Retrying Concurrent Marking Phases
Even if we limit dirty pages, we still cannot limit the

amount of work in the final marking. The non-trapped area,



which has a bounded size, may have pointers to unmarked
objects. It may be the root of a large linked data struc-
ture such as tree, whose elements may be all unmarked. In
the basic algorithm, the final marking phase marks its all
descendants atomically.

To avoid this problem, we retry concurrent marking. The
basic strategy is to find such objects in the quick termina-
tion check and mark its descendants concurrently with the
user program if it turned out to be a root of a big unmarked
data structure. To achieve this, the termination check phase
works as follows. It suspends all threads and scans non-
trapped area (whose size is ≤ R + D′). If it finds pointers
to unmarked objects, it pushes them onto mark stack. And
then the collector starts marking from detected objects, but
stops marking if it takes a long time. To be precise, af-
ter scanning the non-trapped area, the collector marks no
more than A bytes (A is 8K in our experiments). If the
collector has finished marking before it reaches this limit, it
starts concurrent sweeping phase. Otherwise, the termina-
tion check fails; it restarts concurrent marking phase. We let
the remaining descendants of such white trees be marked in
the subsequent concurrent marking phase. Thus concurrent
marking and termination check phases may repeat several
times. Each termination check incurs a bounded amount of
work, which is O(R + D′ + A).

While we can bound the length of a single termination
check, we do not have a theoretical bound on the number
of repetitions. Instead, we adopt a strategy to reduce it as
described in Section 4.2.3. We change the default state of
newly allocated objects during a collection cycle to reduce
unmarked objects in the latter phases of a collection.

Boehm et al. have already introduced the idea of repeat-
ing concurrent marking. We consider our method differs
from theirs in a subtle but an important way. In their
method, the collector remembers the wall clock time when
a termination check is started and starts marking from the
non-trapped area, whose size is unbounded. If it took more
than 50ms, the termination check aborts. In unfortunate
cases, it may abort even before it finishes scanning the non-
trapped area, thus fail to find a pointer to a big data struc-
ture while threads are suspended. After threads are re-
sumed, they may move around the pointer to such objects,
whereby “hiding” these objects from the collector during
the concurrent marking. In this case, repeating concurrent
marking makes no progress. On the other hand, our method
guarantees the progress of collection, because termination
check certainly visits all non-protected area and thus finds
at least one pointer to unmarked objects if there is any.

4.2.3 Switching the Color of New Objects
By regarding new objects allocated during a GC cycle

as unmarked, the collector can reclaim short-lived objects
promptly. However, “allocating white” tends to repeat con-
current marking phases many times, because it produces
many unmarked objects during each concurrent marking
phase, some of which may be pointed to from the non-
trapped area. If we regard them as marked, we can reduce
the number of repetitions, but all objects allocated during a
GC cycle are retained. We choose an intermediate strategy;
we allocate objects unmarked during the first concurrent
marking phase and marked in subsequent phases. This can
reduce the number of repetitions, compared with the “al-
ways white” strategy.

root 
heap 

binary 
tree 

Figure 2: Data structures of iukiller benchmark.
It repeats moving references to large binary trees
many times in order to hide them from the concur-
rent collector.

5. EXPERIMENTAL RESULTS
We evaluate the performance of our collector on Sun En-

terprise 4500 multiprocessor. This machine is equipped with
fourteen 400MHz UltraSPARC processors. Its operating
system is Solaris 8, and the page size is 8KB. We used sev-
eral sequential and parallel programs written in C/C++ and
examined the effects of the optimizations described in Sec-
tion 4.

In the experiments, a GC cycle of concurrent collectors
starts when the amount of free regions falls below 25% of
the heap size. Concurrent marking phases make progress
every 8K bytes of allocations. For the bounding dirty set
optimization described in Section 4.2.1, we let the upper
bound of dirty set (D′) be sixteen pages. For the retrying
concurrent marking optimization described in Section 4.2.2,
each termination check marks no more than 8K bytes (= A)
after scanning the root and dirty pages.

Newly allocated objects during GC cycles are treated as
described in Section 4.2.3 unless explicitly mentioned. That
is, we allocate objects unmarked before the first termination
check and marked thereafter.

5.1 Results of a Synthetic Benchmark
This section demonstrates the effects of our pause time

reduction optimizations using a synthetic benchmark named
iukiller, which stands for “incremental update killer.”
It frequently moves around references to large trees, so that
concurrent marking tends to fail to trace them. Figure 2
shows how this benchmark works. First, it creates many
binary trees whose depth is sixteen and stores references to
roots of the trees into two arrays. Then it repeats swapping
the contents of the two arrays, while allocating many short-



heap live GC global pauses local pauses
size data algo- avg. max. avg. max.

(MB) (MB) rithm (ms) (ms) (ms) (ms)

100 64 Stop 4119 4122 0.05 0.26
Basic 917 2085 0.64 5.48
BD 781 1802 0.65 5.20
BD+R 3.59 7.46 0.97 11.7

200 128 Stop 8583 8607 0.05 0.34
Basic 1734 4071 0.64 5.64
BD 1548 3753 0.67 5.65
BD+R 3.26 7.24 1.00 11.7

400 256 Stop 17023 17039 0.06 0.28
Basic 3415 8205 0.63 5.95
BD 3106 7166 0.66 6.10
BD+R 3.57 7.42 1.00 11.2

Table 2: GC pause times in iukiller benchmark.
“BD” and “R” stand for bounding dirty set and
retrying concurrent marking, respectively. The
“BD+R” collector achieves the maximum global
pause times of <8ms.

lived objects so GC makes progress. We have measured the
performance of this benchmark for three problem sizes. The
heap size is fixed at 100M, 200M and 400M bytes.

Table 2 shows the pause times. The first and second
columns show the heap size and the amount of live data and
the third column the configuration of the collector. “Stop”
stands for stop-and-parallel-mark collector, which is not con-
current. “Basic” resembles the basic concurrent collector
by Boehm et al. described in Section 3, though it adopts
the multiple collectors and the concurrent protection opti-
mization to shorten the initial phase. “BD” is a concurrent
collector that bounds dirty pages. “BD+R” adopts both
bounding dirty pages and retrying concurrent marking. In
the table, “global pauses” stand for pauses where all user
threads are stopped; they occur in the initial and termina-
tion check phases (and in the final marking phase with the
“Basic” and “BD” collectors). “Local pauses” are pauses
where a single thread is stopped. They are due to protect-
ing pages in the beginning of a GC cycle, marking, sweeping,
and unprotecting pages in the write fault handler. Note that
even “Stop” GC has local pauses, because its sweeping phase
runs concurrently (incrementally) with the application.

The result indicates combining the two optimizations (BD
and R) is essential to reduce pause times. The maximum
global pauses of the “Basic” concurrent collector are 2085
to 8205ms. “BD” collector reduces them, but only slightly.
They are still far from satisfactory for interactive or mul-
timedia applications. To make matters worse, pauses get
longer as heap and live data become larger. Only when
we adopt both optimizations, are global pauses significantly
reduced to 7.2 to 7.5ms for all the three heap sizes. The
maximum local pause in the “BD+R” collector is some-
times longer than the global pause. The maximum local
pause is dominated by the amount of objects marked at a
time. Thus it will be reduced if we make the granularity of
marking smaller.

Figure 3 shows the execution times of iukiller bench-
mark with a 100MB heap. It also shows the costs of collec-
tion. We observe all concurrent collectors incur more collec-
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Figure 3: The execution time of iukiller bench-
mark with a 100MB heap, normalized to that of
the “Stop” collector. “Misc” includes the execution
time of the user program and the allocation time.

name heap description
size

deltablue 25MB an incremental constraint solver
for acyclic constraint graphs [16]

espresso 10MB a two-level logic optimizer for
programmable logic arrays

N-Body 15MB(S) an N-body problem solver using
40MB(P) the Barnes-Hut algorithm [3]

CKY 40MB(S) a context free grammar parser that
50MB(P) allows ambiguous sentences[20]

cube 8MB(S) a puzzle solver that searches
20MB(P) approximate solutions of the

Rubik’s cube

Table 3: Description of application benchmarks.
“S” stands for heap size for sequential experiments.
“P” is for parallel experiments.

tion cost, and the execution times are 50–55% larger than
that of the stop-and-mark collector. In this benchmark, the
basic collector and optimized collectors are almost equal in
the total execution times.

5.2 Results of Sequential Programs
This section evaluates the collectors using five more prac-

tical programs, described in Table 3. Deltablue and espresso
are widely used programs written in C. We slightly modi-
fied them to use our garbage collected allocator. Other three
are C++ programs written by us, and also used in parallel
experiments. During experiments, the heap size is fixed as
shown in the table.

Figure 4 shows the pause times in the five benchmarks. It
shows the average global pause, the maximum global pause,
and the maximum local pause. We omitted the average lo-
cal pause times, which were less than 1ms in all cases. The
basic concurrent collector is successful in N-Body and cube;
it reduces the maximum global pause times to one fourth
of those with the stop-and-mark collector. It also reduces
the maximum global pause times in deltablue and CKY,
but not adequately; it is 78ms in deltablue and 165ms in
CKY. In espresso, where living objects are small, GC time is
short (about 10ms) even with the stop-and-mark collector.
Bounding dirty pages (“BD”) significantly reduces global



Program avg. max.
repetition repetition

deltablue 2 2
espresso 1.6 5
N-Body 1.9 4
CKY 2 2
cube 1.1 2

Table 4: The number of repetitions of the termina-
tion check phases in the sequential benchmarks. In
many cases the repetition finishes in a few times.

pause times of deltablue and CKY to 16ms and 9.6ms, re-
spectively. Unlike iukiller benchmark in the previous sec-
tion, BD alone has a significant effect. Yet, retrying concur-
rent marking has a substantial effect; the maximum pause
times with all the optimizations (“BD+R”) are now 2.6–
4.5ms in the five benchmarks.

Figure 5 shows the total execution times of the bench-
marks. We observe that the overhead of concurrent col-
lectors is particularly large in CKY, mainly because of the
overhead of local pauses. The total execution times of CKY
are 53% longer than that with the stop-and-mark collec-
tor. In other four benchmarks, the overhead is 20% or less.
In CKY, the difference between the basic collector and the
optimized collector is also large. This is because “BD” op-
timization significantly increases the number of VM opera-
tions. We need more detailed investigation of the relation
between the number of VM operations and the upper bound
of dirty pages.

As described in Section 4.2.2, our “BD+R” collector re-
peats the concurrent marking phases and the termination
check phases. Table 4 shows the maximum number of repe-
titions in our five benchmarks. The average is no larger than
two, thus our optimization that repeats the check rarely pre-
vents progress of the applications. We observed, however,
the termination checks are repeated four or five times in the
worst case. We will investigate more sophisticated heuristics
to reduce the repetitions in future.

5.3 Minimum Mutator Utilization
Although we have shown the pause times are significantly

reduced above, small pause times alone are not enough to
make a collector realtime. Even if each pause is small, tight
clusters of small pauses might prevent applications from
making “enough” progress. To quantify how realtime a GC
is, Cheng et al. has described another metrics named min-
imum mutator utilization (MMU). The mutator utilization
of a given time window is defined to be the fraction of time
allocated for the user program in that window. By mea-
suring the mutator utilization for many time windows, we
obtain the MMU for a given window size.

Figure 6 shows the MMU in the five application bench-
marks. Each graph describes the relationship between win-
dow sizes (x-axis) and MMUs (y-axis). For relatively small
window sizes, optimized concurrent collectors have much
larger MMUs. MMUs with BD+R collector is 0.12–0.48
at granularity of 20ms, while it is zero with the stop col-
lector in four programs out of five. In deltablue and CKY,
optimized collectors show considerably better MMUs than
the basic collector. MMUs of the stop-and-mark collector
exceeds those of concurrent collectors in very large windows

such as 100ms or larger, which merely indicates the over-
head of the stop-and-mark collector is smaller than that of
concurrent collectors.

5.4 Results of Parallel Programs
We use three application benchmarks, N-Body, CKY and

Cube, for parallel experiments. While N-Body are writ-
ten with a native thread library supplied by OS, CKY and
Cube are parallelized using StackThreads/MP library [25],
which schedule fine-grain user level threads on top of kernel
threads. We gave a larger problem to N-Body and Cube
than in the previous section to make them run sufficiently
long. Each thread maintains its own dirty pages set, each of
which is bounded by sixteen pages.

The machine used in the experiments was lightly loaded.
We created no more than twelve kernel threads and bound
each thread to a distinct processor, so we expect all the
created threads are scheduled at all times (recall that the
machine has fourteen processors).

Figure 7 shows pause times with four, eight, and twelve
kernel threads. We observe concurrent collectors are use-
ful to reduce global pause times in parallel applications too.
Our optimizations reduce the global pause times by 34 to
83% compared to the basic collector. The difference in
pauses between the stop-and-mark collector and concurrent
collectors tends to become smaller as we use more proces-
sors, because pauses with the stop-and-mark collector are
reduced by parallel marking.

The maximum global pause times of CKY are not reduced
enough, which are 41ms, 23ms, and 33ms on four, eight,
and twelve processors, respectively. We found that this is
because StackThreads/MP uses very large execution stacks
for this program. Since our current implementation never
protects stacks, this increases the cost to scan roots in the
termination check phases.

We observe that the local pause times of our collector
sometimes get 10ms or longer. This can largely be adjusted
by setting the granularity of marking. We have found an-
other problem, however, which is the operating system’s se-
rialization of virtual memory operations. In the operating
systems we tested, Solaris, Linux and IRIX, when a thread
raises a write fault and tries to unprotect a page while an-
other thread is protecting or unprotecting another page, the
former thread is blocked despite these two threads are han-
dling distinct pages. This makes the write fault handler take
long time, increasing local pause times. The only essential
solution for this problem seems changing implementation of
memory management and mprotect system call 1.

Figure 8 shows execution times of the benchmarks normal-
ized to that with the stop collector on four processors. Our
collector imposes a large overhead in CKY, as in sequential
experiments. In the three benchmarks, the total execution
times with the BD+R collector are 3.9–48% longer than that
with the stop collector, and up to 13% longer than that with
the basic concurrent collector.

6. RELATED WORK
Incremental/concurrent mark-sweep collectors have been

widely explored [11, 12, 13, 17, 27]. Most previous work

1While protecting pages inherently requires synchronization
among processors, we may unprotect pages without synchro-
nization by lazily synchronizing TLBs [1].
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Figure 4: The pause time in the sequential benchmarks. The graphs show the average global pauses, the
maximum global pauses, and the maximum local pauses for each collector. The “BD+R” collector achieves
the maximum global pause times of <4.5ms.
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Figure 5: The execution times of the sequential benchmarks, normalized to that with the “Stop” collector.
Each bar also shows the collection costs, which are broken down into global pauses and local pauses.
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Figure 7: The pause times in the parallel bench-
marks with four, eight and twelve processors. The
graphs show the average global pause, the maximum
global pause, and the maximum local pause for each
collector.

assumes cooperation from compilers for read/write barriers.
Our work focuses on the “conservative” approach that does
not use cooperative compilers but relies on virtual memory
primitives.

Appel et al. [2] described a concurrent copying collector
relying only on virtual memory primitives. Their collector
prohibits user threads from accessing from-space by a read
barrier, which is much more expensive than a write barrier.

Furuso et al. [23] described a concurrent conservative
mark-sweep collector based on a snapshot-at-the-beginning
algorithm. It makes a virtual snapshot of the heap when a
GC cycle starts. The problem of this approach is its mem-
ory overhead; the size of the snapshot may grow up to the
heap size in the worst case.

As we have described in Section 3, our implementation is
based on the collector by Boehm et al. [6], which is an incre-
mental conservative collector. It uses an incremental update
algorithm [11, 17] as its basis and implements a write barrier
with virtual memory primitives. Their collector has already
introduced the idea of retrying concurrent marking phases
in somewhat primitive forms. However, because the num-
ber of repetitions is limited to two, the second final marking
may be long. In our collector, the amount of work in a single
termination check is always bounded. Although we have no
theoretical bound on the number of repetitions, we reduce it
as follows: (1) bound the number of dirty pages during con-
current marking phases, and (2) allocate new objects with
marked from the middle of a collection cycle. The first op-
timization guarantees an amount of progress at every round
of concurrent marking + termination check, and the sec-
ond limits the amount of newly created unmarked objects.
Together, they reduce the average number of retries while
bounding the time of a single round.

Matsui et al. have proposed the complementary GC[22].
It performs an incremental update algorithm first. When
a concurrent marking finishes, it then performs a snapshot-
at-the-beginning algorithm instead of a final marking phase.
This is a practical compromise between incremental update
algorithms and snapshot-at-the-beginning algorithms; it al-
lows some new objects allocated during a collection reclaimed
at the end of that collection. It avoids the problem of in-
cremental updates that prolongs the final marking phase by
switching to the snapshot-at-the-beginning from the middle
of a collection. It shares the potential problem of snapshot-
at-the-beginning algorithms that the memory overhead for
maintaining copies of updated pages can be very large (up
to the heap size).

Printezis et al. [24] have described a generational GC
for Java virtual machines. Their old generation collector is
based on the algorithm by Boehm et al., though they utilize
compiler support for write barriers. They adopt a “concur-
rent precleaning” technique, very similar to our bounding
dirty pages. When the heap has too many dirty (grey) ob-
jects, some of them are scanned and made black. Unlike
ours, their collector performs concurrent marking only once,
and rescues unmarked reachable objects in the single final
marking phase. They reported that with very large heaps,
the maximum pause time exceeds 100ms. These results sug-
gest the importance of our approach that repeats concurrent
marking phases until the number of unmarked reachable ob-
jects gets small enough.

Cheng et al. [9] have implemented a concurrent paral-
lel copying collector for multiprocessors. Like our collec-



tor, they achieve scalability by supporting multiple collector
threads. Unlike ours, their collector uses compiler support
for write barriers. When an object is updated, both the old
referent and the new referent are made grey. Since it can
ensure that all reachable objects have been traced when con-
current phase finishes, it needs no final tracing. As we have
described, maintaining old referents is space consuming if
we use virtual memory primitives, thus we did not take this
approach. They describe techniques to reduce pause times
such as dividing execution stacks into several parts to reduce
times for scanning roots. The pause times of their collector
are exceedingly short; they are 3 to 5ms at the maximum
on their fifteen SML programs.

7. CONCLUSION
We have described an incremental update mark-sweep col-

lector on top of virtual memory primitives provided by to-
day’s most operating systems. We argued that it is more
difficult to reduce pause times in this setting than with com-
piler supports. In order to shorten the final marking phase
that may cause unbounded pause times, we have described
two main techniques: bounding the number of dirty pages
and retrying concurrent marking phases. We do not insist
that each technique itself is innovative, since similar tech-
niques have been explored in different contexts. Instead, we
have demonstrated that we can obtain remarkable effects by
combining the two techniques through experiments. With
basic incremental update algorithms, the pause times for fi-
nal marking may be proportional to the heap size in the
worst case. In contrast, our termination check in the op-
timized collector has an upper bound proportional to the
number of dirty pages bounded by a predefined constant,
plus the root size, which our current implementation does
not attempt to bound but more involved implementations
certainly can. We can reduce pause times to 4.5ms or less
in all five application benchmarks we have tested. They are
up to forty times shorter than those of the basic concurrent
collector. The overhead that our method incurs was 9% or
less to the basic collector. In addition to measuring pause
times, we have shown our collector does not disturb applica-
tion progress according to the minimum mutator utilization
metrics.

We have shown that our collector also exhibits good per-
formance for multithreaded parallel programs. It signifi-
cantly reduces global pause times in our three parallel bench-
marks. We have pointed out serialized mprotect system call
seems to prolong pause times of individual threads.

We plan to make pause times even shorter by the follow-
ing improvements. Current implementation does not protect
stacks, so non-trapped area becomes potentially large if pro-
grams use large stacks. We have observed this situation in
the parallel CKY benchmark. This can certainly be fixed by
limiting the size of non-trapped part of the stack. While we
have succeeded in reducing pause times, our collector incurs
a larger overhead than the basic collector does. In the pre-
liminary experiments, we observed the major reason is the
increased protection operations to bound dirty pages. We
will explore a better strategy to determine the bound, which
is aware of both pause times and protection costs.
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