Realizing Out-of-Core Stencil

Computations

using Multi-Tier Memory Hierarchy

on GPGPU Clusters

~ Towards Extremely
Big & Fast Simulations ~

|

Toshio Endo

GSIC, Tokyo Institute of Technology (B IR

CEKRF)

Stencil Computations

Important kernels for various simulations (CFD, material...)

Phase-Field computation | Airlow simulation
(2011 Gordon Bell)

i % .
/ 7 7 .
o Time t Time t+1
A 110
/; | ™z
1 //
L]
0 O
¢’
///
4 \‘_3/
/ \“'-//\i‘“\
A
L~=1.0

(NX)

On GPU clusters,
Highly successful in speed
But not in scale

Stencil computations are
“memory intensive” =2

Issues on Typical Stencil Implementations

on GPUs

In typical stencil implementations on GPUs,
array sizes are configured as

< (aggregated) GPU memory
=>» Prohibits extremely Big&Fast simulation

cores

GPU card
(Tesla K40)

GPU
cores

L2S

S

1.5MB
~300GB/s
U M| 300G8/
GPU mem
12GB PCle G3

¥ 1 16GB/s

R 2.5GB/s J_.
W 1.5GB/s Host memory 64GB

1

SSD 512GB

Using multiple GPUs is a solution

e But we are still limited by “GPU memory capacity X #GPUs”
* Larger capacity of lower memory hierarchy is not utilized

Stencil Code Example on GPU

Copy domain
Host = Device

/

Temporal Loop } -

MPI comm. of
boundary

Compute
Grid points

1
1
1
1
1
1
1
1
1
1
1
1
1
1
I

J__

Copy domain
Device = Host

Faster

AN

Double buffering

Device
Memory
capacity —_

140
120

Speeds of 7point stencil on K40
I

[
o
o

Fast, but not Big

(0]
(@]

(o))
o

Speed (GFlops)

N B
o O

o

0 I 2 40 60 80
Problem Size (GiB) Blgger

—e—Normal

Goals of This Work

When we have existing apps, we want to realize followings
s

Large High
. Scale | Performance,

7 \

Using memory swapping Locality improvement

of the HHRT library with Temporal Blocking
a - N\
./ High
_Productivity |

Co-design approach that spans
Algorithm layer, Runtime layer, Architecture layer

Contents

e Step 1: using HHRT library
— Expands available memory capacity by data swapping
— Supporting multi-tier memory hierarchy

e Step 2: using Temporal blocking (briefly)

— Optimizations of stencils for locality improvement

The HHRT Runtime Library for GPU

Memory Swapping
* HHRT supports applications written in CUDA and MPI
— HHRT is as a wrapper library of CUDA/MPI
— Original CUDA and MPI are not modified
— Not only for stencil applications

w/o HHRT With HHRT
App App
CUDA MP
OS/HW
OS/HW

github.com/toshioendo/hhrt

T. Endo and Guanghao Jin. Software technologies coping with memory hierarchy of
GPGPU clusters for stencil computations. IEEE CLUSTER2014

Functions of HHRT

(1) HHRT supports overprovisioning of MPI processes
on each GPU

— Each GPU is shared by m MPI processes
(2) HHRT executes implicitly memory swapping
between device memory and host memory

— “process-wise” swapping

— OS-like “page-wise” swapping is currently hard, without
modifying original CUDA device/runtime

Execution model of HHRT

w/o HHRT (typically)

CLU

Node

Device memory

|daMemdpyI |

Proces§s'/data Lower memor

With HHRT

Pri

Device memory

)cess’s\data Lower memory

m MPI processes share a single GPU
In this case, m=6

Processes on HHRT

Running processes
e
\ | memory
"

4_|_|’ Sleeping processes

Node
Process’s
data :
\ \
- [r=————n i ==
Ny 1
[| [|
Lower mem

* We suppose

s < Device-memory-capacity <ms

s: Size of data that each process allocates on device memory

m: The number of processes sharing a GPU

- We can support larger data size than device memory in total

 We cannot keep all of m processes running

- HHRT makes some processes “sleep” forcibly and implicitly

* Blocking MPI calls are “yield” points

State Transition of Each Process

A process is blocked

due to MPI operation Running e
(MPI_Recv, MPI_Wai wapping finished
All data on uppe(S : \ h : All data are
(CUdaMaIIOC ed) [Wapplng] [Swa.pplng } restored
are evacuated tg out IN to device
lower memory
Swappingfinished There is enough space
on upper memory
[Blocked b—l{ Runnable J

MPI operation is
now unblocked
(cf. message arrived)

S9SS9J0.4d

40

Executions on HHRT

6 processes are time-sharing a GPU
Two-tier (Device/Host) is used

. MPI is finished
MPI is called Proc is restarted
) Time
i i -

45 50 55 60 (sec)

mRUNNING RUNNABLE " BLOCKED —D2H —-H2F —F2H H2D

\ J |)
| [
Swapping out Swappingin

What HHRT does NOT

* |t does NOT automate data transfer
(cudaMemcpy) =2 It is not OpenACC

— Supports (traditional) CUDA programming

— Instead, it implicitly swaps out data on device memory
to lower hierarchy

* |t does NOT swap in page-wise style like OS =2 It
is NOT NVIDIA Unified Memory

— In stencil, page-wise swapping tends to be slow
— Instead, it adopts process-wise swapping
* |t does NOT extend memory for a single process

— Instead, our focus is to extend the aggregate capacity
for multiple processes

Swapping Data in
Multi-tier Memory Hierarchy

[What data are swapped]

Following data allocated by user processes
* On device memory (cudaMalloc)
* On host memory (malloc)

GPU
memory

Host
memory For this prpose, cudaMalloc,

malloc... are wrapped by HHRT

Exceptionally, buffers just used for MPI
communications must be remained on upper

Flash SSD [Where data are swapped out]

* Host memory first
* And then Flash SSD

For swapping, HHRT internally uses
 cudaMemcpy() for device < host
* read(), write() for host < Flash SSD

Evaluation Environment

TSUBAME2.5 TSUBAME-KFC PC server with m.2
(K20X GPU) (K80 GPU) SSD (K40 GPU)

Device memory 6GB = 250GB/s 12GB - 240GB/s 12GB - 288GB/s

Host memory 54GB - 8GB/s 64GB - 16GB/s 64GB - 16GB/s
(Speeds are via PCle)

Flash SSD 120GB - R0.2GB/s 960GB - R 1GB/s 512GB - R 2GB/s
(with two SSDs)

S0 s aneen BN

et

Samsung 950PRO

In our context, both of speed and
capacity are insufficient
(SSDs installed in 2010)

s)

Speed (GFlop

Result of Step 1:
Exceeding Memory Capacity Wall

TRATUVIL, STEIZIFX1GPUEFIFE
TSUBAME-KFC/DL node m.2 & PC

160 | 3
140

=
M
o

100

80
60
40
20
0 r i 3
0 100 150 200 N R
Problem Size (GiB) : " B B
=q— NoTB (25SDs) I I 100 150
) 1 1 Problem Size (GiB)
Device Host ——NoTB

memory memory

* Certainly we exceed capacity wall for scale,
however, the performance is seriously bad!

200

Issues in Step1l: Too low GPU utilization

In the case of 96GB problem
* 32 processes on a GPU

) Time
-

S9SS9J20.Jd

12

16

20

24

28

32

- Too low GPU utilization

Runs only for 40msec
after sleeping >60secs

75

[]

&0 a5 90

m RUNNING RUNMNABLE BLOCKED -—@—D2?H =—#=—H2F =—#—F2H

H2D

95

100

Why is GPU Utilization Too Low?

* Each process can suffer from heavy memory swapping costs
every iteration

— It incurs transfer of the entire process’es sub-domain between memory
hierarchy

* This is done automatically, but too heavy to hide
Node

Process’s
data

Lowe memory

* This is due to lack of locality of stencil computations

— Array data are swapped out every iteration

* We need optimizations to improve locality as step 2!!

Step 2:

Temporal Blocking (TB) for Locality Improvement

Typical

MPI
to get
halo

Halo region

Temporal blocking (in our context):

Larger halo region, with width of k, is introduced per process
After a process receives halo with MPI, we do k-step update at once without MPI

k is “temporal block size”

With TB
(k=2)

MPI
to get
halo

0d I
o i
t =100

LA Bl
o o o [
t=101

Introducing “larger halo”

g

t=102

MPI
to get
halo

"

L

MPI
to get -

halo

Frequency of MPl comm (yielding points on HHRT) is reduced to 1/k

$9ZIS Wa|go.d

Appropriate Temporal Block Sizes (k)

* If kis too small, we suffer from swapping costs (if swap occurs)
* If kis too large, we suffer from redundant computation costs
for larger halo

PC server with an m.2 SSD

k=1 8 16 24 32 13 64 96
6(GiB) (140 148 145 142 137 134 120 119
8 #@ 147 145 142 90 133 129 121 Device
3778, 6577101 130 33777713% T4 Memory
16 | 939 632 108 138 1 130 106 ooacity
24 937 633 988 122 : 6 122 110
32 979 583 89.5 121 Cl136) 127 121 98 .3
48 812 617 887 16 (I35) 727 879 915 Host
Y S B A YK SR - I B (X) B V4 "@"7’5.’5’" Memory
96 | 268 207 334 477 4 C79.3D 0OM .
128 | 267 488 384 454 (506D OOM oOOM ooM c@pacity
192 | 255 OOM OOM OOM OOM OOM OOM

Speed (GFlops)

Results of Step 2:
Performance Improvement

1 A TSUBAME-KFC/DL Node PC server with an m.2 SSD
160 1 | 160 I :
| I
140 I 140 :
I
120 I — 120 :
100 : I
\ i S 100 \ :
80 \ | Q 8o P—
60 : T o I g
40 r el o :
= a
20 :ﬁ 40 :
0 e :; i 2 20 I
0 50 1| 100 150 200 0 3 * * i
i : Problem Size (GiB) 0 | 100 150 200
—a NoTB (255Ds) | —e—TB (25SDs) TB (1SSD) : Problem Size (GiB)
: —+—NoTB —#—TB
Device Host

memory memory

e With high-speed with ~2GB/s Read, we obtain ~55%
performance with 1.5x larger problem than host memory
— We observe performance difference of SSDs
— We still see significant slow down with > 100GB sizes

21

$9ZIS W?a|go.id

Current Limitations on Performance

and Discussion

PC server with an m.2 SSD

k=l B 16 24 32 a3 64 96

6(GiB) 4 148 145 142 5% 134 120 119

8 C 149 D 147 145 142 0 133 129 Izl
---15---- 8' = --6-5-‘7----1-0T----1’%6-- % ---1-3-2 ----- 1 -2-6 ----- 1 -1-4---

32 979 583 895 121
48 8.12 61.7 887 116 CI5 9

72.7 87.9 91.5
ik o bkl e 3 & thnbenber? 7k St - Jo- bt L oy 4 =T XSRS s
96 2.68 20.7 334 4 OON
128 2.67 38.4 : M
192 255 Ci7.7 D OOM M. OO 50!

Execution failure due to out-of-memory

limits us. Why?

Device
memory

Even with swapping facility, there is still memory
pressure for:

— MPI communication buffers
* Both on user space and on MPI internally

— CUDA’s internal device memory consumption
e ~75MB (per proc) X 80 proc= 6GB =» ~50% of GPU memory!!

Weak Scalability on Multi GPU/Node

The TSUBAME-KFC Cluster
(1 K80 GPU + 2 SSDs) per node are used

2500

>
2000 ex\e\ /’is
a N
) 08 o
= 1500 B
o \)5\0 ///
21000 s
2 1 Host + SSP
v y
- . evice
500 > Using D
. g e
0 10 20 30 40
of GPUs
——24GiB/node —#-96GiB/node

Fairly good weak scalability,
But costs of SSDs are still heavy

23

Future Work

 More performance

— We still suffer from memory pressure

* Dozens of processes share MPI/CUDA
* Scalable MPI/CUDA multiplexor will be the key

e More scale
— Using burst buffers?

* More productivity
— Integrating DSL (Exastencil, Physis..)
— Integrating Polyhedral compilers

Summary

Out-of-core stencil computations on 3-tier memory hierarchy
has been described
* Architecture level:

— High performance (>GB/s) Flash SSDs
 Middleware level: ' Co-design

— HHRT library for data swapping is the key
 App. Algorithm level:
— Temporal blocking for locality improvement

System Software

For Mem Hierarchy T R
et =77
HEREs R 11

25

