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Abstract

Large latencies over WAN will remain an obstacle
to running communication intensive parallel applica-
tions on Grid environments. This paper takes one of
such applications, Gaussian elimination of dense ma-
trices and describes a parallel algorithm that is highly
tolerant to latencies. The key technique is a pivoting
strategy called batched pivoting, which requires much
less frequent synchronizations than other methods. Al-
though it is one of relaxed pivoting methods that may
select other pivots than the ‘best’ ones, we show that
it achieves good numerical accuracy. Through exper-
iments with random matrices of the sizes of 64 to
49,152, batched pivoting achieves comparable numeri-
cal accuracy to that of partial pivoting. We also evalu-
ate parallel execution speed of our implementation and
show that it is much more tolerant to latencies than
partial pivoting.

1 Introduction

Grid technologies [7] enable users to integrate widely
distributed computing resources for running CPU in-
tensive applications on them. This approach has been
successful especially for applications that involve little
interactions among subtasks [1, 2].

Seeing this success, it is attractive to attempt to
run communication intensive applications such as ma-
trix operations and PDE solvers on Grid environments,
while they have been mainly run on supercomputers
or clusters. This approach is supported by recent de-
velopment and experiments of programming tools de-
signed for Grid [4, 6, 11, 14]. However, there are still
several obstacles for such applications to achieve suffi-
cient performance: lower bandwidth of wide area net-
work (WAN), volatility of computing resources, larger
communication latency over distributed sites, and so
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on. While shortage of bandwidth and volatility will
be solved in the near future by innovation of network
architectures and programming tools for Grid, large
latencies will remain problematic. Typically the laten-
cies over WAN are the order of ten milliseconds and
sometimes exceed 100 milliseconds, while those of su-
percomputers are several microseconds. In order to
exploit Grid environments for communication intensive
applications, we require proper design and implemen-
tation of algorithms that tolerate large latencies.

This paper takes one application, parallel Gaussian
elimination of dense matrices for solving linear equa-
tions. It is one of applications that require frequent
interactions among computing nodes, and is used as a
popular benchmark for parallel computers[3]. We have
previously described an implementation of Gaussian
elimination that is tolerant to volatility of resources
and large latencies[5]. The implementation was, how-
ever, numerically unstable because it was not equipped
with any pivoting. When partial pivoting is imple-
mented for improving numerical accuracy, we have no-
ticed that tolerance for latencies are severely degraded
because pivoting introduces tight data dependencies.
With the order of ten milliseconds latencies, the criti-
cal path caused by partial pivoting is so long that even
ideal pipelining techniques may fail to hide it.

This paper presents a latency tolerant Gaussian
elimination algorithm by introducing more relaxed piv-
oting method, named batched pivoting. The basic idea
of batched pivoting is to reduce frequency of synchro-
nizations for pivot selection; each node independently
selects candidates for pivots of several contiguous steps
and then the candidates are gathered. This method
largely reduces the critical path length, thus it makes
the algorithm latency tolerant. In addition to tolerance
to latencies, this paper evaluates numerical accuracy.
And we show that batched pivoting achieves both tol-
erance to latencies and good accuracy.

Section 2 describes a traditional Gaussian elimina-
tion algorithm with partial pivoting. Section 3 men-
tions existing pivoting methods and their problems.
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Section 4 proposes our batched pivoting and Section
5 describes the details of our implementation. Section
6 evaluates the implementation both in tolerance to la-
tencies and numerical accuracy. We discuss applicabil-
ity of our method in Section 7 and conclude in Section
8.

2 Gaussian Elimination with Partial
Pivoting

Gaussian elimination with partial pivoting is a tra-
ditional method for solving dense linear equations.
For an (n × n) matrix A, it solves Ax = b with
(2/3)n3+O(n2) floating point operations. We describe
the algorithm briefly and show that its performance
heavily suffers from large latencies.

2.1 Algorithm

Figure 1 shows an outline of the serial algorithm.
Each step of the outermost loop consists of pivoting
phase, row exchange phase and update phase. In piv-
oting phase of the kth step, we examine the kth column
and find an element called the pivot, whose absolute
value is largest. Then we exchange the row that in-
cludes the pivot and the kth row. In update phase, we
update the lower right (n− k− 1)× (n− k− 1) subma-
trix by using elements in the kth column and new kth
row.

Selecting a large element as a pivot is important
for numerical accuracy. In update phase, elements are
updated by using the value aikakj/akk, where akk is
the pivot. If akk is closer to zero, the results of update
phase get larger, thus numerical accuracy is degraded.

2.2 Problems with Large Latencies

In parallel implementations, such as High perfor-
mance Linpack (HPL)[12], a large number of optimiza-
tion techniques have been invented. Blocking tech-
nique, which aggregates update phases of several steps,
reduces frequency of communication and cache misses.
Pipelining technique, which invokes pivoting phase be-
fore update phases of preceding steps are completed,
effectively hide costs for pivoting phase when latencies
are small.

On Grid environments, however, we may fail to
hide pivoting phase even with these techniques, be-
cause the critical path is too long. In a typical data
mapping, called two dimensional block cyclic mapping,
each column is partitioned among several computing
nodes. Thus each pivot selection requires synchroniza-
tion among the nodes, whose costs are determined by

for (k = 0; k < n; k + +) {
/* pivoting */
finds pivot element apk in the kth column
/* row exchange */
exchanges the p th row and the kth row
/* update */
for (i = k + 1; i < n; i + +) {

for (j = k + 1; j < n; j + +) {
aij = aij − aikakj/akk

} } }

Figure 1. An outline of Gaussian elimination
with partial pivoting.

latencies. To make matters worse, pivoting phases of
different steps cannot overlap or be batched, since each
pivoting phase depends on the results of all preceding
pivoting phases.

In summary, the length of the critical path caused
by pivoting phase is at least O(nl), where n is the size
of the matrix and l latency. This may dominate the
whole execution time, if latencies are so large. Figure
2 shows a rough estimation of the limit of achievable
speed with latencies of 0.1 ms, 1 ms, and so on 1. Ac-
cording to the graph, with latencies of 10 milliseconds,
the speed never exceeds 66.7TFlops even when matri-
ces are of sizes of 106. Considering that IBM Blue-
gene/L supercomputer has achieved 136.8TFlops with
n = 1, 277, 951 (cf. Top500 list in June 2005), we see
that we cannot achieve similar performance to super-
computers on Grid, even with very large number of
nodes.

A naive method to reduce the critical path length
is to abandon two dimensional block cyclic mapping;
instead, we map each column onto a single node. Thus
pivoting phase at each step can be conducted locally.
This method is, however, undesirable because it heav-
ily increases communication; the total amount of com-
munication is O(n2p) where p is the number of nodes,
while it is O(n2√p) in two dimensional block cyclic
mapping. Although we could map each column onto a
single cluster, where synchronization costs are low, it
is inapplicable if nodes are placed distantly from each
other as in desktop Grid.

1It is an optimistic estimation that simply compares nl and
(2/3)n3/s, where s is the total CPU speed in Flops. The limit
would be worse if we take factors into account such as effects of
reduction algorithm
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Figure 2. An estimation of limit of achievable
speed in partial pivoting method.

3 Related Work

Several pivoting methods other than partial pivot-
ing have been proposed in various contexts. This sec-
tion describes some of them and shows that they have
problems either in tolerance to latencies or in numerical
accuracy.

In threshold pivoting[15, 10], the largest value in ab-
solute may not be selected as a pivot. An element
apk can be selected if it satisfies |apk| ≥ τ maxi≥k |aik|,
where 0 ≤ τ ≤ 1 is a predefined parameter. Since there
may exist several elements that satisfy this condition,
threshold pivoting can select one of them arbitrarily;
it usually selects one so that the amount of commu-
nication for row exchange is reduced. However, this
method is not latency tolerant because it still requires
synchronization at each step to obtain max |aik|.

Unlike methods described so far, pairwise pivoting
[13] does not select a single pivot for each step. Instead,
it repeatedly takes adjacent two rows and eliminates
one of them. This method achieves good tolerance to
latencies, since each row can start an elimination step
immediately after it and its neighbors finish the previ-
ous step. On the other hand, it is inferior in numerical
accuracy as shown in Section 6.

In the next section, we will describe a pivoting
method that achieves both tolerance to latencies and
numerical accuracy.
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Figure 3. An illustration of batched pivot-
ing. Each of nodes that owns part of grayed
columns (P1 and P2) performs Gaussian elim-
ination locally by using its own submatrix.

4 Our Pivoting Method

For the purpose of making Gaussian elimination
highly tolerant to large latencies, we present an alter-
native pivoting method named batched pivoting. This
method avoids frequent synchronizations by a simple
idea; we aggregate pivoting phases of several contigu-
ous steps. We hereafter let d the number of pivots se-
lected in a batch. Each node locally selects candidates
for pivots of d contiguous steps and then the candi-
dates are gathered. While batched pivoting is more
tolerant to latencies, it is not as stringent as partial
pivoting; it sometimes selects inferior pivots. However,
as we will show in Section 6, batched pivoting achieves
comparable accuracy to partial pivoting.

Here we discuss pivot selection of [k, k + d)th steps.
The d pivots are selected from [k, k + d)th columns,
which are grayed in Figure 3 (Part upper than the kth
row is not grayed because it is not used for pivot se-
lection). In this case, nodes P1 and P2 are involved
in the selection, since grayed submatrix is partitioned
among these nodes. We hereafter call them sharing
nodes. Then each sharing node conceptually owns a
submatrix that is a subset of grayed part, as in the
right part of the figure. We let c the number of the
local submatrix (c may be different by nodes).

The following describes how we determine pivots of
[k, k + d)th steps.

1. Each sharing node determines a set of d candidates
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for pivots as follows. The node locally performs
Gaussian elimination with partial pivoting by us-
ing its (c × d) submatrix. This computation is a
speculative one; the original matrix should not be
overwritten. So each node duplicates this subma-
trix in a temporal buffer and performs the local
Gaussian elimination there. During the computa-
tion, each node finds d pivots. The node records
them as candidates for pivots.

2. By using the set of candidates, each sharing node
calculates a score for the set, which is defined
as mink≤k′<k+d |pk′ |, where pk′ is a candidate for
pivot at the k′th step.

3. After all sharing nodes determine their sets of can-
didates and their scores, we gather them. Then we
select one of candidate sets that has the largest
score; all d candidates included in the selected set
are adopted as final pivots, and they are sent to
all sharing nodes. Now we have obtained d final
pivots.

Batched pivoting reduces frequency of synchroniza-
tions because they occur at every d steps, not at each
step. Thus the critical path length is reduced to
O(nl/d) and tolerance to latencies is improved. Note
that, however, worse pivots may be selected than in
partial pivoting. Batched pivoting constrains the se-
lection of pivots in such a way that pivots of d con-
secutive columns must be taken from rows owned by a
single node. In partial pivoting, each pivot is selected
independently from the whole column. In spite of this
difference, batched pivoting suppresses degradation of
numerical accuracy; it can avoid selecting bad pivots
with a strong probability, because a set of candidates
that includes a pivot closer to zero has a worse score
and thus rejected at the final decision.

Another difference is that batched pivoting requires
additional computation costs for the local Gaussian
elimination. However, the amount of additional cost
is O(dn2), which is much smaller than the original cost
(2/3)n3 + O(n2) as long as d � n holds.

Requirement about data mapping. To succeed in
selecting d pivots from [k, k + d)th columns,
data mapping needs to satisfy the following con-
dition: for each i ≥ k, contiguous elements
aik, ai,k+1, · · ·ai,k+d−1 should be owned by a single
node. Under this condition, part of grayed sub-
matrix owned by each sharing node composes a
submatrix. If the matrix is distributed per block
whose size sb is larger than or equal to d, as in
Figure 3, this condition is satisfied.

5 Implementation

We have implemented a sequential version and two
parallel versions of Gaussian elimination with batched
pivoting. One of parallel versions is written with
MPI and the other uses the Phoenix message passing
library[14].

The MPI version is based on High performance Lin-
pack (HPL), which originally uses partial pivoting. We
have modified the code for pivoting to implement our
batched pivoting. Like HPL, it uses two dimensional
block cyclic mapping; thus the number of nodes must
be fixed during the computation. This version and se-
quential one are evaluated in Section 6, since the MPI
version is faster than the current Phoenix version.

The Phoenix version is written from scratch by us-
ing the Phoenix library. Unlike the MPI version, it
can support dynamic changes of the number of com-
puting nodes[5]. With this feature, this version will
be more suitable for actual Grid environments, though
the implementation has not been refined yet. Support-
ing dynamic environments is enabled by the following
load balancing method. Nodes periodically sends the
number of its own matrix blocks to each other, and we
move blocks between a pair of nodes if it improves load
balance. Thus new nodes that initially have no matrix
data can join the running computation. The Phoenix
library makes it easier to write parallel programs that
support dynamic changes of data mapping.

6 Experimental Results

This section evaluates our Gaussian elimination al-
gorithm by using two criteria: tolerance to latencies
and numerical accuracy. Parallel experiments have
been conducted on a 190-node Linux cluster connected
via Gigabit Ethernet. Each node is equipped with dual
Xeon processors, whose clock speeds are 2.4 or 2.8 GHz.
We have run a single computing process for each node.
Latencies among cluster nodes are 55 to 75 microsec-
onds. In parallel experiments, we have used the MPI
version described in Section 5. It has been linked with
mpich 1.2.6 library for communication and high perfor-
mance BLAS library by Kazushige Goto[8] as a linear
algebra kernel. The experiments are done on a single
cluster, not on actual Grid environments. To evaluate
tolerance to latencies, we insert large artificial latencies
by modifying message passing APIs.

6.1 Tolerance to Latencies

Figure 4 shows parallel performance of our imple-
mentation on a cluster without inserting latencies. The
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Figure 4. Parallel performance on a
cluster(n = 32, 768, sb=256). The upper
graph shows execution times and the lower
shows speeds in GFlops. The sizes of
process grids are 4× 8, 8× 8, 8× 12, 8× 16 and
8 × 20.

matrix size n is 32,768 and the block size sb is 256.
The number of nodes is 64. ‘Batched(d)’ denotes our
implementation with batched pivoting, where d is the
number of pivots computed at once. ‘Partial’ denotes
original HPL that uses partial pivoting.

We see that batched pivoting achieves similar scal-
ability to partial pivoting, while they suffer from some
overhead, which increases with larger d. This overhead
is due to additional computation introduced by the lo-
cal Gaussian elimination; it is 7.5 to 15 % when d is
64.

Figure 5 shows performance when we insert artifi-
cial latencies on each message send. We have inserted
identical latencies for all pairs of nodes in each experi-
ment. The matrix size, the block size and the number
of nodes are same as above.

We see that the speed of partial pivoting heavily de-
creases with large latencies; when we insert 10 millisec-
onds latencies, it gets 6.0 times slower. On the other
hand, batched pivoting is much more tolerant to large
latencies; the decrease of speed with 10 milliseconds la-
tencies is only 22% when d is 64. In all cases when we
insert latencies, batched pivoting is faster than partial
pivoting. This result shows that effects of tolerance to
latencies dominate costs for additional computation.

6.2 Numerical Accuracy

We evaluate numerical accuracy of various pivoting
methods through numerical experiments with random
matrices. We have conducted two sets of experiments:
sequential experiments with small matrices and parallel
experiments with large matrices. In both experiments,
we evaluate numerical accuracy by using a normalized
residual:

||Ax̃ − b||∞/(||A||∞||x̃||∞nε)

where x̃ is the computed solution of the equation and ε
is the machine precision 2−53. This is one of the three
residuals used in HPL residual check 2 .

In sequential experiments, we use random matrices
whose elements distribute uniformly on [−1, 1]. The
sizes of matrices are 128 to 2048.

Care should be taken because batched pivoting in
sequential execution behaves identically to partial piv-
oting. To observe the difference of these methods, we
modified the implementation of batched pivoting as fol-
lows. We divide the matrix into blocks, and then treat
them as nodes; we let each block provide its candidate

2Although the web page [12] says the corresponding residual
is ||Ax̃− b||∞/(||A||∞||x̃||∞ε) that excludes n, above residual is
actually used, according to the source code(HPL pdtest.c).
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Figure 5. Parallel performance with emulated
large latencies (n = 32, 768, sb=256). The num-
ber of nodes is 64 = 8 × 8. The upper graph
shows execution times and the lower shows
speeds in GFlops.

set for pivots. In sequential experiments, the block size
sb is 64.

Figure 6 shows the results. We have conducted
experiments with 100 random matrices for each con-
dition, and the graph shows the average normalized
residuals among them. The graph includes the results
of partial pivoting, threshold pivoting, pairwise pivot-
ing and our batched pivoting. It also includes results
of Gaussian elimination without any pivoting (‘No’ in
the legend), which is obviously numerically unstable.
The number in parenthesis for ‘Batched()’ denotes d,
while that for ‘Threshold()’ is the threshold parameter
τ described in Section 3.

As expected, partial pivoting shows the best accu-
racy among those methods. We see that the normalized
residuals go down as the matrix size n increases, which
means that the growth of ||Ax̃ − b||∞ is milder than
O(n). A similar tendency is also observed in all cases
of batched pivoting and threshold pivoting. Although
their residuals are larger than that of partial pivoting,
we see that the difference is rather small; difference in
residual between ‘Batched(4)’ and ‘Partial’ is 1.09–1.55
times. When d is larger, we see the residuals increase;
here we observe a tradeoff between tolerance to laten-
cies and accuracy. On the other hand, pairwise pivot-
ing shows qualitatively different results. Although its
average residual is at a similar level to other methods
when n is 128, it rises as n increases and is 120 times
worse than partial pivoting when n is 2048. Consider-
ing that partial pivoting and threshold pivoting are not
latency tolerant, our batched pivoting is a good com-
promise between numerical accuracy and tolerance to
large latencies.

Figure 7 shows the results of parallel experiments
by using the MPI version described before. We have
used the random matrices generated by HPL. The ma-
trix sizes are 8192 to 49,152 and the block size is 256.
The graph shows similar results to the previous one;
batched pivoting achieves comparable accuracy to par-
tial pivoting. On the other hand, we see that the ef-
fects of using different d are smaller. We consider this
is due to experimental conditions. First, the block size
is larger than in sequential experiments. Secondly, in
parallel experiments, each node that possesses several
blocks provides candidates. Thus batched pivoting has
more chances to select better candidates for pivots than
in sequential experiments, where each block provides
candidates.

7 Discussion

Average accuracy. We have observed that partial,
threshold and batched pivoting display good accu-
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racy, while pairwise pivoting is much worse. Tre-
fethen and Screiber [15] have given an explana-
tion for this. To obtain good stability on average,
following conditions should be satisfied: (1) that
|aikakj/akk| is sufficiently small, and (2) that the
correction matrix introduced in each update phase
is of rank 1. While the first condition is satisfied
by all pivoting methods we have described, pair-
wise pivoting breaks the second. It is satisfied by
partial, threshold and batched pivoting, because
a single pivot row is used to update the whole
(n−k−1)×(n−k−1) submatrix at each step. Here
the correction matrix has elements (−aikakj/akk),
thus its rank is 1. On the other hand, pairwise piv-
oting breaks the condition because each row may
be eliminated by different pivot row. We consider
batched pivoting achieves good average accuracy
because it is one of methods that satisfy both con-
ditions.

Cases when the current algorithm fails.
Through experiments using random matri-
ces, we have shown that batched pivoting works
well. There are, however, matrices where current
batched pivoting fails, while partial pivoting
successes. In general, when all elements examined
in pivoting phase are zero, we cannot select a
pivot and the computation cannot proceed any
more. This problem arises with our current
algorithm when we use random permutation
matrices, in which non-zero elements are located
sparsely and distributedly (Although they are
sparse matrices, there are dense matrices that
have similar property). In such cases, all nodes
that share columns may fail to select candidates
for pivots. This situation occurs if all (c × d)
submatrices that compose d columns have a rank
lower than d. This problem will be avoided by
improving the algorithm, such as adjusting the
number of pivots adopted in the final decision
according to the result of the local Gaussian
elimination.

Message driven objects. This paper has taken one
of communication intensive applications, Gaussian
elimination, and described techniques for tolerat-
ing WAN latencies. For this goal, an approach
with message driven objects has been described
[9, 5]; the whole data structure is divided into
many message driven objects, which are invoked
by asynchronous messages. This approach is gen-
erally useful to make algorithms latency tolerant.
However, this paradigm alone does not help when
the execution time of the algorithm is dominated
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by a large critical path sensitive to message laten-
cies, as was the case in Gaussian elimination with
partial pivoting. In such cases, we need to develop
a new algorithm for tolerating latencies.

8 Conclusion

This paper has presented a parallel algorithm of
dense Gaussian elimination that is highly tolerant to
large latencies. The key technique for latency tolerance
is batched pivoting, which requires much less frequent
synchronizations than traditional partial pivoting. Al-
though batched pivoting suffers from the increase of
computation costs and the degradation of numerical
accuracy, we have shown that those impacts are small
through experiments. Among all pivoting methods we
have examined, batched pivoting is the only method
that achieves both latency tolerance and accuracy.

As future work, we are planning to implement a
strategy to support matrices with that the current al-
gorithm fails. We will also conduct experiments on
actual Grid environments. In addition to experiments,
we will analyze numerical accuracy of batched pivoting
in a method similar to Trefethen’s average case anal-
ysis. We would also like to investigate and improve
tolerance to latencies of other communication intensive
applications to enlarge the range of Grid applications.
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