Integrating Cache Oblivious Approach
with Modern Processor Architecture:
The Case of Floyd-Warshall Algorithm

Toshio Endo (3=EEEIK)
GSIC, Tokyo Institute of Technology (BRI L E X=)

Supported by NEDO and RWBC-OIL, AIST

Architecture Trends

 Each processor has more and more cores
— Recent Xeon/EPYC have up to 56/64 cores
* Each core gains higher FLOPs with SIMD
instructions
— AVX-2, AVX-512, SVE...
* |n order to mitigate memory-wall problem,
modern architecture tends to have

— Deeper cache hierarchy
e L1 L2 L3 < Main memory
— Hybrid memory including High-bandwidth I o .
memory or NVM O =

36 Tiles \
connected bP/
+~—2DMesh ‘

Interconnect

=» Algorithm kernels has been & need to be
reconsidered

Cache Blocking

* Cache blocking is one of standard techniques to
improve locality

* Used to accelerate
— Dense/sparse linear algebra

— Stencil computation
— Graph algorithms, etc.

Block size
< Cache size

access
pattern

Issues of Cache Blocking

 Block sizes need to be
architecture aware
— Sizes of each cache level

— Number of cache levels

e cf: Typical HPC CPUs have 3 level, while
Xeon Phi have 2 level

* |If we support multi-level blocking,
programming gets harder

Registers

L1 Inst L1 Data
Cache Cache

L2 Cache

L3 cache

Main Memory

Cache-Oblivious Approach

e Cache-oblivious approach has been proposed [Frigo et
al. 99]

* Recursive divide & conquer is used to make the
working set size fit size of each cache level

) e

=>» This approach makes algorithms more architecture
independent
— Applied to linear algebra kernel, stencil, graph, FFT...

Locality is a Big Issue, But We Have More

e Cache oblivious approach improve locality for multiple

level of caches

* However, we need to investigate whether it works well
with considerations of other features in modern

Processors
— SIMD parallelism

— Multi/many core parallelism

ﬁotimization Technique\
()

Aligned access
for SIMD

Data layout
L transformation

(\[

Cache oblivious
approach

Multi-core

k Parallelism

)/

Our Target Algorithm:
Floyd-Warshall Algorithm

Floyd-Warshall (FW)algorithm:

* A well-known algorithm for All-pairs Shortest Path
(APSP) problem in graph analysis

Input Output
0 BB o 4 0 1 3R H4
m0m1?fl> 5 0 [[
o 1 0 fo o /7 4 0 B B
P e 50 | 2 M5 o F2
o o o B 10 P5160

Summary of This Work

A high performance FW implementation is given
— Works with AVX-512 SIMD instructions

— Supports multi-core

— Based on cache-oblivious approach

1.1 TFlops on dual Skylake Xeon
700 Gflops on Xeon Phi KNL
— In single precision

https://github.com/toshioendo/hoalgos

Non-Blocked FW Algorithm

0 3 8 [4 0 1 3 2 H4
D: a distance > 0 o N [7 3 0 M1 H
matrix of size N o 0 o o 7 40 p B

P [510 ko 2 M 5 0 |2

o o oo B 0 P 5 1 B 0

N
D[i,j]: the weight of D[i,j]: the length of
the edge fromi to | shortest path from i to j

procedure FW(D)
fork=0,.... N—1do Complexity:
fori=0,..., N—1do O(N3)
forj=0,...,N—1do
if D[i, j] > D|i, k] + DIk, j] then
Dli, j] = Dli, k] + DIk, j]

(Non-Recursive) Blocked FW Algorithm

Block D,;

BS

Main algorithm

procedure FW-Blocking(D)
fork=0... N/BS-1

forall

FW-BASE(D,,,)
forall D,

FW-BASE(D,, D,,, D)
forall D;

FW-BASE(D,, 1,,D,)

Base kernel (Block-wise)

procedure FW-BASE(A, B, C)
fork=0.....,BS—1do
fori=0,...,BS—1do
forj=0,...,BS—1do

if C[i, j] > A[i, k] + B[k, j] then

Cli. jl = Ali, k] + Blk, j]

Recursive Blocking FW Algorithm
[Park et al. 04]

procedure FW-Rec(A, B, C) °
if A, B, C 1s smaller than a threshold then

15t half

FW-BAsg(A, B,C) =» Stop recursion

else

-

Divide A into Agg, Ao1. A10, A11
Divide B into Bgo, Bo1. B1o, B11
Divide C into Copg. Co1. C10. C11

~ FW-Rec(Ago. BoolCod)

FW-Rec(Ago. Bo1¢ Co1)
FW-REc(A19. Boo)
FW-REC(A19, Bp1(C1y)

~ FW-Rec(A11, B11(CD)

FW-REec(A11, B10¢C10)

FW-Rec(Ap1, B11)
FW- REC(A{H, B]g

prncedure FW(D)
FW-Rec(D, D, D)

Integration with Optimizations for
Modern Processors

* So far, cache oblivious approach has been adopted

* Furthermore, we need to introduce optimizations for
modern Processors
— SIMD parallelism
— Data layout transformation
— Multi-core parallelism
— Kernel optimization with register blocking

Acceleration with

AVX-512 SIMD Instructions
[Rucci et al. 17]

«— SSE ——

A

AVX-512

X] @1 5 B s IR X0

+ With AVX-512, 16 SP values

y———————

y Dl w | v SN0

= are computed at once
K X+Y I:s']:ky'/\;<6+y6\x5+y5

Hx

BS should be a multiple of 16

procedure FW—BASAMD(A, B.C)

procedure FW-BASE(A, B, C) fork =0o,..., BS —1do
_ fori=0,....BS—1by 16 do
fork=0,....BS—1do _
fori— BS d a =_mm512_loadu_ps(&Ali, k])
orfl'o_r;'],“()‘, ;; Oldo forj=0...., BS —1do
J = P DO b =_mm512_set1_ps(Blk,j])
if C[i, j| > A[i, k] + B[k, j] then ¢ = _mm512_loadu_ps(&Cli. j])

Cli, j] = A[i. k| + Bk, j| sum =_mm512_add_ps(a, b)
/ mask =_mm512_cmp_ps_mask
(sum.c,_CMP_LT_0OQ)

“c=min (c, a+b)’ _mm512_mask_storeu_ps(&Cli, j|, mask, sum)

“min (c, a+b)” is achieved
by using a mask register

Introducing Block Data Layout

* With cache blocking, memory access pattern is improved

 However, we may still suffer from conflict cache misses with
the standard column major format

=» Block data layout is adopted
=» Layout transformation is done before&after FW computation

(performance measurement includes this overhead)
block data layout

35 [[1|

column major format

consecutive
memory
address vvv

Note: recursive division sizes
should be a multiple of BS

Acceleration with
Muti-Core Parallelism

e OpenMP is used

Non-recursive blocked algorithm Recursive blocked algorithm

procedure FW-Blocking(D)
fork=0.. N/BS-1

omp for —’for all

FW-BASE(D,,)
omp for ~ forallD,

FW-BASE(D,, D,,, D.,)
omp for ——>¢,r gy D;

FW-BASE(D,, ,ij)

procedure FW-REec(A, B, C)
if A, B, C 1s smaller than a threshold then
FW-Baskg(A, B, C)
else
Divide A into Agg, Ag1. A10, A11
Divide B into Byg. Bo1, B1o, B11
Divide C into Copo. Co1. C10. C11
omp task HFW_EECE?”’ g”“’ o
-REC(App. Do1t Lo1)
k
om 22?&21 —FW-Rec(Aso. Bog
P FW-REC(A10. Bo;
omp task —* FW-REC(A11. B1o! C1o)

. FW-Rec(Ao1, B11
omp taskwait —* .
P (Coo)

FW-REC(Am, Bm

Re-visiting Base Kernel (1)

procedure FW-BAsSe-SIMD(A, B, C)
fork=0..... BS —1do
fori=0,....BS-1by lo do
a =_mm512_loadu_ps(&A[i. k])
forj=0,..., BS—-1do
b = _mm512_set1_ps(B[k. j])
c = _mm512_loadu_ps(&C[i, j])
sum =_mm512_add_ps(a. b)
mask =_mm512_cmp_ps_mask
(sum,c._ CMP_LT _OQ)
_mm512_mask_storeu_ps(&C[i, j], mask, sum)

k loop is at outermost

16 elements are read from C

16 elements are written to C

=>» Every element in C is read from/written to memory for BS times

This “inefficiency” is required preserve data dependency
— Data written to C in k-th step may be read (as A or B) in k’-th step (k’>k)
=» Loop interchange is illegal in such cases

Re-visiting Base Kernel (2)

procedure FW-BAsSge-SIMD(A. B.C) € Blocks A, B are read and C is written

Do we always need to preserve dependency?=» No!

Aliased cases Non-aliased cases
If (A=C and/or B=C), we have to If (Al=C and B!=C), we have
preserve data dependency opportunities for loop

interchange optimization

(1) A=B=C
(3) BI=A=C (4) Al=C &8& B!=C

(2) Al=B=C

N

(\/Q

pasn aJe

Optimized Kernel with Loop
Interchange and Register Blocking

This kernel can be used only when A!=C and B!=C

procedure FW-BASE-REGBLOCK(A, B. C)
fori=0,....BS—1by 16 do
forj=0...., BS —1by 16 do

on c0 = _mm512_set1_ps (o0)

o o Now k loop is
a /{ c15 =_mm512_setl_ps (oo)/ . P

% fork=10.....BS—1do Inner

c a=_mm512_loadu_ps (&A[i. k])

O // for c0

r-'- .

o b= _mm512_set1_ps(B|k,j + 0])

7 sum =_mm512_add_ps(a, b)

mask =_mm512_cmp_ps_mask
(sum,c0,_CMP_LT_0OQ)
c0 = _mm512_mask_blend_ps(mask. c0, sum)

~ >

// for c0
tmpe = _mm512_loadu_ps(&CJi.j + 0])
mask =_mm512_cmp_ps_mask
(cO.tmpe, _CMP_LT_0Q)
_mm512_mask_storeu_ps(&Cli. j + 0]. mask, c0)
// for ¢15
tmpe = _mm512_loadu_ps(&Cli.j + 15])
mask =_mm512_cmp_ps_mask
(c15. tmpe,_CMP_LT_0Q)
_mm512_mask_storeu_ps(&Cli.j + 15]. mask. c15)

// for c15

b= _mm512_set1_ps(B[k,j + 15])

sum =_mm512_add_ps(a. b)

mask =_mm512_cmp_ps_mask
(sum,c15,_CMP_LT_0OQ)

c15 = _mm512_mask_blend_ps(mask, c15, sum)

>

After k loop finishes, memory
read/write to C occur
only once per element

Floyd-Warshall Implementations

Park et al. 04 Rucci et al. 17 Ours
Cache Blocking Yes Yes Yes
Recursive Yes - Yes

Cache Blocking

SIMD Parallelism - Yes Yes

Block Data Layout Yes ? Yes
Multi-core - Yes Yes
Parallelism

Register Blocking - - Yes

2 machines, both of which
support AVX-512 are used

Experimental Environments

2-socket Xeon Skylake
Xeon Phi KNL

SkyLake machine KNL machine

of CPUs/machine 2 1

CPU Xeon Gold 6140 Xeon Phi 7210

(SkyLake) (Knights Landing)

of cores/CPU 18 64

Clock (base) 2.3GHz 1.3GHz
L1D cache 32KiB/core 32KiB/core
L2 cache 1MiB/core IMiB/2-cores
L3 cache 24.75MiB/CPU (none)
Supported SIMD avx512f, avx512dq, | avx512f, avx2, etc.

avx2, etc.

Peak perf/core

- double (FP64) 73.6GFlops 41.6GFlops

- float (FP32) 147.2GFlops 83.2GFlops
Peak perf/CPU

- double (FP64) 1326GFlops 2662GFlops

- float (FP32) 2652GFlops 5324GFlops
MCDRAM Memory (none) 8channels
Capacity 16GiB
Bandwidth ~500GB/s
DDR4 Memory DDR4-2666 6¢ch x 2 | DDR4-2400 6¢ch
Capacity 192G1B 192GiB
Bandwidth 256GB/s 115GB/s

OS CentOS 7.6 CentOS 7.3

Compiler

Intel 19.0.2

Intel 19.0.2

Block Size Configuration

* Even with cache oblivious approach, we still have to
determine a single parameter, block size (BS)

Skylake 1core

A5 BS=64
BS=128 B5=3p
% BS-16 From the result of preliminary
515 B evaluation, we use BS=64

Matrix Size N

— Rec{B5=16) Rec{BS=32) Rec{BS=64) Rec{ B5=128)

& Wl

Speed (GFlops)
-]

i b [B | W
n

[
-

Ln

&

Performance Evaluation:
1-Core SkylLake

SkylLake 1core Non-Recursive
is good, but

- \ 'mz : _ '_ '} Recursive achieves
P Wit . @ the fastest speed!!

| Register blocking
contributes +30%

\ speed-up
W/o layout change,
we see slowdown
when N is a multiple of 1024

1000 2000 3000 4000 5000 6000
Matrix Size N
—e— Rec-0OPT —e— Non Rec-0OPT Rec-NoBDL

Rec-NORBK —e— Non-blocking

0

Performance Evaluation:
1-Core KNL

KNL 1core (MCDRAM)

Register blocking
/ contributes +100%
speed-up

| We suffer from
| _——— heavier impacts of
conflict misses!

1000 2000 3000 4000 5000 6000
Matrix Size N
—a— Rec-0OPT —a— NonRec-OPT —es— Rec-NoBDL

Rec-NoRBK —e—Non-blocking

Matrix D is put on MCDRAM; using DDR4 showed similar performance
(refer to the paper)

Performance Evaluation:
(16+16)-Core SkyLake

Faster SkyLake 32core _)
1900 cross point Recursive version
e |

exceeds 1.1TFlops!!
1000 —— —
@ 800 -
- b
Y 600 /'
§ /
o 400 J
LN
200
0
0 10000 20000 30000 40000 50000 60000 70000
Matrix Size N
—a—Rec-OPT —ea— NonRec-OPT Rec-NoBDL Rec-NoRBK

On the other hand, our recursive version gets slower with smaller N ®
e Overhead of “omp task” ?

Performance Evaluation:
64-Core KNL

KNL 64core (MCDRAM)
300 cross point
o \ ~0.7TFlops !!
i N e
600
500
400

Faster

i
-

300 Conflict misses make
200

execution completely
100 impractical

Speed (GFlops)

0
0 10000 20000 30000 40000 50000 60000 70000
Matrix Size N
—a— Rec-OPT —es— NoOnRec-OPT Rec-NoBDL Rec-NoRBK

We see that slow-down with smaller N is heavier

Peak Performance Ratio

e 2-socket Skylake:

— Measured: 1.117 TFlops
— Peak (SP): 5.304 TFlops
=» Peak perf ratio=21%

If we do not count FMAD in peak, ratio=42%
* KNL:

— Measured: 0.687 TFlops
— Peak (SP): 5.324 TFlops
=» Peak perf ratio=13%

If we do not count FMAD in peak, ratio=26%

NOTE: In FW, FMAD cannot be used efficiently

Summary

* A high performance FW implementation is given

— Cache-oblivious approach is integrated with
e SIMD parallelism
* Multi-core parallelism
* Data layout transformation

* Register blocking with careful algorithm analysis
* Succeeds performance of state-of-art implementations
— 1.1 TFlops on dual Skylake Xeon
— 700 Gflops on Xeon Phi KNL
* In this experiment, MCDRAM and DDR4 worked similarly

https://github.com/toshioendo/hoalgos

Future Work

e Evaluation of other heterogeneous memory
— DIMM type 3D-Xpoint

* Towards further performance implementation
— Reducing overhead of task creation by “omp task”
— Improving memory affinity
* Recursion + task creation works worse in this aspect
=>» Need improved multi-task runtime

* Towards more “architecture-independent” implementation
— Our current version is free from cache-size parameter, but
— The base kernel depends on SIMD-type and width
=>» ARM SVE (scalable vector extension) looks attractive

	Integrating Cache Oblivious Approach with Modern Processor Architecture: The Case of Floyd-Warshall Algorithm
	Architecture Trends
	Cache Blocking
	Issues of Cache Blocking
	Cache-Oblivious Approach
	Locality is a Big Issue, But We Have More
	Our Target Algorithm:�Floyd-Warshall Algorithm
	Summary of This Work
	Non-Blocked FW Algorithm
	(Non-Recursive) Blocked FW Algorithm
	Recursive Blocking FW Algorithm�[Park et al. 04]
	Integration with Optimizations for Modern Processors
	Acceleration with �AVX-512 SIMD Instructions�[Rucci et al. 17]
	Introducing Block Data Layout
	Acceleration with �Muti-Core Parallelism
	Re-visiting Base Kernel (1)
	Re-visiting Base Kernel (2)
	Optimized Kernel with Loop Interchange and Register Blocking
	Floyd-Warshall Implementations
	Experimental Environments
	Block Size Configuration
	Performance Evaluation: �1-Core SkyLake
	Performance Evaluation: �1-Core KNL
	Performance Evaluation: �(16+16)-Core SkyLake
	Performance Evaluation: �64-Core KNL
	Peak Performance Ratio
	Summary
	Future Work

