
Realizing Extremely Large-Scale Stencil
Applications

on GPU Supercomputers

Toshio Endo Yuki Takasaki Satoshi Matsuoka
Tokyo Institute of Technology, Japan
Email: {endo, matsu}@is.titech.ac.jp

Abstract—The problem of deepening memory hierarchy to-
wards exascale is becoming serious for applications such as those
based on stencil kernels, as it is difficult to satisfy both high
memory bandwidth and capacity requirements simultaneously.
This is evident even today, where problem sizes of stencil-based
applications on GPU supercomputers are limited by aggregated
capacity of GPU device memory. There have been locality
improvement techniques such as temporal blocking to enhance
performance, but integrating those techniques into existing stencil
applications results requires substantially higher programming
cost, especially for complex applications and as a result are
not typically utilized. We alleviate this problem with a run-time
GPU-MPI process oversubscription library we call HHRT that
automates data movement across the memory hierarchy, and
a systematic methodology to convert and optimize the code to
accommodate temporal blocking. The proposed methodology has
shown to significantly eases the adaptation of real applications,
such as the whole-city airflow simulator embodying more than
12,000 lines of code; with careful tuning, we successfully maintain
up to 85% performance even with problems whose footprint is
four time larger than GPU device memory capacity, and scale to
hundreds of GPUs on the TSUBAME2.5 supercomputer.

I. I NTRODUCTION

One of the most serious problems in the exascale era
is the deepening memory hierarchy, as the exascale archi-
tectures will be composed of limited amount of upper-tier
high bandwidth memory and hierarchies of larger capacity
but decreasingly lower bandwidth memory underneath. While
such an architecture would be fine for compute-intensive
applications, it would become a significant obstacle for scaling
bandwidth-intensive applications such as weather simulation,
organ simulation in medical applications, and various disaster
management applications such as earthquakes and tsunamis.
Although finer-grained meshes to achieve higher resolution
will require significant increase in memory capacity of upper-
tier high-bandwidth memory to maintain performance, such
increase will be slower than the performance growth of the
processing power of the CPUs, largely restricted by device
physics, packaging limitations, as well as power restrictions.

In fact, we already suffer from this problem especially
on heterogeneous systems equipped with accelerators such
as GPUs or Xeon Phi processors. On such systems, while
processing speed and memory bandwidth are high (around
1∼2TFlops and 250∼300 GB/s per accelerator circa 2015),
memory capacity per accelerator is limited to only several
gigabytes, while the host CPUs embody slower DRAMs are
equipped with much higher capacity, being tens or even

hundreds of gigabytes. As a result, although various types of
stencil-based applications have been demonstrated successfully
on GPU clusters, their problem sizes have been limited to fit
within the GPU device memory, and have not utilized the large
capacity host DRAM at all [1], [2], [3], [4], [5].

This problem in the capacity can be conceptually mit-
igated algorithmically withlocality improvementtechniques
that can effectively utilize the memory hierarchy by reducing
the bandwidth requirements. We have demonstrated that stencil
computations can enjoy both higher performance and larger
problem size with such an approach[6], [7]. To enlarge the
problem sizes of stencil kernels, we place the problem in the
host memory, whose size is much larger than the device, as
shown in the architectural sketch of a GPU computing node in
Figure 1. Here, naive usage of the host memory would result
in disastrous performance, since they are accessible from GPU
cores only via PCI-Express bus (hereafter PCI-e), which is
10x to 30x slower than bandwidth of device memory. Instead,
we apply a locality improvement technique calledtemporal
blocking, which has been proposed mainly for cache locality
improvement[8], [9], [10], to this hierarchy. This approach
was shown to work well to effectively enlarge the problem
size beyond device memory capacity in toy programs such
as a 7-point stencil; however, it is still not clear whether the
approach will be easily applicable to real-world simulation
applications, which typically consist of thousands lines of
code, and embody complex structures including sophisticated
boundary conditions and inter-node communication.

The goal of this work is to devise a systematic methodology
to achieve high performance, large problem sizes, and low
programming costsimultaneouslyin real-world bandwidth-
intensive simulation applications on GPU supercomputers. We
consider two large-scale stencil-based simulation applications
as examples, namely the whole-city turbulent airflow simu-
lation based on advanced Lattice Boltzmann Method[4], and
dendritic solidification simulation based on the phase-field
method[5], the latter of which was awarded the ACM Gordon
Bell Prize in 2011. Although both are written with MPI and
CUDA[11] and demonstrate almost linear scaling and petaflops
performance by utilizing thousands of GPUs of TSUBAME2.5
petascale supercomputer, nonetheless they are mutually very
different in terms of the underlying numerical algorithms. Both
assume the high bandwidth of the GPU device memory to
achieve high performance, and as a result their problem sizes
are limited by the aggregated capacity of device memory of the
GPUs used; moreover, both are well over thousands of lines



Fig. 1. Memory hierarchy of a GPGPU computing node. This illustrates the
simplified architecture of a node of TSUBAME2.5 supercomputer we used in
our evaluation.

of code, and thus incorporating temporal blocking would be
extremely cumbersome and error-prone.

In order to minimize the code refactoring costs of such
real applications to incorporate temporal blocking, we utilize
a run-time library for GPUs calledHybrid Hierarchical Run-
time (HHRT) that allows effective co-management of GPU
device memory and host memory[12]. The current HHRT
library is a wrapper library of MPI and CUDA; its func-
tionality includes virtualization of device memory capacity
and automated memory swapping between the hierarchies in
memory. HHRT allows the users to effectively refactor the
code by distinguishing (1) the code change that is really
required for locality improvement of algorithm from (2) other
auxiliary functions that can be offloaded to HHRT, allowing
the user programmer to focus on (1). While this approach
has been applied to a simple 7-point stencil benchmark[12],
we have extended our methodology to cover above real-
world applications, requiring further optimizations and feature
extensions to the HHRT runtime.

By applying temporal blocking with the aid of HHRT,
experiments on the TSUBAME2.5 supercomputer equipped
with NVIDIA K20X GPUs, shows that the airflow simulation
with 4x larger problem size than device memory achieves
85% of performance compared to smaller problems confined
within the GPU, being significantly faster than CPU-only im-
plementation, while code refactoring was relatively simple with
small amount of code change. Similar result was achieved with
the dendrite simulation, achieving 74% of performance for a
problem beyond device memory capacity. These demonstrate
that with the proposed methodologies and techniques real-
world bandwidth-intensive applications can enjoy higher per-
formance and larger problem size, with moderate programming
costs, without significant increase in high-bandwidth memory
capacity increase, but rather with deep memory hierarchy of
today towards exascale.

II. BACKGROUND

A. Memory Hierarchy of GPU Machines

We first give a brief overview of memory hierarchy of
GPU-based machines. Here we focus on NVIDIA GPUs, but
it would be applicable to other accelerated architectures such
as AMD FireStream and Intel Xeon Phi. In such architectures,
the host CPU memory has large capacity, ranging from several
10s to 100s of GigaBytes (GB for short), while the bandwidth
is limited to 50∼100 GB/s. By contrast, accelerator CPUs such
as GPUs embody significantly higher bandwidth, currently
ranging at 200 300 GB/s, while their capacity would be limited
to 4 to 16 GB. Moreover the bandwidth of the accelerators
is expected to be elevated significantly to TeraByte (TB)/s
range due to the adoption of 3D memory packaging such as
HBM and HMC, but the capacity increase will be limited.
In order to overcome the capacity limitations, the CPU host
memory is usually regarded as a lower-tier memory in the
overall memory hierarchy. Also, currently the transfer speed
between the memory tiers is restricted to PCI-e bandwidth
of 8∼16 GB/s; although there are future developments to
overcome this limitation, nonetheless efficient transfer of data
between the tiers will remain a problem irrespective. For our
TSUBAME2.5, the GPU memory bandwidth is 250GB/s and
the capacity is 6 GB, for CPU they are 51.2GB/s and 54∼96
GB respectively, and CPU-GPU bandwidth is 8 GB/s.

B. Stencil Computation

Stencil computation is a very typical kernel that appears
in solvers for various HPC applications such as CFD. The
simulation domain is partitioned into regular-sized grids, and
repeated computation is performed to update the value of each
point in the grid. The value of a point is determined locally
by the surrounding points in a fixed ‘stencil structure’and
thus was named so. Since the update can be computed entirely
in parallel, it is highly parallelizable, but typically is memory
bound due to the requirements of reading many data points to
compute just the data of a single point. Various optimization
strategies such as spatial caching ad double buffering are
typically employed to increase locality and significantly boost
performance at the risk of code complexity.

Figure 2 (a) shows a simple example of a 7-point stencil
program using MPI and CUDA, where the data are confined
within the GPU device memory for highest efficiency. By
contrast, Figure 2 (b) shows the case when data is larger than
GPU device memory; here, the overall grid is partitioned into
subgrids (or subdomaints), and they are proactively swapped
for the computation to proceed. We observe that, not only
there is the MPI communication, but we must perform two
CPU-GPU transfers for every subgrid per each step, leading
to significant slowdown due to slow CPU memory as well as
even slower CPU-GPU transfer bandwidth.

C. Temporal Blocking

Temporal blocking is a locality-improving technique for
stencil computations[8]. Here, we subdivide the grid into
small subgrids as before, but advance the timesteps of each
subgrid multiple times independent of others. This improves
the locality of stencil computations considerably—although
used for CPUs in the context of improving the cache hit



Fig. 2. (a) Stencil with MPI+CUDA, (b) Large Scale Stencil Algorithm

ratio, we have applied the technique effectively to GPU-based
computation to reduce the traffic of GPU-CPU communication
significantly [6], [7].

Figure 3 (a) shows the improved algorithm that applies the
temporal blocking technique to a GPU-based stencil program.
We observe that there is a temporal loop inside the loop that
enumerates over the subgrids. If we havek to be the temporal
width of the temporal blocking (also called thetemporal
blocking factor), and we advance the timestepNt times for
the whole application, since each subgrid will computek times
in the inner temporal loop, the exterior temporal loop will
enumerateNt/k times. Compared to Figure 2(b), we have
reduced the number of GPU-CPU transfer to be1/k times,
despite that the amount of transferred data remains constant
(entire inner sub region + halo region). As such, the amount
of data transferred during the application run is reduced to1/k
of the original program.

It is fairly simple to rewrite the program in Figure 2(b) to its
temporal blocked version in Figure 3 (a) for toy program, how-
ever, for real applications that involve thousands or even tens
of thousands of lines of code, embodying multiple complex
stencils with varying boundary conditions and sophisticated
communication patterns, such a rewrite would be overwhelm-
ing in the programming cost. In order to ease such a rewrite,
we utilize the HHRT runtime that allows virtualization of GPU
device memory in a way such that transfer management is
largely hidden from the programmer.

D. HHRT

HHRT (Hybrid Hierarchical Runtime)[12] is a runtime that
virtualizes the application GPU+MPI processes, and multi-
plexes them by supporting automated memory swaps between
the tiers of the memory hierarchy, in order to reduce the
cost of programming by eliminating the user-managed memory
transfers. The current version of HHRT supports code written
with CUDA and MPI to automate the GPU-CPU memory
swaps, but will be extended to support other inter-tier transfers
as well as other processor types such as Intel Xeon Phi.
Figure 4 compares the typical execution model of applications

Fig. 3. Large Scale Temporal Blocking Algorithm. (a) Hand-coded Imple-
mentation, (b) An Implementation Combined with HHRT

on CUDA and MPI, to that on HHRT. Instead of letting each
MPI process occupy a GPU, we let several MPI processes
share a GPU. HHRT virtualizes and allows multiple CUDA-
MPI processes to share GPUs and utilize memory space
larger than the device memory, by appropriately swapping
the processes in-out on demand, usually at the time of MPI
communication. For details, readers are referred to [12].

There are various uses of HHRT, but in particular when
applied to temporal blocking, it largely automates the memory
hierarchy management. Although it does not automate the
temporal blocking itself, our previous work showed that the
program can be significantly simplified as seen in Figure 3
(b) compared to Figure 3 (a) [12]. The programmer essentially
converts the program to a temporal blocked GPU+MPI process
by merely adding an inner temporal loop with the halo
increased in width to the temporal blocking factork, as if the
process still occupies the entire GPU device memory; such a
conversion was found to be relatively simple, even for real ap-
plications we have seen so far. All the complexities associated
with memory management, especially transfer between device
and host memory, are automatically handled by the HHRT
runtime.

However, although the conversion was simple for a toy,
7- and 9-point stencil programs with no boundary conditions,
whether HHRT is ubiquitously applicable to (a) significantly
reduce the programming burden for real stencil-based appli-
cations, and (b) whether we can attain performance levels of
upper-tier high-bandwidth memory while growing the problem
size beyond their size, up to the capacity of lower-tier memory,
had not been investigated. Moreover, it has not been shown
whether such programs, which are typically weak-scaling
applications that could scale to machines with thousands of
GPUs such as ORNL Titan or Tokyo Tech. TSUBAME2,
exhibiting petaflops of performance, would scale similarly with
HHRT-based temporal blocking.



Fig. 4. Execution model on typical MPI+CUDA and execution model on
HHRT library.

III. TARGET STENCIL APPLICATIONS

We next describe our target stencil applications. Both
currently scale to petaflop(s) on TSUBAME2.5 using over
4,000 GPUs, provided that the entire dataset is confined to
be within GPU device memory.

A. Whole-City LES-LBM Turbulant-Flow Airflow Simulation

Our first application is the whole-city turbulent flow airflow
simulation presented in [4]. Numerically it is a massively
parallel LBM (Lattice-Boltzmann Method) – LES (Large-Eddy
Simulation) utilizing the coherent structured SGS model to
effectively handle turbulent flows. The10km×10km×500m
region of central Tokyo had been digitized, including the ter-
rain and all the constructions such as the roads and buildings.
The spatial resolution of the simulation is 1 meter, or5×1011

degrees of freedom, allowing accurate simulation of flows
along the roads and rivers, as well as turbulent flows around
the skyscrapers (Figure 5).

LBM is a naturally stencil-based computation, but its
stencil is significantly complex, as 19 or 27-directional ve-
locities of the virtual particles are expressed as lattice data.
More concretely, the airflow simulation embodies the following
characteristics, which makes the rewrite more difficult than a
toy benchmark:

• This simulation requires a pair of 19 or 27 three-
dimentional arrays for double buffering, and additional
16 three-dimentional arrays for physical values.

• The 7-point stencil only has one kernel function,
whereas the whole-city simulation embodies six ker-
nels that are computed in sequence.

• The 7-point stencil has a simple fixed (Dirichlet)
boundary condition on all axis, whereas the whole-
city simulation has a periodic boundary condition on
the X-axis, and Neumann boundary condition on the
Y- and Z-axis.

There are various other factors involved, and as a result
the code size of the airflow simulation is 12,155 lines of

C+CUDA+MPI code (counted by the CLOC tool1).

Fig. 5. Visualization of the Whole-City Airflow Simulation (by Courtesy of
Takayuki Aoki)

B. Dendritic Solidification Simulation based on the Phase-
Field Method

Our second simulation is the dendritic solidification sim-
ulation presented in [5], which was awarded the 2011 ACM
Gordon Bell Prize. The simulation of microstructure of mate-
rials is required to use finer-grained grids as well as coverage
of significant physical size in order to properly understand
their mechanical properties. In order to fulfill the requirements,
the particular simulation uses the phase-field method, which is
known as the most powerful method to simulate the micro-
scale dendritic growth during solidification (Figure 6).

Numerically, the simulation is also based on stencil com-
putation on a 3-D array as is with the whole-city simulation,
but the underlying stencil computation is very different. The
followings are the detailed characteristics of the dendrite
simulation.

• The simulation expresses the phase fieldϕ and the
concentration c as pairs of 3-dimensional arrays
for double buffering. It additionally uses three 3-
dimensional arrays.

• The simulation calls a single GPU kernel written in
CUDA per iteration. The kernel is highly optimized
and consists of around 270 lines of code.

• It employs sophisticated GPU-CPU as well as MPI
communication strategies to hide the MPI communi-
cation latency.

The code size of the dendrite simulation is 4,684 lines of
C+CUDA+MPI code.

IV. T EMPORAL BLOCKING OF REAL-WORLD
APPLICATIONS USINGHHRT

We now describe the general methodology we have devised
to apply HHRT to implement temporal blocking on real-world
stencil application codes. The basic strategy is fundamentally
the same as toy programs, in that the application kernels in
Figure 2(a) are converted to HHRT-enabled code as seen in
Figure 3(b), and executed on top of the HHRT runtime, but
further optimizations are performed to achieve performance
close to that of device memory only execution. In order to
discuss programming costs, we show the number of changed
lines of code step by step for both applications in Tables I.

1http://cloc.sourceforge.net



Fig. 6. Visualization of the Dendritic Solidification Simulation (by Courtesy
of Takayuki Aoki)

TABLE I. T HE NUMBER OF CHANGED L INES OFSIMULATION CODE.

The Airflow Simulation
(The original code consists of 12,155 lines)

modified added
Enabling HHRT 0 16

Temporal blocking 104 32
Comm. opt. 416 488
Annotation 0 9

The Dendrite Simulation
(The original code consists of 5,295 lines)

modified added
Enabling HHRT 0 5

Temporal blocking 50 68
Annotation 0 15

A. HHRT Enabling of the Code

As a first step, we link the HHRT runtime, thereby allowing
the aggregate memory usage of all the processes to exceed the
device memory size. Without HHRT, the programmer divides
up the original array implementing the grid into sub-regions,
and explicitly code the CPU-GPU memory transfer that over-
laps with computation, requiring considerable restructuring of
the loop in the kernels as seen in Figure 2(b), also considering
inter-node MPI communication. With HHRT this becomes
unnecessary, as the transfers will be automatically handled by
the HHRT runtime.

B. Temporal Blocking Feasibility Check and Implementation

Not all stencil computations are subject to locality improve-
ment via temporal blocking and thus subject to HHRT opti-
mization; it is only possible when the value of pointx in the
lattice can be updated in the next temporal step by using only
the values of the locally surrounding points (i.e. stencil) ofx in
the previous timestep. When an algorithm requires some global
operation per timestep, e.g., the Conjugate Gradient method
in which a global dot product must be computed for each
timestep, temporal blocking optimization is not possible. In
our examples, code reviews were conducted for the kernels of
both the whole-city airflow simulation and dendrite simulation,
and found that in both cases temporal blocking optimizations
are applicable.

We then hand-converted the codes from Figure 2(a) to
Figure 3(b); as we quantitatively assess later, in terms of the
number of lines in the code changes were fairly localized and
small. More explicitly, the following changes were made:

1) The exterior single temporal loop was made into a
double nested loop according to the temporal block-
ing width k (we call each of double loops ”outer”
one and ”inner” one).

2) MPI communication was moved to reside in-between
the outer and inner temporal loops, and made to
exchangek steps worth of halo region all at once.

3) The loop that enumerated over the stencil elements
spatially was modified to decrease the loop interval
by one step on both the loop start and end so that the
halo size would appropriately increase by one step.

4) Computation of the Neumann boundary condition
was left to remain within the inner temporal loop;
for periodic boundary condition, the required MPI
communication was moved to be between the inner
and outer temporal loops in the same manner to above

By contrast, we did not have to modify the code of the
numerical algorithm itself within the loop body at all, which
of course is usually the most dominating part and quite error
prone in their modifications. Code motion was only necessary
for MPI communication in steps 3 and 4 above. As shown in
Tables I, the amount of source code change was only 139 lines
out of the 12,000 total for the whole-city simulation, and 118
out of 5,000 for the dendrite simulation.

C. Optimizing MPI communication with HHRT Swaps

Although temporal blocking was incorporated, we next
conduct a series of simple set of optimizations in a systematic
manner to improve performance, aided by HHRT optimization
features. On monitoring the actual execution of the HHRT-
enabled temporal blocking whole-city simulation code on
TSUBAME2.5, we experienced three times more HHRT swaps
than anticipated, resulting in significant overhead. A similar
issue has been observed with the dendrite simulation. This
was due to the communication structure of the original code:
HHRT conducts swaps between the virtual processes when
MPI blocking communication is called. The whole-city airflow
simulation requires communication of the halo region with 26
other processes out of the 27 directions in the LBM lattice,
and as the lattices are decomposed three-dimensionally, three
MPI blocking communications are conducted in X-, Y-, and Z-
directions in sequence. This results in five HHRT swaps (three
swap outs and two swap ins) per each temporal loop instead
of once, resulting in significant PCI-e transfer overhead.

To alleviate this problem, we took different approaches
for the two applications. For the dendrite simulation, we
added HHRT API callsHH_setDevMode to specify the code
region where the virtual process never calls the GPU kernel
functions. During execution of such code regions, skipping
HHRT swaps is harmless since data on device memory are
not touched by the kernel function. HHRT will cease to
conduct swap-in subsequently after a virtual process calls
HH_setDevMode (HHDEV_NOTUSED). Then, when the
process callsHH_setDevMode (HHDEV_NORMAL), HHRT
executes immediate swap-in, and subsequently the process
is allowed to call GPU kernels again. The changes re-
quired for the dendrite simulation was adding only two
HH_setDevMode calls, which is indicated in the ‘Annota-
tion’ field in Table I.



On the other hand, we found the same approach was
inapplicable to the whole-city simulation, since it uses GPU
kernel functions in the boundary communication part to re-
order the boundary data on device memory. MPI blocking
communications and GPU kernel functions for X-, Y-, and
Z- directions are interleaved. Instead, we modified the MPI
communication so that 26 non-blocking MPI sends and re-
ceives are issued at once, whose completion is determined by
one MPI_Waitall() . Although there are 52 non-blocking
communications issued, this resulted in significantly faster
execution as we benchmark later. In practice, the amount of
required code modifications were 904 lines, which is much
bigger that the temporal blocking itself, due to the fact that
the original three-dimensional communication code was fairly
complex. In practice the modification was simple, despite the
fairly large number of lines, as it was systematic and also closer
to the ‘native’behavior of the algorithm. Nonetheless, as a
possible improvement, we could combineHH_setDevMode
API and re-ordering of the GPU kernel functions and MPI
communications, which would significantly reduce the code
changes2.

D. Minimizing Memory Space of HHRT Swap

By default HHRT swaps all the GPU data in device
memory onto host memory. However, not all data need to
be transferred; thus we can optimize the overall CPU-GPU
memory tier communication time by reducing its amount.
For this purpose, HHRT has an APIHH_madvise that
allows designation of data not to be swapped in/out. More
concretely,HH_madvise takes the pointer to the array, data
size, and transfer state as arguments, allowing switching on/off
of the transfer at swap time by specifyingHHMADV_NORMAL
/ HHMADV_CANDISCARDas the state argument, the latter
designation allowing HHRT not to transfer the data. While
HH_devSetMode described above specifies ‘when’ HHRT
can skip swapping in/out,HH_madvise specifies ‘which data’
should be swapped in/out.

A simple observation for general double-buffered stencil
computation is that, only one buffer needs value preservation,
and thus the other does not need to be swapped out. In realistic
applications, however, such an optimization does not result in a
performance gain. Instead, such applications typically embody
multiple arrays that are used temporally and do not need to
be carried over to the next timestep. Since HHRT swap occurs
only at the point of blocking MPI communication, at which
time the interior computation of a sub grid is already completed
for that time step, we have an opportunity of significant
savings if we can identify many such arrays. For both the
whole-city simulation and dendrite simulation, we were able
to identify several such arrays, allowing us to conduct our
optimization, which is only a two-line addition per array to
call HH_madvise() as in the ‘Annotation’ rows of Tables I.

V. PERFORMANCEEVALUATION

A. Evaluation Environment

We tested our HHRT-enabled temporal blocked stencil
applications at scale on the TSUBAME2.5 supercomputer
hosted by the Global Scientific Information and Computing

2The camera ready version will show the results of this improvement

Center, Tokyo Institute of Technology. Each node of TSUB-
AME2.5 facilitates two Intel Xeon 5670 2.93GHz (6 cores)
CPUs with 54GB or 96GB of DDR3-1333 memory, and
three NVIDIA Tesla K20X GPUs, each with 6GB, 250GB/s
GDDR5 memory. The nodes are interconnected with a dual-rail
Infiniband QDRx4 supporting 80Gbits/s injection bandwidth.
In our experiments, we utilized 1 GPU per node, with a 96GB
node for single host experiments, and 54GB nodes for multi-
node experiments. The software environment is SUSE Linux
11 sp3, gcc 4.3.4, OpenMPI 1.6.5, and CUDA 6.5.

B. Evaluation on a Single GPU

We first conduct a single-node, single-GPU performance
analysis by comparing the four versions of the two stencil
application programs:

• ORG: the original program that does not use HHRT
nor temporal blocking

• HH: The HHRT-enabled version of ORG

• +TB: Temporal Blocking added to HH

• +TB+Opt: MPI streamlining/optimization added to
+TB (only for the whole city simulation)

• +TB(+Opt)+Anno: HH_madvise and/or
HH_devSetMode optimization added to reduce
CPU-GPU transfer

Figures 7 and 8 show the performance of the two simu-
lation applications for each of the program instances above,
varying the problem sizes, tuned to optimal temporal blocking
factors and partitioning. As the K20X GPU device memory
size is limited, ORG cannot execute problem sizes beyond
6GB, whereas HH can execute problem sizes up to approx-
imately 48GB. However, this is at the cost of significant
performance degradation; compared with ORG, it exhibits only
5% performance in the whole-city simulation and 1.5% in the
dendrite simulation. This is due to the occurrence of HHRT
swap per every timestep. By contrast, the +TB or the temporal
blocked version shows 4.9 times (in the whole-city simulation)
speedup over HH, or approximately 27% of ORG. Since +TB
conducts 3 swaps per timestep whereas the +TB+Opt only once
as described earlier, we observe another 2.4 times speedup,
reaching to 64% of ORG. We also observe +TB of the den-
drite simulation suffers from swap costs. Finally by reducing
unnecessary PCI-e traffic during HHRT swap with the HHRT
advice mechanism, +TB+Opt+Anno demonstrates additional
1.4 times speedup, to achieve 85% of ORG performance when
we use problem size of 16GB. The final version of the dendrite
simulation is also largely improved, reaching 74% of ORG,
when the problem size is 11GB.

We do note that we do observe slow degradation of
performance as the problem size grows; this is largely due to
MPI process management cost and implicit device memory
consumption when processes are bound tGPUs. Currently
NVIDIA device driver requires about 72MB of management
area in the GPU device memory per process, thus compro-
mising useable device memory as we add more processes for
optimal temporal blocking. Also HHRT allows the usage of
only half the host memory to accommodate swap capacity. In
both cases we reach the limit of temporal blocking factors



due to memory capacity, thus underachieving the potential
performance gains had we been able to further increase the
blocking factors.

Fig. 7. Performance Results of Airflow Simulation on a Single GPU

Fig. 8. Performance Results of Dendrite Simulation on a Single GPU

In order to see the effect of the number of temporal
blocking factorsk, Figure 9 shows the performance variations
of the airflow simulation, when we alterk for +TB+Opt and
+TB+Opt+Anno (final version). Due to the reduction of the
HHRT swap overhead with HHmadvise, optimal blocking
factors differ, with the latter requiring smaller blocking factor
due to the lower latency of CPU-GPU tier memory transfer.
Also we observe dramatic decrease in performance when
blocking factor is further increased; this is due to the redun-
dant computation occurring as a result of temporal blocking
overwhelming the benefits in reducing the memory transfer
cost.

Fig. 9. The Effect of Varying Temporal Blocking Factors in the Airflow
Simulation

C. Scaling to Multiple Nodes

Figures 10 and 11 show weak scaling performance on
multiple nodes of TSUBAME2.5. Here one GPU per node
is used for computation. ORG is configured so that each
process occupies less memory than device memory capacity.
Other lines correspond to the HHRT-enabled final version,
and the problem size per node is described by the legends.
Although there is some performance degradation (up to 16%
with the Airflow simulation, and up to 47% with the Dendrite
simulation) as we saw for the single node case, we observe
that all the cases scale linearly without exhibiting abnormal
performance slowdowns or tailoffs. Thus, our proposed method
can significantly increase the problem capacity of large-scale
parallel GPU machines, even if one can no longer utilize
additional GPUs to increase the total available GPU device
memory without sacrificing performance significantly.

Fig. 10. Weak Scaling Results of the Airflow Simulation

Fig. 11. Weak Scaling Results of the Dendrite Simulation

VI. RELATED WORK

Many applications kernels are stencil based, and there
have been various recent efforts to utilize the high memory
bandwidth of GPUs to scale the real applications on large
GPU-based supercomputers such as TSUBAME2.5[4], [5].
Although they have demonstrated performance scalability to
petascale, their problem size remained limited due to the small
capacity of high-bandwidth device memory on GPUs.

There have also been numerous optimization techniques
proposed for stencil computation, mostly based on spatial
and/or temporal blocking. Temporal blocking has been origi-
nally proposed to increase locality in the context of better CPU
cache utilization [8], [9], [10]. For GPUs, there have been work



to reduce the memory traffic between device memory and on-
chip shared memory[13]. Mattes et. al. proposed a temporally
blocked FDTD implementation to reduce device-host memory
communication [14]. Our previous work proposed additional
optimization techniques for temporal blocking stencil code on
GPUs, as well as demonstrated scalability to large parallel
GPU supercomputers with thousands of GPUs [6], [7].

All such work however, does not focus on how to reduce
the overall programming cost, both in terms of porting as
well as tuning. It has been our experience that, unlike for
toy programs, when the programmer ports and then attempts
to tune the code for real stencil applications, he would have
to significantly rewrite the temporal as well as spatial loops,
and consider various interactions especially with MPI. By
contrast, HHRT runtime offers automated memory hierarchy
management features that not only allows easy porting of
MPI+CUDA stencil code, requiring only small changes to the
temporal loop and MPI communication, but still preserving
majority of the performance when we exceed device memory,
and moreover allowing weak scaling to a large number of
GPUs.

Alternative approach to easing temporal blocking and other
optimizations for stencil codes have been proposed with a fam-
ily of DSL (Domain Specific Langauge)s, such as Physis[15]
and ExaStencil[16]. Such approaches require that the entire
application kernels be rewritten with DSLs, and differ from
our runtime approach where we preserve much of the orig-
inal code. DSLs do offer further optimization opportunity at
compile time, however, and it will be subject to future work
whether such optimization can also be attained with HHRT by
auto-tuning methods.

VII. C ONCLUSION

We have applied HHRT, a runtime for virtualizing GPU-
MPI parallel programs and some of its novel features towards
making it easy for the programmers to modify the codes
so that they could run programs far beyond device memory
capacity while preserving performance. By utilizing the HHRT
features, programmers can systematically rewrite the temporal
loops and conduct optimizations in an easy manner for MPI
as well as memory hierarchy transfer to significantly increase
performance of real stencil applications, and moreover makes
it subject to easy tuning of the parameters. Porting experiences
of two real petascale stencil with very different program char-
acteristics nonetheless showed that HHRT significantly reduces
such efforts. Benchmarks on a large-scale GPU supercomputer
TSUBAME2.5 showed that, both applications largely preserve
the performance and the scalability of code that originally only
used the GPU device memory.

There are various future work ahead. One is to construct
a higher-level framework such as C++ template metapro-
gramming to further reduce the programming and tuning
cost. HHRT process management should be further opti-
mized and/or automated to detect unnecessary transfers, and
moreover should be merged with coherent memory features
of upcoming GPUs and Xeon Phis. Other stencil programs
involving different solvers should be examined to investigate
applicability and possible new features. Finally, the current
HHRT only handles memory management for a two-level

hierarchy, but extended to handle three or more given the
upcoming memory-class NVMs (non-volatile memory) and
others that will further deepen the memory hierarchy to attain
high capacity with lower power and cost.

VIII. A CKNOWLEDGEMENTS

This research is funded by JST-CREST, ”Software Tech-
nology that Deals with Deeper Memory Hierarchy in Post-
petascale Era”. We also greatly thank Naoyuki Onodeara,
Takashi Shimokawabe, and Takayuki Aoki who have kindly
provided us with the simulation codes.

REFERENCES

[1] E. H. Phillips and M. Fatica: Implementing the Himeno Benchmark with
CUDA on GPU Clusters, in proceedings of IEEE IPDPS10, pp. 1-10
(2010).

[2] Dana A. Jacobsen, Julien C. Thibault, Inanc Senocak: An MPI-CUDA
Implementation for Massively Parallel Incompressible Flow Computa-
tions on Multi-GPU Clusters, in proceedings of 48th AIAA Aerospace
Sciences Meeting, Orlando (2010).

[3] M. Bernaschi, M. Bisson, T. Endo, M. Fatica, S. Matsuoka, S. Mel-
chionna, S. Succi: Petaflop Biofluidics Simulations On A Two Million-
Core System, in proceedings of IEEE/ACM SC11, 12pages, Seattle
(2011).

[4] N. Onodera, T. Aoki, T. Shimokawabe, T. Miyashita, and H. Kobayashi:
Large-Eddy Simulation of Fluid-Structure Interaction using Lattice
Boltzmann Method on Multi-GPU Clusters, in proceedings of the 5th
Asia Pacific Congress on Computational Mechanics and 4th International
Symposium on Computational, Singapore (2013).

[5] T. Shimokawabe, T. Aoki, T. Takaki, A. Yamanaka, A. Nukada, T.
Endo, N. Maruyama, S. Matsuoka: Peta-scale Phase-Field Simulation
for Dendritic Solidification on the TSUBAME 2.0 Supercomputer, in
proceedings of IEEE/ACM SC11, 11pages, Seattle (2011).

[6] G. Jin, T. Endo and S. Matsuoka: A Multi-level Optimization Method
for Stencil Computation on the Domain that is Bigger than Memory
Capacity of GPU. in proceedings of AsHES workshop, in conjuncition
with IEEE IPDPS2013, pp.1080-1087 (2013).

[7] G. Jin, T. Endo and S. Matsuoka: A Parallel Optimization Method for
Stencil Computation on the Domain that is Bigger than Memory Capacity
of GPUs. in proceedings of IEEE CLUSTER2013, pp. 1–8, (2013).

[8] M. E. Wolf and M. S. Lam: A Data Locality Optimizing Algorithm. in
proceedings of ACM PLDI 91, pp. 30–44 (1991).

[9] M. Wittmann, G. Hager, and G. Wellein: Multicore-aware parallel
temporal blocking of stencil codes for shared and distributed mem-
ory. in proceedings of LSPP10 Workshop, in conjunction with IEEE
IPDPS2010, 7pages (2010).

[10] T. Minami, M. Hibino, T. Hiraishi, T. Iwashita and H. Nakashima:
Automatic Parameter Tuning of Three-Dimensional Tiled FDTD Kernel.
in proceedings of iWAPT2014, 8pages (2014).

[11] NVIDIA CUDA Toolkit,
https://developer.nvidia.com/cuda-toolkit

[12] Toshio Endo and Guanghao Jin: Software Technologies Coping with
Memory Hierarchy of GPGPU Clusters for Stencil Computations. in
proceedings of IEEE CLUSTER2014, pp. 132–139, (2014).

[13] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey: 3.5-D
blocking optimization for stencil computations on modern CPUs and
GPUs. IEEE/ACM SC10, 13pages (2010).

[14] L. Mattes and S. Kofuji: Overcoming the GPU memory limitation
on FDTD through the use of overlapping subgrids. in proceedings of
ICMMT10, pp.1536–1539 (2010).

[15] N. Maruyama, T. Nomura, K. Sato, and S. Matsuoka: Physis: An Im-
plicitly Parallel Programming Model for Stencil Computations on Large-
Scale GPU-Accelerated Supercomputers, in proceedings of IEEE/ACM
SC11, 12pages, Seattle (2011).

[16] S. Apel, M. Bolten, A. Gr̈osslinger, F. Hannig, H. K̈ostler, C. Lengauer,
U. Rude, and J.Teich. ExaStencils: Advanced Stencil-Code Engineering.
inSiDE, 12(2):60-63 (2014)


