Realizing Extremely Large-Scale
Stencil Applications on GPU
Supercomputers

Toshio Endo, Yuki Takasaki, Satoshi Matsuoka
GSIC, Tokyo Institute of Technology (BRI T E X=)

TOKYD TECH-

Stencil Computations

Important kernels for various simulations (CFD, material...)

i ———

ASUCA weather Phase-Field computation Air flow simulation

simulator (2011 Gordon Bell)

//// Z i H

cre i aaaal)) Time t Time t+1
// L==1.0
A N7
i

L] /

! O
////&3/
//\,i/’\;‘\\
p

L=1.0
(NX)

Highly successful in speed

Memory intensive computations =2 But not in scale

CPU-GPU Hybrid Supercomputers
with Memory Hierarchy

Tokyo Tech TSUBAME?2. 5 Supercomputer Node Architecture (Simplified)

X

In typical stenC|I |mplementat|ons on GPUs, GPU carg
array sizes are configured as C‘iFr’;’S
< (aggregated) GPU memory L |
=>» Prohibits extremely Big&Fast simulation L

| 25058
CPU GPU mem
cores 6GB » PCle
= 1 8GB/s
Host memory
54~96GB

2 Xeon CPUs

§3 K20X GPUS

Other nodes

Stencil Code Example on GPU

Double buffering

%
_4-.!?
Copy domain < i 6GB

Host = Device 3

\ . LBM performance
- GPU mem size
Temporalloop [~ | onaK20X GPU (6GB)
' 80
Compute ' Faster =
Grid ‘I’°'"ts .\ S 60 Fast, but not Big
MPI comm. of : O 10 : A TSUBAME2.5
boundary ! k I node is used
| | o 20 -
J"I c% I
| 0
Copy domain 0 d 12 18 24 30 36 42 48 54

Device = Host

Problem Size (GB)
=¢=NORMAL Bi&ger

How Can We Exceed Memory Size?
(1) Using many GPUs

femecar

(2) Using capacity of host memory

>

(3) Using both

Motivating Example:
What if We Exceed GPU memory Simply? (1)

 Asimple methodis:
— Put domain data on host memory
— We divide the domain into small sub-domains (or spatial block)
— Repeat
Copy a “sub-domain” into GPU = Compute = Copy back results

Host memory

GPU
cores

Motivating Example:
What if We Exceed GPU memory Simply? (2)

/ N
Temporal loop -
|

7-point performance
ona K20X GPU (6GB)

Copy sub-domain
0 g 12 18 24 30 36 42 48 54

Device - Host
|

Problem Size (GB)

MPI comm. of
boundary

D
4 Loop over _ _ ev m m
Sub-domains : Faster capacity 20~30x slower
] I | [
o | 22\ =80 due to large PCle cost!!
Host - Device : S 60 /. —
I . — . is ratio is close to

| O 40 —*

Compute ! ~— .

Points in sub-dom | ! g 20 E

I I (o} []

: v 0 T [| | T 1

:
|
|
|
|
|
|
|

~~-NORMAL =m=HH .
VBigger
]

C }-- Keys for improvement are
“Communication avoiding &
Locality Improvement”

Goals of This Work

When we have existing apps, we want to realize followings
s

Large High
. Scale | Performance,

7 \

Using memory swapping Locality improvement

of the HHRT library with Temporal Blocking
a - N\
./ High
_Productivity |

Co-design approach that spans
Algorithm layer, Runtime layer, Architecture layer

Current Target GPU Stencil Application

* City-Wind Simulation by Naoyuki Onodera
* Based on Lattice-Botlzmann method
* Written in MPI+CUDA
e ~12,000 Lines of code
 600TFlops with ~4,000 GPUs

11
1

17 51 15
= W

D3Q19 : 5
Model TN
(19point stencil) ‘\

In Original design,
“Total Array size < Total GPU memory”
How can we exceed this limitation?

Contributions

* For real existing applications, the followings are
realized
— [Scale] > GPU memory size is realized

— [Performance] Compared with smaller cases, up to 85%
performance is obtained

— [Productivity] Required modification of ~150 lines for
basic change, and ~1000 lines for optimization

10

Contents

HHRT library

— Expands available memory capacity by data swapping

Temporal blocking

— Optimizations of stencils for locality improvement
Combining the above two on real applications
Results

Contents

HHRT library

— Expands available memory capacity by data swapping

Temporal blocking

— Optimizations of stencils for locality improvement
Combining the above two on real applications
Results

The HHRT Runtime Library for GPU

Memory Swapping [Endo, Jin Cluster 14]
* HHRT supports applications written in CUDA and MPI
— HHRT is as a wrapper library of CUDA/MPI
— Original CUDA and MPI are not modified
— Not only for stencil applications

w/o HHRT With HHRT
App APP
CUDA MPI
OS/HW
OS/HW

Functions of HHRT

(1) HHRT supports overprovisioning of MPI processes
on each GPU

— Each GPU is shared by m MPI processes
(2) HHRT executes implicitly memory swapping
between device memory and host memory

— “process-wise” swapping

— OS-like “page-wise” swapping is currently hard, without
modifying original CUDA device/runtime

Execution model of HHRT

w/o HHRT (typically)

CLU

Pri

Node Device memory
|daMemdpyI |
/ ______
Proces§s'/data Host memory
With HHRT
Node Device memory

)cess’s\data Host memory

m MPI processes share a single GPU

In this case, m=6

Processes on HHRT

Running processes
e
\ | memory
"

4_|_|’ Sleeping processes

Node
Process’s
data :
\ \
- [r=————n i ==
Ny 1
[| [|
Host mem

* We suppose

s < Device-memory-capacity <ms

s: Size of data that each process allocates on device memory

m: The number of processes sharing a GPU

- We can support larger data size than device memory in total

 We cannot keep all of m processes running

- HHRT makes some processes “sleep” forcibly and implicitly

* Blocking MPI calls are “yield” points

State Transition of Each Process

A process is blocked f
due to MPI operation |
(MPI_Recv, MPI_Wait.)

Running]

Swapping finished

All data on device

3 : All data are
(cudaMalloc’ed) [Swapping Swapping rostored from
are evacuated to out in host to device
host memory
Swapping finished There is enough space
on device memory
Sleeping Sleeping
(Blocked) (Runnable)

MPI operation is
now unblocked
(cf. message arrived)

Speed (GFlops)

m N W B U0 O 3
O O O O O O OO O O

Running LBM Code on HHRT

Performance on a K20X GPU

was broken,

: but too slow!!
0 6 12 18 24 30 36 42 48 54
Problem Size (GB)

=¢=NORMAL -@=HH

We can support “larger problem sizes > GPU memory” with
HHRT, but too slow = We need aggressive optimization!

18

Contents

HHRT library

— Expands available memory capacity by data swapping

Temporal blocking

— Optimizations of stencils for locality improvement
Combining the above two on real applications
Results

Why Slow if We Use Host Memory?

* Each process can suffer from heavy memory swapping costs,
every iteration

— This corresponds to transfer of the entire process’es sub-domain
between GPU and CPU

* This is done automatically, but too heave costs are not hidden
Node

Process’s
data

Device

Host mem

* This is due to lack of locality of stencil computations

— Array data are swapped out every iteration

* We need optimizations to improve locality!!

Temporal Blocking (TB) for Locality Improvement

 Temporal blocking: When we pick up a sub-domain, we do k-step update
at once on it on a small block, before going to the next sub-domain [Wolf
91]

k=1 - 9]
VR »

]

]
k: Temporal i e
t =100
Introducing “larger halo”

block size

* Mainly used for cache optimization [Wonnacott 00] [Datta 08] ... (k=2~8)
* We use it to reduce PCle commucation (k=10~200)

Code Structure with TB

Naive version

Hand-coding TB

“Big but slow” /" Outer Temporal N

Typical code loop (Nt/k times)
“Small” % N Py

N

Temporal loop - Loop over

Sub-d?mains

Copy domain 4 Loop over N
Host = Device Sub-domains

Copy sub-domain

Host = Device

\ Copy sub-domain
Temporal Loop [~ Host - Device

” Inner Temporal _

loop (k times)

Compute
Points in sub-dom

' |
Compute
Points in sub-dom

Compute
Grid points

I
Copy sub-domain

MPI comm. of

(

\I_

—— o o o = = omm o)

bou?dary Device ? Host Copy sul:;-domain
| J‘ - MPI comm. of i very slow Device I% Host
Copy domain bounldary : idue to MPI comm. of
Device 2 Host L } - frequent k boulndary
C] 7 PCl -e C
[

What Makes TB Code Complex?

III

Differences between “typical” and

“hand-coding TB”

“ - . Automated by
1) “Sub-domain” loop is introduced ﬂ
() P HHRT runtime

(2) Temporal loop is divided into
“inner” and “outer”

(3) Considering larger “Halo” _ = Yes, we currently
rely on

(4) PCle and MPI comm is done out .
Code refactoring!

of “inner” loop

Contents

HHRT library

— Expands available memory capacity by data swapping

Temporal blocking

— Optimizations of stencils for locality improvement
Combining the above two on real applications
Results

Implementing Temporal Blocking on HHRT

How do we reduce refactoring costs of existaing apps?

e How do we map multiple sub-domains to a GPU?
— w/o HHRT: 1GPU € 1 process € m sub-domains
— With HHRT: 1GPU €< m processes €< m domains
Each process maintains only one domain
We don’t need additional sub-domain loop

* How is domain data moved?
— w/o HHRT: PCle comm is done explicitly
— With HHRT: Implicitly within MPI comm

* On the other hand, doubly nested temporal loops
should be (still) written in hand

Implementing Temporal Blocking on HHRT (2)

hand-coding TB

” Outer Temporal N

loop (Nt/k times)
/ N\

Loop over

Sub-d?mgins

Copy sub-domain
Host = Device

1
4 Inner Temporal N

loop (k times)

Compute
Points in sub-dom

(S

Copy sub-domain

Device - Host
|

MPI comm. of

k boundary

Typical code

k-times update is done

w/o intervention

N
Temporal Loop [~

Compute
Grid points

MPI comm. of
boundary

——— o o = o mm mm = = o= o)

!),

™~ Swapping (PCle comm)

is done implicitly here

TB on HHRT

Copy grid

Host = Device
|

4 Outer Temporal N

loop (Nt{_k times)

oS N mm mm - .y
4 Inner Temporal
loop (kltime_s)

\:\

Compute

Grid points

1
MPI comm. of

k boundary

)/

-
—— o]

|
Copy grid
Device - Host

1
L

Code Refactoring

3 i 9
e QOriginal: ~12,000 lines (MPI1+CUDA)
— ~4000 lines correspond to computation kernels

* Basic code change: ~150 lines

— Introducing outer/inner temporal loop

e Communication optimization: 900 more lines

— X, Y, Zboundary communications use MPIl_Waitall

Performance of Real LBM Code

with Larger Problem Sizes
Performance on a K20X GPU

- ADacitv wa
RS

L was broken

\

(0]
o

~
o

o

Speed (GFlops)
N W g U1l O

0 :
E Performance Wa
0 : Nasbsoken >15x Speed-up with
0 L | W \ temporal blocking!
10 = -
0 Y & &7 [jrst step toward
0 § 12 18 24 30 36 42 48 54 “Eytreme Big&Fast”
Problem Size (GB) simulation
~-NORMAL =-HH «-HH_TB

=<HHTB_MPI =%HHTBMPI_HINT

28

Multi GPU/Node Performance
TSUBAME?2.5 (1GPU per GPU)
Weak scalability (11GB > 6GB per node)

12

10 AN

Performance:11.2TFlops,
5.9TB/s

Problem Size:2.8TB

(0]

Speed (GFlops)
(@)

o N ~

o

100 200 300
of GPUs

Good weak scalability
X203 speedup with 256 GPUs
(though 1GPU case already suffers cost)

29

Summary

Towards Extreme Fast&Big Simulations

=

* Architecture: Hierarchical Hybrid memory .
Syst ft Reduci i t — Co-design
. stem software: Reducing programming cos .
Y . HEINg Pros ne is the key
* App. Algorithm: Reducing communication

System Software
For Mem Hierarchy MR

. N .

WL WL l
n e l
- IF IF !

STT-RAM wnit cell: 3F = 2F = 6F I l I

30

Future Work

 More performance

— We still suffer from several costs
* Redundant computations
* Costs for process oversubscription

* More scale
— Using SSD, burst buffers
* More productivity

— Integrating DSL (Exastencil, Physis..)
— Integrating Polyhedral compilers

