Linpack Evaluation on a Supercomputer with Heterogeneous Accelerators <u>Toshio Endo</u>, Akira Nukada Satoshi Matsuoka, Naoya Maruyama Tokyo Institute of Technology, Japan

IPDPS 2010, Atlanta

GPU/Accelerators for High Performance Computing In HPC systems, power consumption has been/will

- In HPC systems, power consumption has been/will remain a major concern
- GPU and Accelerators are promising for their excellent Flops/Watt ratio

	ClearSpeed X620	NVidia GeForce GTX285	ATI Radeon HD 4870
Speed (SP)		1063GFlops	1200GFlops
Speed (DP)	80GFlops	88GFlops	240GFlops
Memory BW	6.4GB/s	159GB/s	115GB/s
Power	25W	183W	160W

Heterogeneous Systems

- Heterogeneous architectures that combines general purpose CPUs and accelerators will be attractive for
- Generality by general purpose CPUs
 - Typically x86/x86-64 CPUs
- Higher Flops/Watt ratio by accelerators
 - GPUs, Cell processor, ClearSpeed...

Example:

- LANL RoadRunner: 1.4PF with 12240 PowerXCell8i
- NUDT Tianhe-1: 1.2PF with 5120 Radeon HD 4870
- TokyoTech TSUBAME: 160TF with 680 Tesla S1070 GPUs+648 ClearSpeed

Our Contribution

- Demonstrated scalability of a heterogeneous system, TSUBAME
- A Linpack implementation that uses cooperatively:
 - 10,368 Opteron cores
 - 612 Tesla GPUs
 - 648 ClearSpeed accelerators
 - 640 Xeon
- A different strategy than on Roadrunner or Tianhe-1 is required
- ◆ 87.01TFlops \rightarrow #56 in Top500 ranking

LANL RoadRunner (2008)

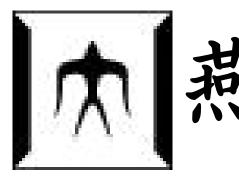
The largest heterogeneous system

The first PetaFlops machine in the world!

- 6120 dual-core Opterons and 12240 PowerXCell 8i
- IBM blades

Peak performance is 1.4PFlops

>90% comes from Cell

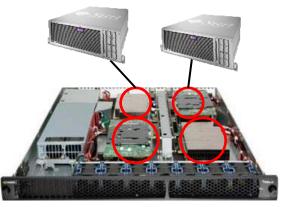

#2 in Top500 ranking Linpack performance is 1.042PFlops

Tokyo-Tech TSUBAME Supercomputer

Tokyo-Tech Supercomputer and UBiquitously Accessible Mass-storage Environment

"TSUBAME" also means "swallow", the symbol mark of Tokyo-Tech

TSUBAME Basic Data


- 655-node Linux cluster
 - Sun Fire X4600

- 8 Dual-core Opteron 880 (=16cores) per node
- 32GB DDR memory per node
- And Tesla S1070 GPU and ClearSpeed accelerators
- ◆ ~1.1MW power consumption, 350 m² footprint
- SUSE Linux Enterprise 10
- Jobs are managed by a batch scheduler
 - A customized version of Sun N1 Grid Engine
- A production system used by >1,500 users

Accelerators Installed (1): NVIDIA Tesla S1070

- 800 watts/box
- Each GPU has:
 - 30 Multi Processors x 8 Stream processors
 - 86GFlops (double prec)
 - 4GB GDDR3 memory
 - 102GB/s memory bandwidth

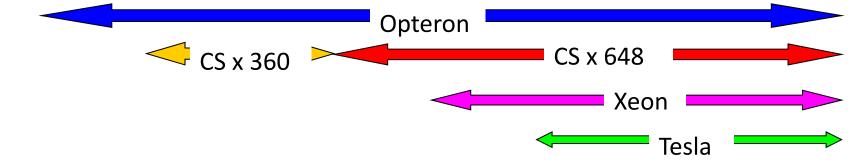
Tesla S1070 box

- Connected with hosts via external PCI-Express cables
 - 2 GPUs hang on a cable
- Programming with CUDA programming language
- 320 out of 655 TSUBAME nodes are connected with 2 GPUs respectively
 - 'Inter-node' heterogeneity

Accelerators Installed (2): ClearSpeed X620 Accelerator

PCI-X board

- 2 CSX600 x 96 SIMD cores
- 80GFlops (double prec)
- 1GB DDR memory
- 6.4GB/s memory bandwidth
- 25 watts /board


- Programming with ClearSpeed Cⁿ programming language
- Each TSUBAME node has a board

TSUBAME Node with Hybrid Accelerators

History of TSUBAME in Top500

	Jun06	Nov06	Jun07	Nov07	Jun08	Nov08	Jun09	Nov09
Linpack Speed	38.18 (TF)	47.38	48.88	56.43	67.70	77.48	87.01-	
Rank	7	9	14	16	24	29	41	56

- The 3rd system as a heterogeneous system
 - From Nov 06 to Nov 07, it was the 1st
- Continuous improvement for 7 times

What is Linpack?

- A numerical benchmark used in Top500 supercomputer ranking (www.top500.org)
 - Solves a dense linear equation Ax = b of order N
 - A direct solver; total computation cost is O(N³)
 - Users can configure N; In TSUBAME, N~1,000,000
- HPL (High-performance Linpack) by A. Petitet
 - A famous MPI parallel implementation, designed for uniform systems
 - Based on blocked LU-decomposition, with partial pivoting
 - The most time consuming part is matrix-multiplication (DGEMM)
 - Used as a basis of our implementation

HPL Algorithm

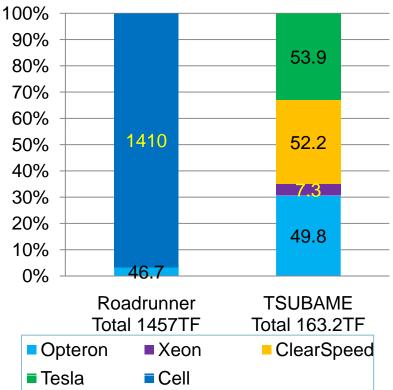
LU decomposition of N ×N matrix A

for (k = 0; k < N; k += B)Л Panel factorization with partial pivoting to obtain L Ν **Broadcast L** Row exchange, and compute U Update the rest part of matrix $A' = A' - L \times U$ V °O \leftrightarrow Β **DGEMM** is the most time consuming

Data Decomposition in HPL

 Matrix A is uniformly distributed with 2D blockcyclic distribution among processes

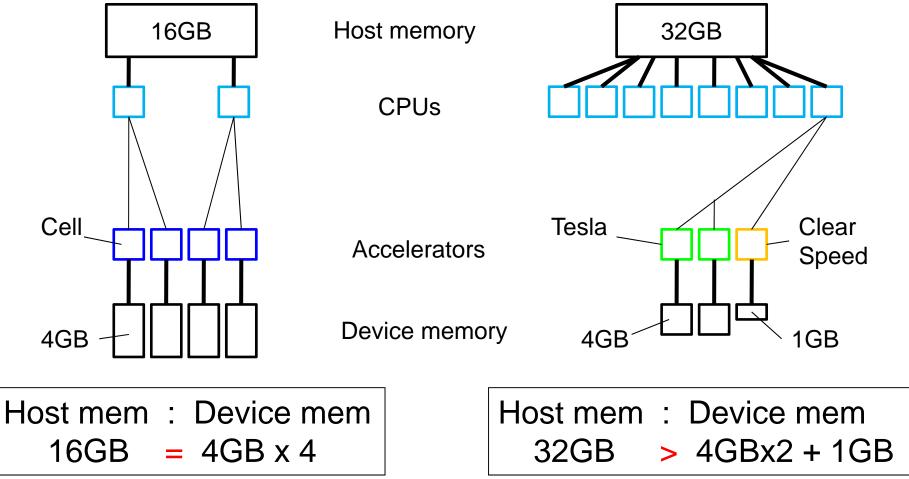
Design Issues on Heterogeneous Systems


- Who computes?
 - Kernel (DGEMM, DTRSM)
 - Accelerators? Both CPU and accelerators?
 - Non-kernel
- Where are matrix data placed?
 - Host memory? Accelerator memory?
 - Strategies depend on system architecture
 - We compare our decision with that on Roadrunner [PPoPP09]
 - More challenging on TSUBAME

Who Computes?

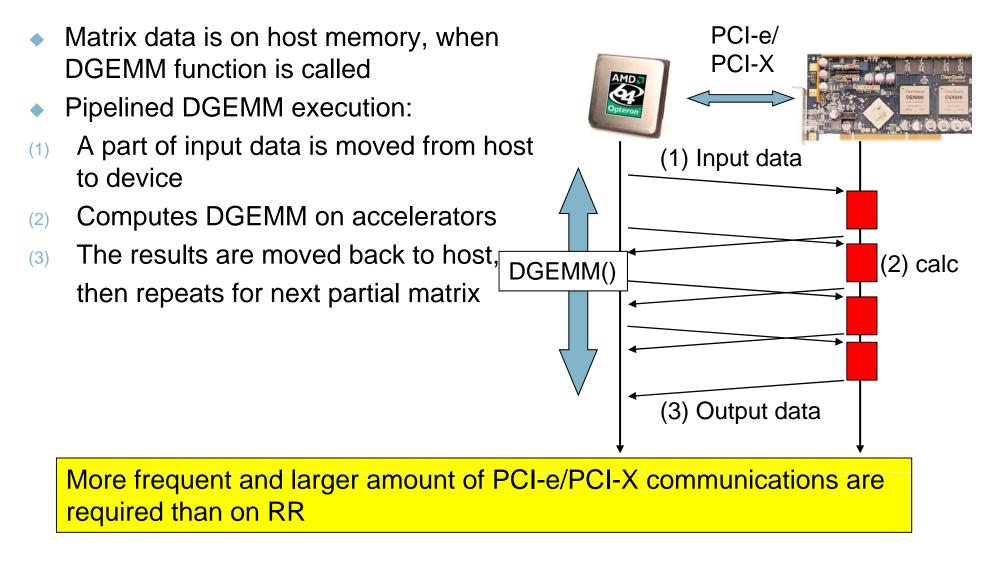
Non-kernel

- Only CPUs are used for MPI communication, pivoting...
- Kernel functions
 - On Roadrunner, Cells contribute 96% of performance
 - Ratio of CPUs is 4%
 - ⇒ Only Cells are used
 - On TSUBAME, CPUs contribute 35%
 - Omitting any type of processors heavily degrades performance
 - ⇒ All of CPUs,GPUs,ClearSpeed are used


Breakdown of peak performance (DP) per processor type RR TSUBAME

Where are matrix data placed? (1)

A RR node

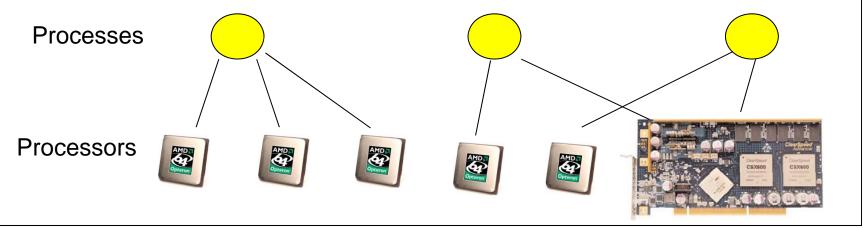

A TSUBAME node

Where are matrix data placed? (2)

- In Linpack, the matrix size should be larger to gain speed in Flops
 - ⇒ it should be as large as host memory
- On RR,
 - (1) Device memory = Host memory
 - (2) Kernel computation is done only by Cells
 - ⇒ Matrix data are on Cell device memory
- On TSUBAME,
 - Device memory < Host memory
 - ⇒ Matrix data are usually on host memory

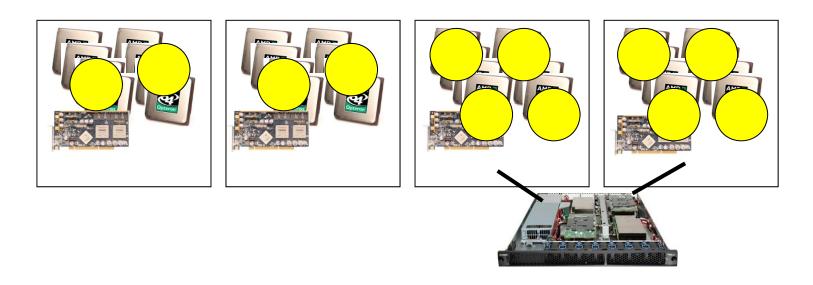
Executing Kernel Functions on Accelerators

Challenging Issues on TSUBAME Intra-node heterogeneity:


- CPU/GPU/ClearSpeed are used for kernel
- On RR, using only Cell is sufficient
- Inter-node heterogeneity:
 - Half the nodes have GPUs, while others don't
 - On RR, nodes are uniform
- Frequent PCI-e/PCI-X communication:
 - The whole input/output is moved via PCI
 - On RR, matrix data always resides in Cell device memory

How can we run HPL, originally designed for uniform systems, efficiently?

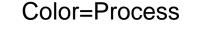
Coping with intra-node Heterogeneity

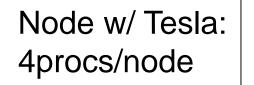

- We 'virtualize' heterogeneous processors at BLAS layer
- Processors are providers of DGEMM performance
- We control mapping between processes and processors
 - An MPI process divides its own sub-matrix with a proper ratio and throws DGEMM tasks to CPUs and accelerators
 - All processes should be mapped with processors of similar performance

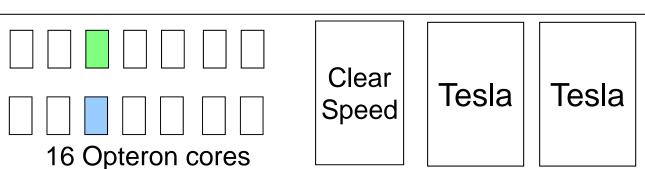
Example of mapping during DGEMM

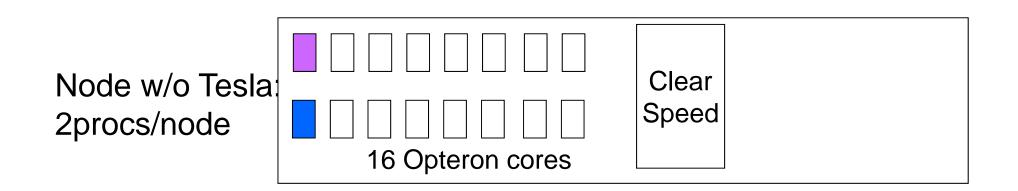
Coping with Inter-node Heterogeneity

- We control the number of processes among nodes
 - cf. CHARM++, AMPI from UIUC

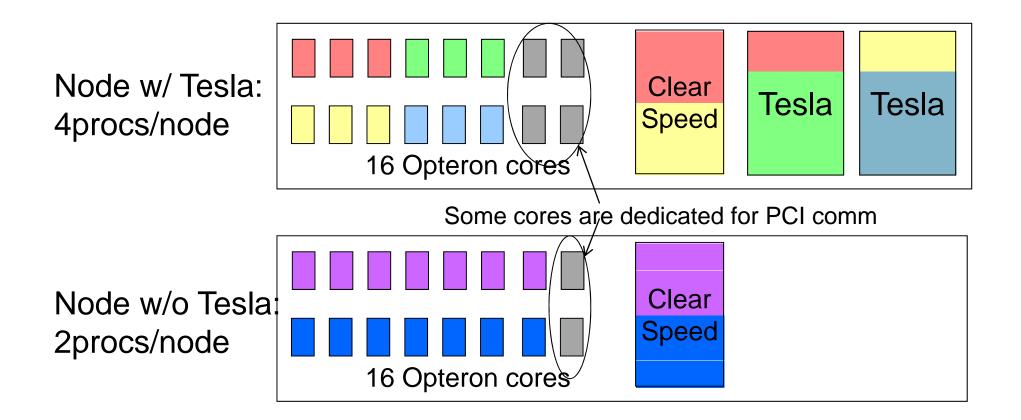



 We can keep kernel workload of each process uniform (good for HPL), while maintaining heterogeneity

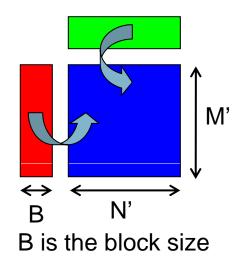

Mapping between Processes and Processors (1)


When processing non-kernels

• Panel factorization, MPI communication etc.



Mapping between Processes and Processors (2) When processing DGEMM kernels


• Each process uses several cores and accelerators

Coping with PCI Communication overhead

- Since matrix data is allocated on host memory, kernel performance heavily depends on the matrix size
- For the sizes in the figure,
 - Computation: O(M'N'B)
 - PCI-Communication: O(M'N'+M'B+N'B)
- To reduce effects of PCI communication, M', N', B should be large enough

Multiply of (M'xB) x (BxN')

In Linpack, we should keep the block size B large enough

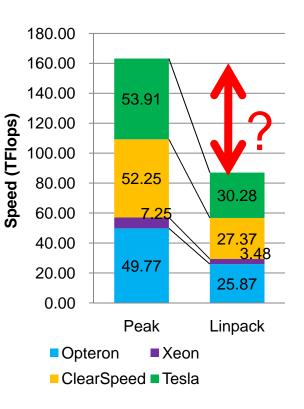
We decided to use B=1152, which achieves 241GFlops per node

Evaluation Conditions

- 648 TSUBAME nodes
 - 312 nodes are connected with Tesla GPUs → 624 GPUs are used in total
- 80 8-core Xeon nodes
- Modified HPL + Voltaire MPI + GOTO BLAS + CSXL BLAS + NUBLAS
 - NUBLAS is our own DGEMM kernel for Tesla GPUs
- Total number of processes is 2000
 - 2000 = 312 nodes x 4 procs + 336 x 2 + 80 x 1
 - Process grid (P x Q) = (40 x 50)
- ◆ Matrix size N = 1,059,839, block size B = 1,152

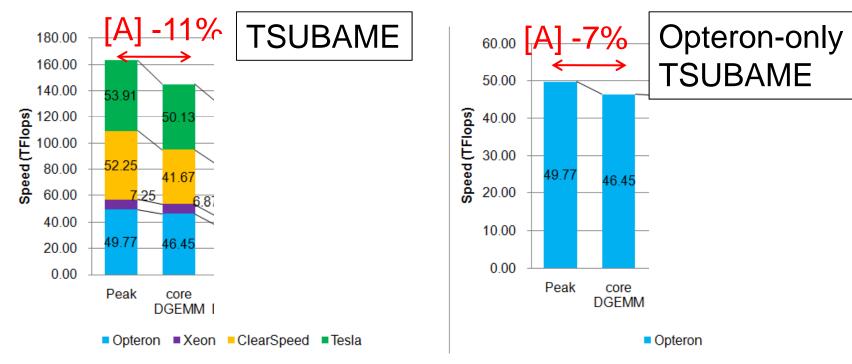
Evaluation Result

======= T/V	N	NB	Р	Q		Gflops
WC10R2R4	1059839	1152	40	50	9121. 18	8. 701e+04
Ax-b _oo/(eps*(A _oo* x _oo+ b _oo)*N)= 0.0119654 PASSE						PASSED

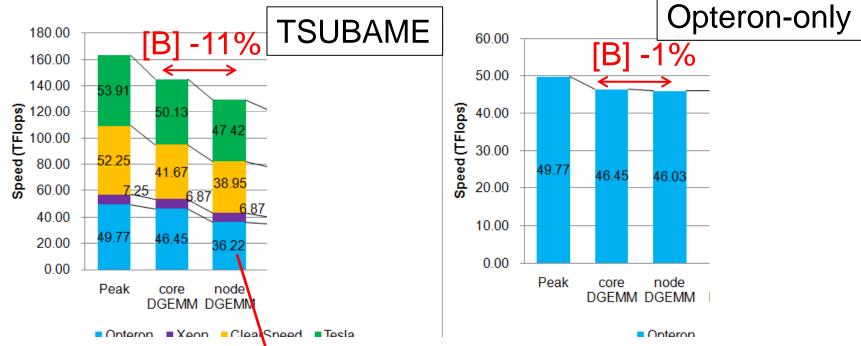

87.01 TFlops is achieved

- #56 in the Top500
- #3 performance as a heterogeneous supercomputer

2.6 hours

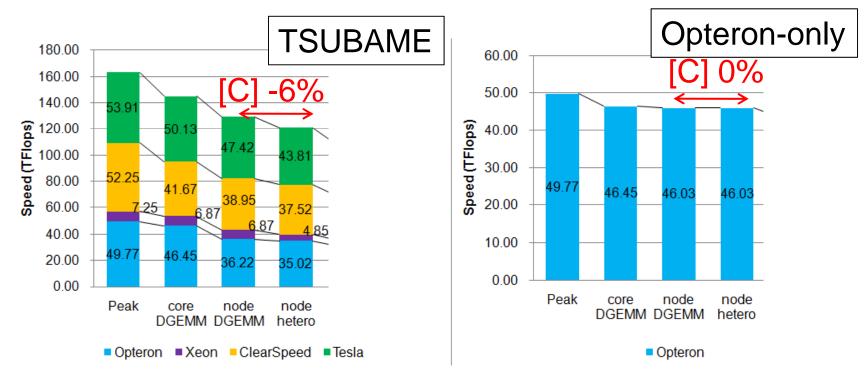

Discussion on Efficiency

	Peak (TFlops)	Linpack (TFlops)	Efficien cy
RoadRunner	1376	1042	76%
Tianhe-1	1206	563	47%
TSUBAME	163.2	87.01	53%
Opteron only TSUBAME	49.87	38.18	77%


- Why is the efficiency is lower?
 - PCI overhead? Inter-node heterogeneity?
 - We will discuss it step by step

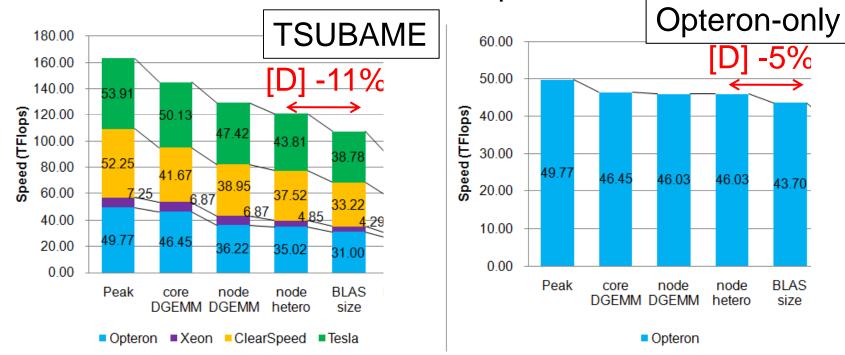
Discussion (1/5): Overhead of Core-wise DGEMM DGEMM performance is measured on each type of CPU core/accelerators, and totaled

- PCI overhead is not included
- We observe 11% overhead

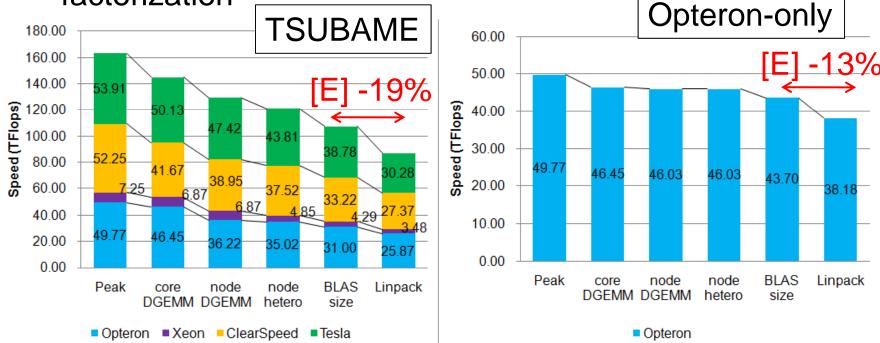

Discussion (2/5): Overhead of Node-wise DGEMM DGEMM performance is measured on each type of node, and totaled

- Opteron part is suffered from the existence of cores dedicated for PCI communication
- Opteron-only and RR are almost free from PCI comm

Discussion (3/5): Overhead by Inter-node Heterogeneity


 DGEMM performance of each node type deviates from 4:2:1 little → bottlenecked by the slowest processes

This overhead is peculiar to TSUBAME


Discussion (4/5): Overhead Caused by DGEMM Problem Size • In Linpack, the problem size of DGEMM kernel gets smaller as iterations proceed → We simulated changes of

kernel size and measured the performance

Discussion (5/5): Other Overhead

 Computations other than kernels, including panel factorization

Summary

- Heterogeneous supercomputers are scalable
 - 87TFlops Linpack performance is achieved on TSUBAME with >600 GPUs, >600 ClearSpeeds, >10000 Opteron cores
 - We have discussed on overheads peculiar to heterogeneous systems
 - Some are peculiar to TSUBAME
- For better performance, efficient CUDA kernels are important, but we need more!
 - Analysis of application and architecture
 - Algorithm design
 - Considering overhead of PCI comm, MPI comm

Future Plan

 A new system TSUBAME 2 will be introduced in this autumn

- 2.4PFlops peak with ~4000 Fermi GPUs
 - Exceeds RoadRunner and Tianhe-1
- Linpack, HPCC and other applications will be evaluated