
Linpack Evaluation on a Supercomputer with Heterogeneous Accelerators

Toshio Endo
Graduate School of Information Science and Engineering

Tokyo Institute of Technology
Tokyo, Japan

endo@is.titech.ac.jp

Akira Nukada
Global Scientific Information and Computing Center

Tokyo Institute of Technology
Tokyo, Japan

nukada@matsulab.is.titech.ac.jp

Satoshi Matsuoka
Global Scientific Information and Computing Center

Tokyo Institute of Technology/National Institute of Informatics
Tokyo, Japan

matsu@is.titech.ac.jp

Naoya Maruyama
Global Scientific Information and Computing Center

Tokyo Institute of Technology
Tokyo, Japan

naoya@matsulab.is.titech.ac.jp

Abstract—We report Linpack benchmark results on the
TSUBAME supercomputer, a large scale heterogeneous system
equipped with NVIDIA Tesla GPUs and ClearSpeed SIMD
accelerators. With all of 10,480 Opteron cores, 640 Xeon cores,
648 ClearSpeed accelerators and 624 NVIDIA Tesla GPUs,
we have achieved 87.01TFlops, which is the third record as
a heterogeneous system in the world. This paper describes
careful tuning and load balancing method required to achieve
this performance. On the other hand, since the peak speed is
163 TFlops, the efficiency is 53%, which is lower than other
systems. This paper also analyses this gap from the aspect of
system architecture.

I. INTRODUCTION
Accelerators attract much attention in the high perfor-

mance computing community [1], [2], [3], [4], [5], for
their excellent performance with limited power consumption
and spaces. They include graphics processors (GPU) from
NVIDIA or AMD, IBM/Sony/Toshiba Cell processors and
ClearSpeed SIMD accelerators. In order to accommodate
large scale applications, parallel computation on heteroge-
neous clusters equipped with accelerators have been inves-
tigated by several groups [6], [7], [8]. Currently, the largest
heterogeneous system is the LANL Roadrunner [9], which
is ranked as No.2 in the Top500 supercomputer ranking
1 , and equipped with 12,960 PowerXCell 8i processors
as accelerators. Kistler et al. have implemented a Linpack
implementation designed for the Roadrunner architecture,
which has achieved more than 1PFlops[10]. Recently, a GPU
accelerated supercomputer has been installed in China; the
NUDT Tianhe-1, equipped with AMD Radeon HD 4870 X2
GPUs, has achieved 563TFlops in Linpack.
The third largest heterogeneous system is the TSUBAME

supercomputer installed in Tokyo Institute of Technology.
TSUBAME is a 655-node Opteron cluster, equipped with
NVIDIA Tesla GPUs and ClearSpeed accelerators; unlike
1http://www.top500.org

Roadrunner or other systems described above, it includes
two types of accelerators. This is due to incremental upgrade
of the system, which has been the case in commodity CPU
clusters; they may have processors with different speeds as
a result of incremental upgrade. In this paper, we present
a Linpack implementation and evaluation results on TSUB-
AME with 10,480 Opteron cores, 624 Tesla GPUs and 648
ClearSpeed accelerators. In the evaluation, we also used a
Xeon cluster to get higher performance. Our setting raises
several challenging issues that do not appear on Roadrunner:
(1) the system has heterogeneous accelerators, (2) nodes
are heterogeneously accelerated; some nodes have GPUs
while others do not, (3) memory sizes of accelerators are
severely limited, (4) omitting CPUs from kernel computation
is unreasonable.

In this paper, we discuss the difference in design strategy
between Kistler’s Linpack implementation on RoadRunner
and ours, which is based on one presented in our pre-
vious paper[11]. While we observe its basic strategy is
still effective with heterogeneous accelerators, we further
present several new optimization techniques that are required
for improve scalability, such as overlap between commu-
nication and computation. As a result, we have achieved
87.01TFlops, which was ranked as No. 56 in the Top500
in November 09. As shown in Figure 1, we have achieved
continuous performance improvements for six times, which
shows the significance of incremental upgrade of accelerated
systems.

We also focus on the gap between the Linpack per-
formance (Rpeak) and the theoretical peak performance
(Rmax). Since Rmax is 163.2TFlops in our evaluation, the
efficiency is Rpeak/Rmax = 87.01/163.2 = 53.3%, which
is significantly lower than 76% on Roadrunner. The reason
of this is also discussed in detail.



Figure 2. The overview of architecture of a TSUBAME node with Tesla and a Roadrunner node.

Figure 1. History of the TSUBAME system in the Top500 ranking. Arrows
show the kinds of CPUs/accelerators used in the evaluations (”CS” indicates
ClearSpeed accelerators).

II. THE TSUBAME HETEROGENEOUS
SUPERCOMPUTER

TSUBAME consists of 655 SunFire X4600 nodes and
storage system of 1.6PBytes in raw capacity, and they are
connected via InfiniBand. In the following, we describe parts
of system architecture that strongly relate to this work.

• TSUBAME nodes: Each compute node has 16 2.4
GHz AMD Opteron 880 CPU cores, 32 GBytes of
shared memory, and two 4x SDR InifiniBand host
channel adapter (HCA). The node has PCI-Express 1.0
x8 slots and PCI-X slots; HCAs and Tesla GPUs (on
about the half the nodes) are accessible via PCI-Express
bus, while ClearSpeed accelerators are equipped on
PCI-X slots as shown in Figure 2. The operating system
is 64bit SuSE Linux Enterprise Server.

• InfiniBand interconnect: Each node is connected to
one of edge switches, which are Voltaire ISR9288 288-
port switches. The edge switches are connected to two
core switches with 24 links of InfiniBand cables.

• ClearSpeed accelerators: Each node has a ClearSpeed
X620 accelerator board 2 on its PCI-X slot. The ac-
celerator has two CSX600 SIMD processors and 1GB

2http://www.clearspeed.com

DRAM, whose memory bandwidth is 6.4GBytes/s.
Each CSX600 includes 96 processing entities of
420MFlops (double precision), thus the performance of
accelerator board is 80.64GFlops 3. Since the memory
is separated from host memory, communication of
input/output data via 1GBytes/s PCI-X bus is necessary.
The power consumption of each accelerator is about
25W. The vendor provides linear algebra library named
CSXL, which we use in our evaluation.

• Tesla GPU accelerators: NVIDIA Tesla S1070 4 in-
cludes four accelerators (identical to graphic boards) in
1U form factor. In the TSUBAME system, 170 S1070
systems with 680 GPU accelerators have been installed
in 2008. Among the nodes, 316 nodes are connected
with Tesla via PCI-Express external cabling, and each
node can access to two GPUs 5. These two accelerators
share a single PCI-Express x8 bus on a node.
Each accelerator has a Tesla T10GPU, which has
30 SIMD streaming multiprocessors (SM). SMs share
4GB device memory whose memory bandwidth is
102GBytes/s. The peak performance of an accelerator
is 86.4GFlops in double precision and 1.04 TFlops in
single precision. The power consumption per S1070 is
700W, thus each accelerator consumes about 175W.
A programming environment named CUDA, which
extends C language, is provided. We have made a linear
algebra kernel by using CUDA for our evaluation, in-
stead of CUBLAS, the official library from the vendor.

• Tsubasa Xeon cluster: We have installed another
cluster named ”Tsubasa”, which is connected to TSUB-
AME via 20 InfiniBand links (200Gbps in total). In

3The clock speed is configurable up to 250MHz, but we set the clock as
210MHz for stability.
4http://www.nvidia.com
5Although a few nodes are connected to four accelerators, we use only

two on those nodes in our evaluation.



our Linpack evaluation, we also use this cluster for
higher performance. This cluster consists of 90 Sun
Blade X6250 nodes, each of which has two Quad core
Xeon E5440 (2.83GHz) and 8GB memory.

We use almost all of the above computing resources for
parallel Linpack run. Here we faced with two types of
heterogeneity, intra-node heterogeneity and inter-node het-
erogeneity. The former is that TSUBAME nodes have both
general purpose CPUs and accelerators. The latter is that
we have three types of nodes with different configuration as
follows: (a) a TSUBAME node with Tesla has 16 Opteron
cores a ClearSpeed two Tesla GPUs, (b) a TSUBAME
node without Tesla has 16 Opteron cores and a ClearSpeed,
and (c) a Tsubasa node has eight Xeon cores.

III. THE LINPACK BENCHMARK
Our Linpack implementation is based on High perfor-

mance Linpack (HPL)[12], which is a well-known parallel
implementation of Linpack. HPL is a MPI based parallel
program that solves dense linear equations Ax = b of
order N . Participating MPI processes conceptually compose
a process grid of size P ×Q, and the matrix A is distributed
among processes according to two-dimensional block cyclic
distribution. Hereafter, we let N the matrix size and B the
block size.
The algorithm is based on blocked LU decomposition of

the matrix A with partial pivoting. All matrix operations are
done in double precision. A step of LU decomposition (kth
step) proceeds as follows:

• Panel factorization: The kth block column is called
panel column. LU decomposition is done on the panel
column with partial pivoting.

• Panel broadcast: The computed panel is broadcast to
other processes. This communication is ”process row-
wise”.

• Row exchange: According to the result of partial
pivoting, rows are exchanged by ”process column-wise”
communication.

• Update: By using computed panel and kth block row
after row exchange, all the remaining part of the matrix
A is updated by using matrix multiply operation.

The amount of computation of ”panel factorization” is
O(N2B) in total of all steps, the communication amount
of ”panel broadcast” and ”row exchange” is O(N2P ) and
O(N2Q) respectively, and the computation amount of ”up-
date” is (2/3)N3. We can see that the most time-consuming
part is ”update”, and its dominance gets stronger as N gets
larger.
Thus in the Linpack benchmark, generic strategies to ob-

tain better Flops is as follows. First, it is better to configure
N as large as possible, while the matrix size should fit the
physical memory size of the system. Second, since the kernel
computation in ”update” is matrix multiply (DGEMM opera-
tion in BLAS), one of keys is to use high performance linear

algebra library. Third, since the matrix is distributed among
processes almost uniformly, thus computation performance
of each process should be uniform, since we do not change
the basic distribution method of HPL.

IV. DESIGN AND IMPLEMENTATION ON
HETEROGENEOUS SYSTEMS

Previously we have presented a Linpack implementa-
tion designed for heterogeneous cases with CPUs and
ClearSpeed[11]. We have confirmed its basic design is also
effective with minor modifications for configuration with
heterogeneous accelerators. In this section, we describe its
overview and new optimization techniques.

A. Considering System Architecture
First, we present basic design strategies while comparing

with Kistler’s design for Roadrunner [10]. The Roadrunner
is a heterogeneous system that consists of 3240 nodes, each
of which has four Opteron cores and four PowerXCell 8i
processors as accelerators. Although both TSUBAME and
Roadrunner are heterogeneous systems, the Linpack designs
are significantly different due to differences in system archi-
tecture.

• Who computes the kernel: In our design, all of general
purposes CPUs, Tesla and ClearSpeed are used for ker-
nel computation (DGEMM: matrix multiply) for ”Up-
date”, unlike Kistler’s that uses only Cell processors for
DGEMM. The later is reasonable on Roadrunner, since
96% of the computation performance come from Cell
processors. On TSUBAME, on the other hand, general
purposes CPUs contribute 35%, Tesla GPUs do 33%
and ClearSpeed accelerators do 32%; therefore omitting
any types of processors from kernel computation incurs
heavy performance degradation.

• Where matrix data are placed: In Linpack, the
matrix data of size N ×N are distributed among MPI
processes. Here each process has two choices to place
its own data: host memory and device memory. We have
to discuss the physical memory size of system architec-
ture. On a Roadrunner node (the right figure in Figure
2), the size of host memory and that of device memory
is balanced; both are 16GB per node. Therefore they
decided to place all the matrix data on device memory,
which is reasonable as kernel computation is done by
Cell processors. On TSUBAME, the host memory size
is 32GB per node. Even on GPU-accelerated nodes,
the device memory size is 4GB+4GB+1GB with two
GPUs and a ClearSpeed, which is much smaller than
host memory. Thus we have decided to place the
matrix data on host memory basically 6. In our design,

6Strictly speaking, we should compare the case where the matrix size
N is configured so that the data fits on device memory, although we
have not implemented it. We consider this approach will suffer from
heavy performance degradation on TSUBAME since device memory size
of ClearSpeed is too small.



PCI-express/PCI-X (hereafter PCI) communication is
required when kernel computation is done by acceler-
ators.

• Who computes non-kernel parts: Both on Roadrunner
and TSUBAME, MPI communication has to be done by
CPUs, since accelerators do not have direct interface to
interconnect. We also decided the auxiliary computation
such partial pivoting in panel functions to be done by
CPUs. This is because the computation and communi-
cation is interleaved in a fine grained fashion.

• Coping with inter-node heterogeneity: On TSUB-
AME, we have to consider different node configuration
described above, while keeping the performance of
processors assigned to each MPI process uniform. On
Roadrunner or homogeneously accelerated clusters[6],
such a consideration is unnecessary.

Note that the above discussion heavily depends on the
application characteristics, especially, the Flops/ Byte ra-
tio of kernel computation. Since the kernel in Linpack is
DGEMM in the Level 3 BLAS, it is relatively simple to
keep the Flops/ Byte ratio higher as follows. In a typical
kernel invocation in HPL, each process takes two matrices,
whose sizes areM×B and B×M ′, respectively. Then their
product matrices are subtracted from the local part of matrix
A. Here M, M ′ denotes the size of local matrices to be
updated. In this kernel invocation, the computation amount
is O(MM ′B), while the PCI communication amount is
O(MM ′) (We assume that B is much smaller than M,M ′).
Thus when B is large enough, we can hide the effects of
PCI communication by computation.
In other applications where improving Flops/ Byte ratio is

very hard or impossible, such as stencil computation, placing
all the data in host memory is unsuitable, since it causes
a large amount of PCI communication. Designing such
applications using heterogeneous processors is our future
work.

B. Coping with Heterogeneity
As already described, we use all types of CPUs and accel-

erators for kernel computation, while other computation and
communication are done by CPUs as in the original HPL.
Thus we do not modify the structure of HPL code largely,
except the kernel invocation. Here our goal is to coping with
intra-node heterogeneity and inter-node heterogeneity while
keeping the performance of MPI processes uniform.
For intra-node heterogeneity, we focus on mapping be-

tween MPI processes and physical processors. Since matrix
multiply is a divisible workload, it is easy to distribute
workload of a single DGEMM invocation to different types
of processors according to their respective performance. In
this aspect, the type of processors are not important us; we
virtualize CPUs and accelerators as providers of computation
power with different processing speeds. With this approach,
it is straightforward to invoke multiple MPI processes on a

Figure 3. Our mapping between processes and processors on each node
type. Each color corresponds to a MPI process.

single node. The approach taken by the Roadrunner Linpack,
which maps an accelerator to a process, does not work
well for us since we have accelerators with heterogeneous
speeds. We take an approach that maps multiple processors
to multiple processes as shown in Figure 3, where each color
denotes one of four MPI processes. In (a) in the figure,
the first process (colored red) throws DGEMM tasks to
three Opteron cores, ClearSpeed and one of Tesla GPUs.
On the other hand, each accelerator is shared between two
processes. The ratio of task should be configured so that all
processes have identical computation speed. Currently this
tuning is done by hand.
This virtualization is also the key for inter-node hetero-

geneity; we have three types of nodes with different con-
figurations. We again regard them as providers of DGEMM
computation with different speeds. According to preliminary
experiments, their speeds are 262.4GFlops, 121.2GFlops
and 85.9GFlops, respectively. Since we like to keep the
performance per process uniform, we control the number of
processes for each node configuration; we let it four, two,
one in our evaluation 7. To avoid overhead caused by unex-
pected scheduling by operating system, we bind the process
and CPU cores by using sched setaffinity systemcall.

C. Implementation Techniques
We describe some implementation techniques, mainly due

to avoid performance limiting factor we have found in HPL.
Some of them have been presented in our previous paper
[11].

• In our approach, a single accelerator is shared among
multiple processes. However, naive implementation of
this would be difficult, since current ClearSpeed accel-
erators do not support it. To solve this problem, we
implement BLAS servers, which are daemon processes
that have direct access to accelerators. They are invoked

7Finer mapping methods, such as 17:8:5, may work, but they invoke too
many processes causes overhead.



per accelerator, and arbitrate DGEMM requests from
multiple MPI processes, and call DGEMM that works
on accelerators. For optimization, BLAS servers and
MPI processes share matrix data with mmap system call
to reduce the copying of data per function call. Actu-
ally, unlike ClearSpeed, Tesla GPUs allows sharing by
multiple user processes. However, we implemented and
invoked BLAS servers for GPUs to make arbitration of
computation and communication by multiple DGEMM
requests possible.

• We have found that an optimization called look-ahead
introduced in the original HPL heavily degrades the
performance of accelerators in our configuration. With
look-ahead, panel broadcast and computation are over-
lapped to reduce critical path of the algorithm. To
do this, the DGEMM calls are fragmented into small
pieces to check incoming messages periodically, which
is harmful for performance of accelerators. Instead, we
have implemented a simple solution by creating a sep-
arate thread per process that makes DGEMM function
calls for a large granule matrix portions. During that,
the main thread calls the communication function. Thus
we avoid the fragmentation while keeping the look-
ahead optimization alive.

• In preliminary experiments, we have noticed that row-
exchange communication consumes a considerable ra-
tio in the total execution time. Its impact is larger
than in typical CPU clusters with InifiniBand; this is
because computation speed is accelerated in our case
while performance of interconnect is similar to typical
clusters. To improve this, we have modified the code to
support overlap row exchange and kernel computation
in update as follows. We conceptually divide the matrix
to be updated by each process into two pieces in
column-wise. Here we have the four operations to be
done: (1) row exchange for left-hand part, (2) update
for left-hand part, (3) row exchange for right-hand part
and (4) update for right-hand part. Since (2) and (3) do
not have dependency, it is possible to overlap them by
multi-threading.
This optimization splits DGEMM calls, which may
looks inconsistent to the discussion above. However,
we have confirmed that splitting into two is harmless
and the advantage caused by overlapping dominates.

• BLAS servers accept DGEMM requests from multiple
processes. When the requests are handled in a FIFO
method, we have observed performance degradation.
When a request for small matrices portion arrives
during computation for a preceding request for large
matrices portion, computation of the new request will
be delayed for a long time, although the caller expects
that it finishes soon. Instead of the naive FIFO method,
we have introduced a priority so that small computa-
tion can interrupt large computations that are already

running 8.

D. Tuning Methods

In heterogeneous systems, careful tuning cosidering char-
acteristics of accelerators is necessary for high performance.

• When DGEMM tasks are thrown into CPU cores
and accelerators, we found it is harmful to using
all CPU cores for DGEMM. This is because PCI-
communication to accelerators consumes considerable
part of CPU cores (in our implementation, it is con-
sumed by BLAS servers). Thus we prepare dedicated
cores for this purpose; two cores for a ClearSpeed
accelerator, and one core per Tesla GPUs. In Figure
3, boxes colored black denotes them.

• DGEMM performance heavily depends on the block
size B, thus its tuning should be done carefully: (1)
As described in Section IV-A, B should be large
enough to hide effects of PCI communication. (2) Too
large B is raises performance problem, since overhead
of some non-kernel parts such as panel factorization,
whose computation amount is O(N2B), gets larger.
Moreover, too large B causes load imbalance among
MPI processes. (3) Each accelerator type has preferable
matrix sizes for DGEMM; B should be a multiple of
288 according to documents of ClearSpeed, while our
DGEMM kernel on GPUs works well when it is a
multiple of 16.
Figure 4 shows DGEMM performance of three node
types. In each node, all processes are used simulta-
neously. We see the performance with Tesla heavily
depends on B; if it is 864 or less, the performance
gets worse. On the other two types, the effect is much
smaller. This is because we suffer from larger overhead
of PCI communication to three accelerators on the first
case. When B is 1152 or larger, the performance is
almost constant; thus we choose B = 1152 in our
evaluation.
This size is much larger than B = 128 on Roadrunner,
where small B is feasible since the matrix data are
placed on device memory.

V. LINPACK EVALUATION AND DISCUSSION

We have conducted the evaluation on TSUBAME with
the following configuration. As the software environments,
we have used Voltaire MPI, GCC 4.1.2. We have used
GotoBLAS library 1.26 on Opteron and Xeon, CSXL 3.11
on ClearSpeed. For Tesla GPUs, we have implemented
DGEMM/DTRSM kernel functions.

8Another approaches such as fair scheduling with preemption may also
work well, though we have not implemented.



Figure 4. The DGEMM performance on each node. Matrices of size
(23040×B) and (B × 23040) are used. Overhead of PCI communication
is included.

Table I
EFFECTS OF TWO OPTIMIZATION TECHNIQUES ON 64 NODES. SPEEDS
ARE IN TFLOPS. THE MATRIX SIZE N IS 331,775 AND THE BLOCK SIZE

B IS 1152.
no +overlap

no 7.76 7.71
+priority 8.13 8.74

A. Effects of Optimization Techniques
We evaluate the effects of optimization techniques by

medium scale experiments that execute our Linpack im-
plementation on 64 TSUBAME nodes. Among them, 32
nodes have two Tesla GPUs, while others do not. We
focus on ”overlap between computation and row exchange”
(overlap) and ”priority based kernel scheduling on BLAS
server” (priority) described in Section IV-C. The speeds are
shown in Table 1; with these techniques, we achieve 12.6%
performance improvement. We see ”overlap” alone does not
improve the performance, while combining the two causes
a good effect. The reason for this is under investigation.

B. Linpack Performance on the Whole System
In the whole system evaluation, we have used the fol-

lowing nodes: (1) 312 TSUBAME nodes with Tesla, (2)
336 TSUBAME nodes without Tesla and (3) 80 Tsub-
asa Xeon nodes. Here the number of MPI processes are
312×4+336×2+80×1 = 2000; we let them compose of
a process grid of size 40×50. Considering the host memory
sizes, we let the matrix size be N = 1, 059, 839. As already
described, the block size B is 1152.
With these settings, we have achieved Rmax =

87.01TFlops, which is 2.28 times faster than the case only
with Opteron (38.18TFlops). This result is ranked as 41th
in Top500 ranking in June 2009.
Figure 5 shows the ratio of contribution by processor

types in the peak performance and the Linpack performance.

Figure 5. The ratio of contribution by processor types in the peak
performance, the Linpack performance and power consumption.

The breakdown in Linpack performance can be obtained by
totaling DGEMM task distributions of all MPI processes.
We see the contributions of Opteron, Xeon, ClearSpeed and
Tesla are 30%, 4%, 31%, 35%, respectively.

The figure also shows the breakdown of electric power
consumption, which is obtained as follows. During Linpack
execution, we have measured the power consumption of two
TSUBAME nodes (one has Tesla, while another does not)
and a Tesla S1070 box. By subtracting power of ClearSpeed
from that of the second node, we obtain power consumption
of Opteron CPUs per node. Currently, power consumption
for ClearSpeed and Xeon (Tsubasa node) comes from ”typ-
ical power” in vendor’s announcements, since it is hard to
measure their power consumption alone. Also note that this
graph does not include power consumed by interconnect and
cooling.

From the breakdown, we can see superior performance/
watt ratio of accelerators; while 66% of the Linpack perfor-
mance comes from accelerators, their power consumption
is only 15%. Especially, ClearSpeed accelerators consume
only 1.5% of the system; however, we should pay attention
for fair comparison between ClearSpeed and Tesla GPUs.
While power consumption of a ClearSpeed is largely lower
than that of a GPU, the former suffers from low bandwidth
of device memory, which is almost unrelated to the Lin-
pack performance. We will require further comparison by
using other applications, especially ones that require broad
memory bandwidth.

Since the total peak performance is Rpeak =163.2TFlops,
the efficiency is Rpeak/Rmax = 87.01/163.2 = 53.3%. It
is significantly lower than 76% on Roadrunner and close to
47% on Tianhe-1. In the next section, we analyze the gap
between Rpeak and Rmax.



Figure 6. The detailed performance on the TSUBAME. (Left) When all types of CPUs/accelerators are used. Each color indicates the type of processors.
Block size B is 1152. (Right) When only Opteron CPUs are used. Block size B is 240.

C. Performance Analysis

We can consider multiple factors as the reason of the
gap between the peak performance and the Linpack per-
formance, such as PCI communication overhead and inter-
node heterogeneity, some of which may not appear in other
heterogeneous systems. Thus we analysis impacts of each
factor step by step; the following discussion is based on the
left graph in Figure 6. The leftmost bar indicates the peak
performance and the rightmost one is the Linpack perfor-
mance on the whole system. The bars include breakdown
of processor types. For comparison, the right graph of the
figure shows the case where only Opteron CPUs are used
on TSUBAME.
First, ”core DGEMM” in the graph corresponds to

DGEMM performance per CPU core/ accelerator. For CPUs,
we have measured speed of GotoBLAS with a single thread,
and obtained 4.48GFlops on Opteron and 10.74GFlops on
Xeon. For Tesla, we measured speed of our DGEMM
kernel on a GPU, excluding PCI communication overhead;
it is 80.33GFlops. Similarly, we obtained 64.3GFlops on a
ClearSpeed. Then these numbers are totaled in the whole
system 9 , and we obtain 145.1TFlops, which is 89% of the
peak. Among the four types of processors, the performance
of ClearSpeed is low, which is 80% of peak. On other
processors, the relative performance is 93 to 95%, including
Tesla.
Next, ”node DGEMM” corresponds to DGEMM perfor-

mance that considers contention in PCI bus and memory bus.
This is calculated based on DGEMM performance per node,
which has shown in Figure 4. From the breakdown of pro-
cessor types, we see that the performance of Opteron CPUs
is largely affected, which is 22% lower than Opteron portion
of ”core DGEMM”. On the other hand, the difference of

9We do not consider the impact of dedicated cores for PCI communica-
tion described in Section IV-D; we simply computes 4.48(GFlops) × 16
(cores) × 648 (nodes) for Opteron.

”node DGEMM” and ”core DGEMM” on the right graph
(Opteron-only case) is only 1%; thus we can say impacts
of dedicated cores in heterogeneous cases is fairly large.
If we conducted the same evaluation on Roadrunner, there
would be no difference between ”node DGEMM” and ”core
DGEMM”, since PCI communication per DGEMM call is
unnecessary there.
The ”node hetero” bar considers inter-node heterogeneity.

In our Linpack evaluation, we invoke four processes on a
node with Tesla, whose (node) DGEMM performance is
262.4GFlops, while we invoke two on a node without Tesla
of 121.2GFlops. In Linpack, the performance is bottlenecked
by the slowest process, thus the effective performance of a
node with Tesla is 121.2/2 × 4 = 242.4GFlops, wasting
20GFlops. From the graph, we see performance degradation
of 6.4% in the whole system, which does not appear in
Opteron-only case or Roadrunner.
In Linpack execution, the size of matrix to be updated

shrinks as computation proceeds. The ”BLAS size” bar
includes this effect, which is obtained by a small scale ex-
periment that emulates kernel invocations done in Linpack.
It also includes effects of load imbalance among processes
and DTRSM kernel invocations. According to the graph, we
suffer from overhead of 12% compared with ”node hetero”.
It is only 5% in Opteron-only case, and we consider the
reason of the gap as follows. First, on accelerators, the
DGEMM performance is more sensitive to shrinkage of
matrices sizes to be updated. Next, the block size is smaller
in Opteron-only case (B=240), the impact of load imbalance
is smaller 10.
Finally, the difference between ”BLAS size” and ”Lin-

pack” is due to effects of several factors, such as MPI
communication and panel factorization. We see the gap is
19% in the whole system, while it is 13% in Opteron-only
10We also have measured performance when B=1152 in Opteron-only

case, and observed that the difference between ”BLAS size” and ”node
hetero” is 8%.



case. Although we would like to analyze this gap in more
detail, we have not done it yet since it requires large scale
experiments.
Through above discussion, we have demonstrated that

the Linpack performance on TSUBAME is large affected
by overhead of DGEMM kernel itself, PCI communication,
inter-node heterogeneity and load imbalance, and analyzed
their impacts quantitatively. Not all of the factors are
essential in heterogeneous systems; we would not suffer
from inter-node heterogeneity if nodes are homogeneously
accelerated. And we would avoid overhead of PCI commu-
nication if matrix data are placed on device memory as in
Roadrunner.

VI. CONCLUSION

We have implemented a Linpack implementation for the
TSUBAME, a large scale heterogeneous system, evaluated
it by using more than 10,000 general purpose CPUs, Tesla
and ClearSpeed, and achieved 87.01TFlops. The system
architecture we used has many different characteristics than
the Roadrunner, which significantly impact the algorithm
design. Also we have analyzed the gap between Linpack
performance and the peak performance quantitatively. We
expect these results and methodologies are useful to design
more general applications on heterogeneous supercomputers.

ACKNOWLEDGEMENT

This work is partially supported by JST-CREST ”ULP-
HPC: Ultra Low-Power, High-Performance Computing via
Modeling and Optimization of Next Generation HPC
Technologies”, Grant-in-Aid for Scientific Research (No.
18049028) from MEXT, Japan, and Microsoft Technical
Computing Initiative project. The Goto BLAS library is
made by Kazushige Goto from University of Texas.

REFERENCES

[1] M. Christen, O. Schenk, E. Neufeld, P. Messmer, and
H. Burkhart, “Parallel data-locality aware stencil computa-
tions on modern micro-architectures,” in Proceedings of IEEE
International Parallel and Distributed Processing Symposium
(IPDPS09), 2009.

[2] S. Edelkamp and D. Sulewski, “Parallel state space search on
the GPU,” in Proceedings of Symposium on Combinatorial
Search (SoCS 2009), 2009.

[3] N. Galoppo, N. K. Govindaraju, M. Henson, and D. Manocha,
“LU-GPU: Efficient algorithms for solving dense linear sys-
tems on graphics hardware,” in Proceedings of IEEE/ACM
Conference on Supercomputing (SC’05), 2005.

[4] J. Meng and K. Skadron, “Performance modeling and auto-
matic ghost zone optimization for iterative stencil loops on
GPUs,” in Proceedings of ACM International Conference on
Supercomputing (ICS ’09), 2009.

[5] A. Nukada, Y. Ogata, T. Endo, and S. Matsuoka, “Band-
width intensive 3-D FFT kernel for GPUs using CUDA,”
in Proceedings of IEEE/ACM Conference on Supercomputing
(SC’08), 2008.

[6] M. Fatica, “Accelerating Linpack with CUDA on heteroge-
neous clusters,” in Proceedings of Workshop on General-
purpose Computation on Graphics Processing Units (GPGPU
’09), 2009.

[7] D. Goddeke, R. Strzodka, J. Mohd-Yusof, P. McCormick,
S. H. Buijssen, M. Grajewski, and S. Turek, “Exploring weak
scalability for FEM calculations on a GPU-enhanced cluster,”
Parallel Computing, Special issue: High-performance com-
puting using accelerators, vol. 33, no. 10–11, pp. 685–699,
2007.

[8] J. C. Phillips and J. E. S. andand Klaus Schulten, “Adapting
a message-driven parallel application to GPU-accelerated
clusters,” in Proceedings of IEEE/ACM Conference on Su-
percomputing (SC’08), 2008.

[9] S. Swaminarayan, T. C. Germann, K. Kadau, and G. C.
Fossum, “369 Tflop/s molecular dynamics simulations on the
Roadrunner general-purpose heterogeneous supercomputer,”
in Proceedings of IEEE/ACM Conference on Supercomputing
(SC’08), 2008.

[10] M. Kistler, J. Gunnels, D. Brokenshire, and B. Benton, “Petas-
cale computing with accelerators,” in Proceedings of ACM
Symposium on Principles and Practice of Paralle Computing
(PPoPP09), 2009, pp. 241–250.

[11] T. Endo and S. Matsuoka, “Massive supercomputing coping
with heterogeneity of modern accelerators,” in Proceedings
of IEEE International Parallel and Distributed Processing
Symposium (IPDPS08), 2008.

[12] A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary,
“HPL - a portable implementation of the high-performance
Linpack benchmark for distributed-memory computers,”
http://www.netlib.org/benchmark/hpl/.


