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Stencil Computations

Important kernels for various simulations (CFD, material...)
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ASUCA weather Phase-Field computation  Air flow simulation

simulator (2011 Gordon Bell)
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Highly successful in speed

Memory intensive computations =2 But not in scale



CPU-GPU Hybrid Supercomputers
with Memory Hierarchy

Tokyo Tech TSUBAME?2. 5 Supercomputer Node Architecture (Simplified)
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Stencil Code Example on GPU

Double buffering
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How Can We Exceed Memory Size?
(1) Using many GPUs

femecar

(2) Using capacity of host memory

>

(3) Using both




Motivating Example:
What if We Exceed GPU memory Simply? (1)

 Asimple methodis:
— Put domain data on host memory
— We divide the domain into small sub-domains (or spatial block)
— Repeat
Copy a “sub-domain” into GPU = Compute = Copy back results

Host memory

GPU
cores




Motivating Example:
What if We Exceed GPU memory Simply? (2)
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C }-- Keys for improvement are
“Communication avoiding &
Locality Improvement”




Goals of This Work

When we have existing apps, we want to realize followings
s

Large High
. Scale |  Performance,

7 \

Using memory swapping Locality improvement

of the HHRT library with Temporal Blocking
a - N\
./  High
_Productivity |

Co-design approach that spans
Algorithm layer, Runtime layer, Architecture layer



Current Target GPU Stencil Application

* City-Wind Simulation by Naoyuki Onodera
* Based on Lattice-Botlzmann method
* Written in MPI+CUDA
e ~12,000 Lines of code
 600TFlops with ~4,000 GPUs
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In Original design,
“Total Array size < Total GPU memory”
How can we exceed this limitation?




Contributions

* For real existing applications, the followings are
realized
— [Scale] > GPU memory size is realized

— [Performance] Compared with smaller cases, up to 85%
performance is obtained

— [Productivity] Required modification of ~150 lines for
basic change, and ~1000 lines for optimization
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Contents

HHRT library

— Expands available memory capacity by data swapping

Temporal blocking

— Optimizations of stencils for locality improvement
Combining the above two on real applications
Results
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The HHRT Runtime Library for GPU

Memory Swapping [Endo, Jin Cluster 14]
* HHRT supports applications written in CUDA and MPI
— HHRT is as a wrapper library of CUDA/MPI
— Original CUDA and MPI are not modified
— Not only for stencil applications

w/o HHRT With HHRT
App APP
CUDA MPI
OS/HW
OS/HW




Functions of HHRT

(1) HHRT supports overprovisioning of MPI processes
on each GPU

— Each GPU is shared by m MPI processes
(2) HHRT executes implicitly memory swapping
between device memory and host memory

— “process-wise” swapping

— OS-like “page-wise” swapping is currently hard, without
modifying original CUDA device/runtime




Execution model of HHRT

w/o HHRT (typically)
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m MPI processes share a single GPU

In this case, m=6



Processes on HHRT

Running processes
e
\ | memory
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4_|_|’ Sleeping processes
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* We suppose

s < Device-memory-capacity <ms

s: Size of data that each process allocates on device memory

m: The number of processes sharing a GPU

- We can support larger data size than device memory in total

 We cannot keep all of m processes running

- HHRT makes some processes “sleep” forcibly and implicitly

* Blocking MPI calls are “yield” points



State Transition of Each Process

A process is blocked f
due to MPI operation |
(MPI_Recv, MPI_Wait.)

Running ]

Swapping finished

All data on device

3 : All data are
(cudaMalloc’ed) [ Swapping Swapping rostored from
are evacuated to out in host to device
host memory
Swapping finished There is enough space
on device memory
Sleeping Sleeping
(Blocked) (Runnable)

MPI operation is
now unblocked
(cf. message arrived)



Speed (GFlops)
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Running LBM Code on HHRT

Performance on a K20X GPU

was broken,

: but too slow!!
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We can support “larger problem sizes > GPU memory” with
HHRT, but too slow = We need aggressive optimization!
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Contents

HHRT library

— Expands available memory capacity by data swapping

Temporal blocking

— Optimizations of stencils for locality improvement
Combining the above two on real applications
Results



Why Slow if We Use Host Memory?

* Each process can suffer from heavy memory swapping costs,
every iteration

— This corresponds to transfer of the entire process’es sub-domain
between GPU and CPU

* This is done automatically, but too heave costs are not hidden
Node

Process’s
data

Device

Host mem

* This is due to lack of locality of stencil computations

— Array data are swapped out every iteration

* We need optimizations to improve locality!!



Temporal Blocking (TB) for Locality Improvement

 Temporal blocking: When we pick up a sub-domain, we do k-step update
at once on it on a small block, before going to the next sub-domain [Wolf
91]

k=1 - 9]
VR »

]

]
k: Temporal i e
t =100
Introducing “larger halo”

block size

* Mainly used for cache optimization [Wonnacott 00] [Datta 08] ... (k=2~8)
* We use it to reduce PCle commucation (k=10~200)



Code Structure with TB

Naive version

Hand-coding TB
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What Makes TB Code Complex?

III

Differences between “typical” and

“hand-coding TB”

“ - . Automated by
1) “Sub-domain” loop is introduced ﬂ
( ) P HHRT runtime

(2) Temporal loop is divided into
“inner” and “outer”

(3) Considering larger “Halo” _ = Yes, we currently
rely on

(4) PCle and MPI comm is done out .
Code refactoring!

of “inner” loop
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Implementing Temporal Blocking on HHRT

How do we reduce refactoring costs of existaing apps?

e How do we map multiple sub-domains to a GPU?
— w/o HHRT: 1GPU € 1 process € m sub-domains
— With HHRT: 1GPU €< m processes €< m domains
Each process maintains only one domain
We don’t need additional sub-domain loop

* How is domain data moved?
— w/o HHRT: PCle comm is done explicitly
— With HHRT: Implicitly within MPI comm

* On the other hand, doubly nested temporal loops
should be (still) written in hand



Implementing Temporal Blocking on HHRT (2)

hand-coding TB

” Outer Temporal N

loop (Nt/k times)
/ N\

Loop over

Sub-d?mgins

Copy sub-domain
Host = Device

1
4 Inner Temporal N

loop (k times)

Compute
Points in sub-dom

( S

Copy sub-domain

Device - Host
|

MPI comm. of

k boundary

Typical code

k-times update is done

w/o intervention

N
Temporal Loop [~

Compute
Grid points

MPI comm. of
boundary

——— o o = o mm mm = = o= o)

! ),

™~ Swapping (PCle comm)

is done implicitly here

TB on HHRT

Copy grid

Host = Device
|

4 Outer Temporal N

loop (Nt{_k times)

oS N mm mm - .y
4 Inner Temporal
loop (kltime_s)

\:\

Compute

Grid points

1
MPI comm. of

k boundary

)/

-
—— o]

|
Copy grid
Device - Host

1
L



Code Refactoring

3 i 9
e QOriginal: ~12,000 lines (MPI1+CUDA)
— ~4000 lines correspond to computation kernels

* Basic code change: ~150 lines

— Introducing outer/inner temporal loop

e Communication optimization: 900 more lines

— X, Y, Zboundary communications use MPIl_Waitall



Performance of Real LBM Code

with Larger Problem Sizes
Performance on a K20X GPU
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Multi GPU/Node Performance
TSUBAME?2.5 (1GPU per GPU)
Weak scalability (11GB > 6GB per node)
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Performance:11.2TFlops,
5.9TB/s

Problem Size:2.8TB
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Good weak scalability
X203 speedup with 256 GPUs
(though 1GPU case already suffers cost)
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Summary

Towards Extreme Fast&Big Simulations

=

* Architecture: Hierarchical Hybrid memory .
Syst ft Reduci i t — Co-design
. stem software: Reducing programming cos .
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* App. Algorithm: Reducing communication
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Future Work

 More performance

— We still suffer from several costs
* Redundant computations
* Costs for process oversubscription

* More scale
— Using SSD, burst buffers
* More productivity

— Integrating DSL (Exastencil, Physis..)
— Integrating Polyhedral compilers



