
Software Technologies Coping with
Memory Hierarchy of GPGPU Clusters

for Stencil Computations

Toshio Endo Guanghao Jin
Global Science Information and Computing Center,
Tokyo Institute of Technology/JST-CREST, Japan
Email: endo@is.titech.ac.jp, jin.g.ab@m.titech.ac.jp

Abstract—Stencil computations, which are important kernels
for CFD simulations, have been highly successful on GPGPU
clusters, due to high memory bandwidth and computation speed
of GPU accelerators. However, sizes of the computed domains
are limited by small capacity of GPU device memory. In order
to support larger domain sizes, we utilize the memory hierarchy
of GPGPU clusters; larger host memory is used for maintain
large domains. However, it is challenging to achieve all of larger
domain sizes, high performance and easiness of program develop-
ment. Towards this goal, we combine two software technologies.
From the aspect of algorithm, we adopt a locality improvement
technique called temporal blocking. From the aspect of system
software, we developed a MPI/CUDA wrapper library named
HHRT, which supports memory swapping and finer grained
programming model. With this combination, we demonstrate that
our goal is achieved through evaluations on TSUBAME2.5, a
petascale GPGPU supercomputer.

I. INTRODUCTION

One of important issues in constructing high performance
system towards exascale era is the memory wall problem;
the improvement of capacity and/or bandwidth of memory
is slower than that of processors. This problem will be a
significant obstacle in making larger and finer scale simulations
in weather, medical and disaster measurement area on future
supercomputers.

We already suffer from this problem especially on hetero-
geneous systems equipped with accelerators such as GPUs or
Xeon Phi processors. On these systems, while processing speed
and memory bandwidth are high (around 1TFlops and 100 to
250 GB/s per accelerator), memory capacity per accelerator is
limited to 1 to 8 GB. Owing to the advantage in performance
of GPUs, many stencil-based applications have been executed
successfully on general purpose GPU (GPGPU) clusters, how-
ever, the problem sizes have been limited [1], [2], [3], [4].

This problem in the capacity can be mitigated by locality
improvement techniques in algorithm so that we can effectively
harness memory hierarchy in architecture. We have demon-
strated that both higher performance and larger problem size
are achieved in this approach [5], [6] as follows. To enlarge the
problem sizes of stencil kernels, we harness the host memory,
whose size is typically dozens of Gigabytes per node. An
example of architecture of a GPGPU computing node is shown
in Figure 1. It is natural that naive usage of the host memory
is harmful, since its contents is only accessible from GPU
cores via PCI-Express bus (hereafter PCIe), which is x10 to 30

Fig. 1. Memory hierarchy of a GPGPU machine from the viewpoint of GPU
cores. This illustrates the simplified architecture of a node of TSUBAME2.5
supercomputer we used in our evaluation.

slower than bandwidth of device memory. Instead, we adopted
a locality improvement technique called temporal blocking,
which has been proposed mainly for cache locality improve-
ment [7], [8]. This approach worked well in the performance
and problem size, but there is still an issue in programming
cost. When we introduce temporal blocking technique into
existing applications written in NVIDIA CUDA [10] and MPI,
we found that we need intensive code rewriting as we will
discuss in Section II-B.

The goal of this paper is to achieve the all of higher
performance, larger problem size, and lower programming
cost in stencil applications on GPU clusters. For this goal,
we distinguish (1) the code change that is really required
for locality improvement of algorithm from (2) other aux-
iliary code changes. By delegating the work related to (2)
to the underlying library, user programmers can focus on
code rewriting for (1). For this purpose, we designed and
implemented a package named Hybrid Hierarchical Runtime
(HHRT). HHRT, used as a wrapper of CUDA and MPI,
performs memory swapping between device memory and host
memory. It supports a finer grained execution model, which

Fig. 2. Data structure that each MPI process maintains in the simple stencil
computation. Data in dark grey areas are sent to neighbor processes, and white
areas are used to receive data from neighbors.

1: Copy array f from host to device
2: for t in [0, Nt) {
3: Copy halo of f from host to device
4: Exchange halo of f with neighbors

by MPI
5: Copy halo of f from device to host

// done on GPU: START
6: forall (x, y) in [1,Nlx+1)x[1,Nly+1) {

// compute one element
7: f’[x,y] := func(f[x,y],

f[x-1,y], f[x+1,y],
f[x,y-1], f[x,y+1])

8: }
// done on GPU: END

9: Swap f and f’ on GPU
10: }
11: Copy array f from device to host

Fig. 3. A pseudo code of ”basic” stencil implementations on GPU clusters.

also contributes to mitigation of the programming cost.

Through the experiments on the TSUBAME2.5 petascale
GPGPU supercomputer, equipped with NVIDIA K20X GPUs,
we demonstrate that we can achieve higher performance, larger
problem size, and lower programming cost.

II. STENCIL COMPUTATIONS AND TEMPORAL BLOCKING

A. Stencil Computations and Problems on GPU Clusters

Stencil computations are commonly found kernels in CFD
and engineering simulations. The target area to be simulated is
expressed as a regular grid, and all grid points are computed in
each time step. In order to simulate time evolution, time steps
are repeated. In each time step, all the grid points are calcuated
by using values of adjacent points in the previous time step.
In this section, we focus on very simple ”five-point” stencil
computation on two dimensional grids 1 , where each point is
calculated as:

f’[x,y] := func(f[x,y], f[x-1,y], f[x+1,y],
f[x,y-1], f[x,y+1])

where f is an array that corresponds to the old grid and f ′ is
new one.

1though we will use ”seven-point” stencil on three dimensional grids in the
evaluation

1: for t in [0, Nt) {
2: Exchange halo of f with neighbors by MPI

3: Decompose domain [1,Nlx+1)x[1,Nly+1)
into several sub-domains

4: for sd in sub-domains {
// here we assume sd corresponds to
// [sx, ex)x[sy,ey) of f

5: Copy [sx-1, ex+1)x[sy-1,ey+1) of f
from host to device
// done on GPU: START

6: forall (x, y) in [sx,ex)x[sy,ey) {
7: f’[x,y] := func(f[x,y],

f[x-1,y], f[x+1,y],
f[x,y-1], f[x,y+1])

8: }
// done on GPU: END

9: Copy [sx,ex)x[sy,ey) of f’
from device to host

10: }
11: Swap f and f’ on host
12: }

Fig. 4. A naive stencil implementation for larger domain (named ”Decomp”).
The domain of each process is further decomposed so that each sub-domain
fits into the device memory. This is very slow due to heavy PCIe cost.

First we discuss a basic implementation of this computation
on GPU clusters. We assume that the code is written in CUDA
and MPI, and each process is bound to a single GPU. The
grid to be simulated is distributed among MPI processes, and
the divided local arrays f and f ′ are illustrated in Figure
2. Figure 3 illustrates the behavior of each process. Here
Nt is the number of total time steps to be simulated, and
Nlx,Nly correspond to the size of area to be computed. At
the beginning, the initial contents of the array f are copied
from host to device memory (line 2), and then we start the
temporal loop. Before computation in each step, we need
MPI communication of process boundary region (called halo)
between adjacent processes, due to data dependency between
adjacent grid points (lines 3 to 5). After that, the process
computes all the elements of the local array f ′ by using the
GPU cores in parallel (lines 6 to 8).

The limitation of this implementation is in problem size;
we cannot execute it if the domain size per GPU (total size of
arrays f and f’) is larger than the capacity of device memory.

A naive approach to support larger domain (Figure 4) is as
follows. Each process basically holds the local arrays, which
may be larger than device memory, on the host memory. Then
the arrays are decomposed into several sub-domains, so that
each sub-domain is smaller than device memory. Every time
step, the process takes a sub-domain and copies it to device
(line 5), compute its elements (line 6 to 8) and copies it back
to host (line 9). This implementation suffers from costs for
PCIe communication of the whole array every step, which is
far heavier than halo exchange.

Figure 5 demonstrates the problems of the above two im-
plementations. It shows the performance for varying problem
sizes, using a single K20X GPU with 6GB device memory.
Obviously the first one (”Basic” in the graph) cannot support
problems larger than 6GB. The second one (”Decomp”) works,

Fig. 5. Performance of implementations in Figures 3 (Basic) and 4 (Decomp).
”Basic” cannot support larger domains and ”Decomp” exhibits too low
performance.

but it is about 20 times slower.

B. Temporal Blocking

In order to support larger domain sizes with lower costs,
we adopt a known technique, called temporal blocking. Some
researchers have used it for improving cache hit ratio[7], [8],
and others coped with limited capacity of GPU device memory
[5], [6], [9], which is the target of this paper.

With temporal blocking, we divide the arrays into sub-
domains as done in ”Naive” implementation. Unlike ”Naive”,
however, we execute the computation of a single sub-domain
for several time steps at once, instead of moving to the next
sub-domain immediately.

Figure 6 shows an example of a stencil implementation
with temporal blocking, named Hand-TB. Here k is temporal
block size, which is the number of steps computed at once. In
order to proceed a single sub-domain for k steps at once, we
introduce doubly nested temporal loop; the outer loop starts
at line 1 in the pseudo code and the inner loop starts line
6. Now PCIe communications (lines 5 and 13) are kicked
out of the inner loop, and thus frequency and amount of
PCIe communication reduced to 1/k of that of ”Decomp”
(Figure 4).

This concept is very close to classical iteration block-
ing technique introduced in dense matrix computations[11],
however, the characteristic of stencil computation, where each
point computation involves adjacent points, makes things more
complicated as shown in Figure 7. In order to obtain the results
at (t0+ k)-th time steps of a sub-domain, we have to prepare
”extra halo” area for the sub-domain at t0-th time step as input.
For this purpose, the area size to be computed (specified in line
7 and 8) changes in the inner loop.

Here let us mention that this characteristic introduces
redundant computation for the overlapped area between sub-
domains. Although we have also presented that removing the
redundant computation improves the performance further[5],
we omit it in this paper.

C. Issues in Hand-coding Temporal Blocking

With temporal blocking, we can achieve both higher perfor-
mance and larger problem sizes. However, there still remains

// outer temporal loop
1: for t0 in [0, Nt) with stride k {
2: Exchange k-halo of f with neighbors by MPI

3: Decompose domain [k,Nlx+k)x[k,Nly+k)
into several sub-domains

4: for sd in sub-domains {
// here we assume sd corresponds to
// [sx, ex)x[sy,ey) of f

5: Copy [sx-k, ex+k)x[sy-k,ey+k) of f
from host to device

// inner temporal loop
6: for t in [t0, t0+k) {
7: r := k-1-(t-t0) // r changes k-1 ... 0

// done on GPU: START
8: forall (x, y) in

[sx-r,ex+r)x[sy-r,ey+r) {
9: f’[x,y] := func(f[x,y],

f[x-1,y], f[x+1,y],
f[x,y-1], f[x,y+1])

10: }
// done on GPU: END

11: Swap f and f’ on GPU
12: }

13: Copy [sx,ex)x[sy,ey) of f
from device to host

14: }
15: }

Fig. 6. A hand-coded implementation of temporal blocking (named Hand-
TB). This has a largely different structure than ”Basic” (Figure 3).

Fig. 7. Temporal blocking technique introduces redundant computation for
overlapped area. Here the temporal block size k is 4. For simplicity, the figure
assumes one dimensional domain.

an issue in programming costs. Let us assume that we already
have a working stencil application written in the ”Basic”
style as in Figure 3, and then we try to rewrite the code to
support large scale domain. In this rewriting process towards
the ”Hand-TB” implementation (Figure 6), we have to take
care of the following issues.

First, we need to add two types of loops, the inner temporal
loop and the sub-domain loop. Also dividing local domains
into sub-domains itself will involve extensive modification
of data structure in the existing code. Finally, we have to

Fig. 8. Execution model on MPI/CUDA and execution model on HHRT
library.

change the timings of memory copy between host and device,
which was outside the temporal loop in ”Basic”, while it is
included in the sub-domain loop in ”Hand-TB”. With all these
changes, the structure of ”Hand-TB” heavily differs from that
of ”Basic”.

Against this issue, our approach is to distinguish (1) the
code change that is really required for locality improvement
from (2) other auxiliary code changes. By delegating the work
related to (2) to the underlying HHRT library described in the
next section, user programmers can focus on code rewriting
for (1).

III. THE HHRT LIBRARY

The role of the Hybrid Hierarchical Runtime (HHRT)
library is to execute applications written with CUDA and MPI
on top of it, while hiding the limitation of the capacity of
GPU device memory. In order to play this role, HHRT includes
memory swapping mechanism, which evicts the data on device
memory into larger host memory when free space size of the
device memory is insufficient. The role of this mechanism is
the same as that of OS, but unlike OS’s page-wise swapping,
we adopt ”process-wise” swapping as described later. With this
mechanism, we can execute programs like Figure 3 without
being annoyed with limitation of device memory capacity.
HHRT is implemented as a wrapper library of CUDA and
MPI, thus it has the same APIs as CUDA and MPI, except
additional ones for performance improvement introduced in
Section IV-B.

Figure 8 compares the typical execution model of appli-
cations on CUDA and MPI, and that on HHRT. Instead of
letting each MPI process occupy a GPU, we let several MPI
processes share a GPU. When users execute their application,
they have to adjust the number of MPI processes so that the
data size per each process is smaller than the capacity of
device memory. Hereafter Ps denotes the number of processes
sharing a GPU, which is 6 in the figure. By invoking plenty
number of processes per GPU, we can support larger problem
sizes than device memory in total.

It is natural that we cannot hold all the data of Ps processes
on the device memory at once, when Ps is large enough.
Instead, we execute swapping out of memory regions of some
processes from the device memory (process-wise swapping)
as follows; when a running process p is selected as the
victim of swapping out, HHRT suspends its execution and
copies contents of all p’s memory regions on device memory
into the dedicated buffer (swap buffer) on the host memory.
Then HHRT frees those memory region on device and make
process p ”sleeping mode” (now another sleeping process may
wake up). Afterwards, when the size of free space in device
memory becomes sufficient, the sleeping process p can wake
up after restoring contents of device memory regions. With this
swapping mechanism, Ps processes share the limited capacity
of device memory in a transparent fashion. In Figure 8, two
processes are running and other four processes are sleeping
per node.

We noticed that we should restrict the timing of swapping
out, in order to avoid too frequent swapping in/out, which
causes heavy PCI-Express communication. For this objective,
each process may be swapped out only when it executes one
of the following operations:

• Blocking MPI communication operations such as
MPI_Send, MPI_Wait, MPI_Barrier

• Device memory allocation such as cudaMalloc

According to the design described above, we have imple-
mented a prototype HHRT library. In order to realize swapping
mechanism, blocking MPI operations and device memory
allocation are hooked so that it checks the free space size of
device memory, and execute swapping out operation if needed.

IV. WRITING TEMPORAL BLOCKING ON HHRT

A. Implementation on top of HHRT

This section describes how programmers write stencil com-
putation that supports larger problem sizes efficiently on top of
HHRT. Our goal is not to propose new blocking technique; our
motivation is that although temporal blocking is well-known,
it is still hard to implement for programmers. Our approach
to relax this problem is to harness a runtime library with
memory swapping function; thus programmers can focus on
locality improvement. While ”Hand-TB” (Figure 6) included
explicit memory movement and the loop over sub-domains, we
delegate such code changes to the HHRT library.

To remove the sub-domain loop from user’s code, we sim-
ply substitute sub-domains to MPI processes; a each process
deals with a single domain that is smaller than device memory
size. And we let several MPI processes share a single GPU as
is recommended by the execution model of HHRT.

Now data swapping of each sub-domain between host
and device is automatically achieved by HHRT’s process-wise
swapping mechanism. This means that we can execute the
”Basic” implementation in Figure 3 on top of HHRT in order
to accommodate larger problem sizes 2 .

2Of course this case exhibits significant low performance due to heavy PCIe
communication cost.

Fig. 9. Data structure that each MPI process maintains in HHRT-TB
implementation. Here k = 2.

The next step is to implement temporal blocking, in a much
simpler fashion than in ”Hand-TB”. The new implementation
is named ”HHRT-TB”, and its data structure is shown in
Figure 9 and the pseudo code is in Figure 10. Here each
MPI process maintains arrays, which are not divided into sub-
domains. Unlike Figure 2, the halo (process boundary) regions
are expanded so that they have the width of k, and we call them
”k-halo” in the pseudo code.

Figure 10 shows the changes compared with ”Basic”.
Modified lines are marked with ”∗”, and newly added lines
are marked with ”#”. The following are descriptions of the
changes:

• The temporal loop is now doubly nested. The outer
starts at line 2 and the inner starts at line 6.

• The area to be computed is configured similarly to
”Hand-TB”, in order to maintain data dependency
(lines 7-8).

• Halo exchange is done for expanded halo with k width
(k-halo) at once. And the exchange is done out of the
inner loop (lines 3-5).

We do not insist these changes are negligible; however,
we consider it is important that the entire code structure is
preserved, and programmers only require code rewriting in
a local and step-by-step fashion. Contrarily, the hand-coded
”Hand-TB” has a largely different structure than ”Basic”.

Here we discuss why PCIe costs are reduced in the new
implementation. Note that due to the swapping rule of HHRT
described in Section III, implicit process-wise swapping, in-
volving PCIe costs, happens only when processes execute MPI
communication, which appears at line 4 in this code. Thus
each process can proceed computation for k time steps without
being swapped out.

B. Optimization with Programmers’ Hints

With the implementation described above, we successfully
support large problem sizes. However, we found that its PCIe
communication cost is about doubly larger than hand written
implementation even if we use the same temporal block size
k. It turned out that this difference is owing to that both
implementations are based on double buffer technique; where
we prepare two arrays for the grid, f and f ′.

At the point when the inner temporal loop finishes (line
12 in Figure 10), the contents of f are alive while f ′ can be

1: Copy array f from host to device
// outer temporal loop

* 2: for t0 in [0, Nt) with stride k {
* 3: Copy k-halo of f from host to device
* 4: Exchange k-halo of f by MPI
* 5: Copy k-halo of f from device to host

// (a)
// inner temporal loop

6: for t in [t0, t0+k) {
7: r := k-1-(t-t0) // r changes k-1 ... 0

// done on GPU: START
* 8: forall (x, y) in

[k-r,Nlx+k+r)x[k-r,Nly+k+r) {
9: f’[x,y] := func(f[x,y],

f[x-1,y], f[x+1,y],
f[x,y-1], f[x,y+1])

10: }
// done on GPU: END

11: Swap f and f’ on GPU
#12: }

// (b)
13: }
14: Copy array f from device to host

Fig. 10. A stencil implementation with temporal blocking technique on top
of HHRT (named HHRT-TB). Compared with Figure 3, modified lines are
marked with ∗, and newly added lines are marked with #.

discarded. In the hand code version, it is natural to evacuate
only f from device memory to host memory (line 13 in Figure
6). However, on top of HHRT, HHRT evacuates the contents
of all memory regions that the victim process holds, increasing
the PCIe communication amount.

In order to improve the swapping cost, we prepared a
new API of HHRT so that programmers can supply ”hints”
as follows.

int HH_madvise(void *p, size_t size,
int kind);

‘kind’ is one of following constants:
HHMADV_NORMAL:
[p, p+size) is the normal region

HHMADV_CANDISCARD:
the runtime can discard the contents
of [p, p+size)

By using this API, programmers can specify the memory
regions whose contents can be discarded by HHRT. We can
improve the HHRT-TB implementation (Figure 10) by adding
two lines:

HH_madvise(f’, end of f’, HHMADV_NORMAL),
HH_madvise(f’, end of f’, HHMADV_CANDISCARD)

at the points (a) and (b), respectively (we call the resultant
version ”HHRT-TB-Hint”).

With this information, we can reduce the costs of swapping.
This HH_madvise API is inspired by madvise Linux
systemcall, however, HH_madvise allows more intensive
optimization since the current specification of madvise does
not allow the disposal of memory contents. The effects on
performance of this optimization are evaluated in the next
section.

TABLE I. SYSTEM SOFTWARE USED ON TSUBAME2.5

OS SUSE Linux 11 sp1
Compiler gcc 4.3.4
MPI OpenMPI 1.6.3
CUDA 5.5

V. PERFORMANCE EVALUATION

A. Evaluation Conditions

For the performance evaluation, we used the TSUBAME2.5
petascale supercomputer installed in Tokyo Institute of Tech-
nology. The system mainly consists of 1,408 HP Proliant
SL390s compute nodes, each of which is equipped with two
Intel Xeon X5670 CPUs (6core, 2.93GHz) and three NVIDIA
K20X GPUs 3. Each K20X GPU consists of 2,688 CUDA
cores (732MHz), which are enclosed in 14 SMXs (Stream-
ing Multiprocessor eXtreme), and the peak performance is
3.95TFlops in single precision and 1.31TFlops in double
precision. CUDA cores share on-board device memory with
6GB capacity and 250GB/s bandwidth. CPUs and GPUs are
connected via PCI-Express 2.0 x16 bus, whose theoretical
bandwidth is 8GB/s, about 30 times slower than device mem-
ory bandwidth. Each node is equipped with 54GB or 96GB
host memory, which is 9x to 16x larger than device memory
of a GPU. The list of system software is shown in Table I.

As stencil benchmarks, we implemented several versions
of a simple 7-point stencil programs. The computed grids
are three-dimensional arrays, whose elements have float data
type. In the following evaluations, the grid shapes are regular
cubes, which are decomposed in two-dimension in multi-
process cases. The problem sizes are computed as 2 × n3 ×
sizeof(float) (bytes), where n is the length of cube edges.
Here we include space for double buffering but not for extra
halo region introduced for temporal blocking. Also we do not
count the redundant computation to obtain the performance
number in GFlops.

B. Evaluation on a Single GPU

We compare the performance of the following stencil
programs on a single GPU on a TSUBAME node with 96GB
host memory:

• Hand-TB: Temporal blocking is hand-coded as in
Figure 6.

• Hand-TB-Opt: Based on Hand-TB, and extensive op-
timization techniques, such as redundant computation
elimination, are implemented. The implementation is
even more complex than Figure 6. For details, refer
to [5].

• HHRT-Basic: The ”Basic” implementation (Figure 3)
is simply executed on top of HHRT.

• HHRT-TB: Temporal blocking is implemented as in
Figure 10 and executed on HHRT.

• HHRT-TB-Hint: Based on HHRT-TB, and program-
mers’ hints are used as in Section IV-B.

3In this paper, one GPU per node is used.

Fig. 11. Performance evaluation with various problem sizes on a single GPU
on a node with 96GB host memory.

The graphs in Figure 11 shows relationship between prob-
lem sizes (in GB) and performance (in GFlops). In each case,
execution parameters, temporal blocking size k and the number
of processes sharing a GPU Ps are configured so that we can
obtain the best performance.

We observe that the performance of ”HHRT-Basic” largely
drops when the problem size exceeds the device memory ca-
pacity of 6GB. With other four implementations with temporal
blocking, the performance drop is dramatically mitigated. We
observe HHRT-TB and HHRT-TB-Hint exhibits better perfor-
mance than hand-coded Hand-TB, although programming cost
is reduced. We found that this gap is related to overlapping
between computation and communication. Overlapping is not
explicitly coded in all of Hand-TB, HHRT-TB and HHRT.
However, with HHRT library, the overlapping is automatically
realized since memory swapping of a process can be done
simultaneously while another process is running. Comparing
HHRT-TB and HHRT-TB-Hint, the latter is 21 to 42% faster.

We see the performance of hand-optimized Hand-TB-Opt
surpasses two versions on HHRT, and the gap between HHRT-
TB-Hint and Hand-TB-Opt reaches up to 31%. In order to
shrink this gap, instrumenting advanced optimizations such as
redundancy reducing on HHRT is included in our future work.

Figure 11 also shows that versions on HHRT still have
limitations in problem sizes. In hand written versions, where
all the memory regions are maintained by programmers, we
can support problem sizes around 90GB on 96GB memory
node. On the other hand, since HHRT itself consumes host
memory for its swapping buffers, apart from programmers’
region, the affordable problem sizes are reduced. Comparing
HHRT-TB and HHRT-TB-Hint, programmers’ hints are also
helpful for enlarging problem sizes, since we can reduce the
total size of required swapping buffers. The maximum problem
size in HHRT-TB-Hint is around 53GB, which is 55% of the
host memory capacity. We are planning to improve this point
as future work; a possible approach would be to use Flash
memory or memory on other compute nodes in order to hold
swap buffers.

Fig. 12. Impacts of the temporal block size k on performance.

C. Impacts of Temporal Block Size

Generally, when we introduce temporal blocking technique,
we have to carefully tune execution parameters, especially the
temporal block size k. If k is too small, the performance suffers
from costs for frequent data movement. If k is too large, the
computational cost increases for redundant computation.

Figure 12 shows the performance of HHRT-TB and HHRT-
TB-Hint with various k, with the problem size of 16GB.
We observe the tradeoff described above with both versions,
but the ”optimal” k differs; it is 40 in HHRT-TB and 16
in HHRT-TB-Hint. The performance with smaller k suggests
this difference comes from the difference in impact of data
movement cost, which is twice larger in HHRT-TB. With larger
k, we see the performances of two versions get closer, since
the performance is largely determined by computational cost,
which is common in both versions.

D. Evaluation on Multiple Nodes

This section evaluates the performance of our implementa-
tion on HHRT by using multiple nodes. Here we used compute
nodes with 54GB host memory 4, and one GPU on each node.
Figure 13 demonstrates weak scalability of the HHRT-TB-
Hint implementation. The graph shows four cases and legends
correspond to the problem sizes per GPU. In the smallest
case (4.8GB), no swapping out occurs. In other cases, we
observe we suffer from 22 to 47% overhead, due to memory
swapping costs. In spite of this overhead, the graph shows
that our implementation exhibits good scalability even with
swapping. When the problem size reaches 31GB per GPU
(5.95TB in total), we achieve 9.5TFlops. This result indicates
that HHRT enables users to execute simulations with problem
sizes 5.2 times larger than available device memory capacity
with reasonable overhead.

VI. RELATED WORK

Locality improvement of time iterative simulations is one
of recent hot topics against issues of memory wall, which
will be getting higher towards exascale era. In this context,
temporal blocking for stencil computations has been proposed
and implemented in various computer architectures [7], [8].

4Although single GPU evaluation used a 96GB node, the system does not
have sufficient number of 96GB nodes for this evaluation

Fig. 13. Weak scability of our implementation on TSUBAME2.5 up to
192GPUs.

While most previous papers have focused on improving cache
hit ratio, our objective is to reduce PCI-Express communica-
tion cost between GPUs and CPUs. While the basic concept
is common, this difference heavily impacts on parameter
tuning; while the temporal block size for cache tuning is
typically 2 to 8, we have shown that best parameter in our
case is 16 to 40. Like our work, Mattes et al. has focused
on locality improvement on GPU machines[9]. Although we
skipped the detail, our previous paper described multi-level
temporal blocking, which reduces both device memory traffic
and PCI-Express traffic[5], [6]. Anyway in previous papers,
programming costs for implementing temporal blocking have
been merely mentioned.

In order to write stencil applications, we could use domain
specific framework, instead of using MPI and CUDA directly.
Such an example is the Physis stencil framework [18]. With
this framework, programmers write stencil applications in for-
all style. After programmers write a code fragment for a single
grid point update, the framework produces the iteration code,
communication code and supports for GPU automatically. This
approach is highly promising since it would be possible to
implement optimization techniques including temporal block-
ing in a user-transparent style. On the other hand, if users
already have application codes written in MPI and CUDA [1],
[2], [3], [4], they have to completely rewrite the code for the
framework. Our approach with HHRT allows users to use such
existing code as a start point, and to improve it step by step.

Another approach for efficient applications execution on
GPU systems is to use fine grained task scheduler such
as StarPU[13], PaRSEC[14] or PULSAR[15]. These systems
assume that applications are described in direct acyclic graphs
(DAGs) that consist of fine grained tasks, which are targets of
scheduling, and relationship among tasks. Their assumptions
differ from ours, where the main targets are existing codes
written in MPI and CUDA.

The design of our HHRT library is largely inspired by
Adaptive MPI [16], implemented on top of CHARM++ [17].
Adaptive MPI and HHRT have a common point in the execu-
tion model; several MPI processes share the limited resources
on computer systems. However, the objective is different since
Adaptive MPI’s main target is dynamic load balancing between
compute nodes, while our target is to use limited capacity of
GPU device memory efficiently. Also, Adaptive MPI itself is

not for GPU clusters.

Recently NVIDA has released CUDA version 6 with new
mechanism called Unified Memory[10]. With Unified Memory,
programmers can allocate memory regions whose contents are
moved between device memory and host memory transpar-
ently. This has a similar effect as the swapping mechanism
of HHRT. However, the current Unified Memory does not
compromise the necessity of HHRT, since it does not support
either regions larger than device memory, or arbitration be-
tween processes sharing a GPU, which HHRT supports. When
such limitations are relaxed in future CUDA version, we will
reconsider the design of HHRT.

VII. CONCLUSION

We have demonstrated that we can execute stencil compu-
tations on GPU clusters, while maintaining high performance,
large problem sizes, and low programming costs. The key
is combining temporal blocking technique, which is efficient
locality improvement optimization, and underlying software
layer that supports memory swapping between host and device
transparently.

Through the performance evaluation on the TSUBAME2.5
GPGPU supercomputer, we can support problem size 9 times
larger than GPU device memory with moderate overhead. The
resultant implementation is also highly scalable with a large
number of GPUs; it achieved 13.9TFlops with 192GPUs for
the problem size of 3TB, which is 2.6 times larger than the
total capacity of used GPUs. Also programmers’ hints that
specify the liveness of memory regions are helpful to improve
performance and problem size.

As future work, it will be challenging to implement ad-
vanced optimization techniques, including redundancy reduc-
tion, while keeping the programming costs low. We could sup-
port even larger problem sizes than host memory, if computers
are equipped with fast flash memory devices like FusionIO
ioDrive with > 1GB/s bandwidth [19]. Also we are planning
to demonstrate the feasibility of our approach on Xeon Phi
clusters.

The basic concept of our approach is to harness the
high bandwidth of device memory and the large capacity
of host memory. This concept is not flashy or temporal
one for non-ordinary computers, but general and important
one against the memory wall problem. In order to expand
bandwidth of memory devices towards future supercomputers,
3D-stacked memory architecture is receiving high attention.
However, it will be difficult to achieve both high bandwidth
and large capacity with monolithic memory architecture, and
we will need heterogeneous memory as is the case in the
accelerated hybrid clusters. We will continue to investigate
locality improvement and communication reducing techniques
on changeful supercomputer architectures towards the exascale
era.

Acknowledgements

This research is funded by JST-CREST, ”Software Tech-
nology that Deals with Deeper Memory Hierarchy in Post-
petascale Era”.

REFERENCES

[1] Everett H. Phillips and Massimiliano Fatica: Implementing the Himeno
Benchmark with CUDA on GPU Clusters, IEEE International Sympo-
sium on Parallel and Distributed Processing (IPDPS), pp. 1-10 (2010).

[2] Dana A. Jacobsen, Julien C. Thibault, Inanc Senocak: An MPI-CUDA
Implementation for Massively Parallel Incompressible Flow Computa-
tions on Multi-GPU Clusters, 48th AIAA Aerospace Sciences Meeting,
Orlando (2010).

[3] M. Bernaschi, M. Bisson, T. Endo, M. Fatica, S. Matsuoka, S. Mel-
chionna, S. Succi: Petaflop Biofluidics Simulations On A Two Million-
Core System, IEEE/ACM Supercomputing (SC11), pp. 1-12, Seattle
(2011).

[4] T. Shimokawabe, T. Aoki, T. Takaki, A. Yamanaka, A. Nukada, T. Endo,
N. Maruyama, S. Matsuoka: Peta-scale Phase-Field Simulation for Den-
dritic Solidification on the TSUBAME 2.0 Supercomputer, IEEE/ACM
Supercomputing (SC11), pp. 1-11, Seattle (2011).

[5] Guanghao Jin, Toshio Endo and Satoshi Matsuoka: A Multi-level Opti-
mization Method for Stencil Computation on the Domain that is Bigger
than Memory Capacity of GPU. The Third International Workshop on
Accelerators and Hybrid Exascale Systems (AsHES), in conjuncition
with IEEE IPDPS2013, pp.1080-1087 (2013).

[6] Guanghao Jin, Toshio Endo and Satoshi Matsuoka: A Parallel Optimiza-
tion Method for Stencil Computation on the Domain that is Bigger than
Memory Capacity of GPUs . In Proceedings of IEEE Cluster Computing
(CLUSTER2013), pp. 1–8, (2013).

[7] M. Wittmann, G. Hager, and G. Wellein: Multicore-aware parallel
temporal blocking of stencil codes for shared and distributed memory.
Workshop on Large-Scale Parallel Processing (LSPP10), in conjunction
with IEEE IPDPS2010, 7pages (2010).

[8] Anthony Nguyen, Nadathur Satish, Jatin Chhugani, Changkyu Kim, and
Pradeep Dubey: 3.5-D blocking optimization for stencil computations on
modern CPUs and GPUs. In Proceedings of IEEE/IEEE Supercomputing
(SC10), 13pages (2010).

[9] Leonardo Mattes and Sergio Kofuji: Overcoming the GPU memory
limitation on FDTD through the use of overlapping subgrids. In Pro-
ceedings of International Conference on Microwave and Millimeter Wave
Technology (ICMMT), pp.1536–1539 (2010).

[10] NVIDIA CUDA Toolkit,
https://developer.nvidia.com/cuda-toolkit

[11] A. Petitet, R. C. Whaley, J. Dongarra, A. Cleary: HPL
- A Portable Implementation of the High-Performance
Linpack Benchmark for Distributed-Memory Computers,
http://www.netlib.org/benchmark/hpl/

[12] C. Ding, Y. He: A Ghost Cell Expansion Method for Reducing
Communications in Solving PDE Problems, IEEE/ACM Supercomputing
(SC01), Denver (2001).

[13] C. Augonnet, S. Thibault, R. Namyst, and P. A. Wacrenier: StarPU:
A Unified Platform for Task Scheduling on Heterogeneous Multicore
Architectures. Concurrency and Computation. Practice and Experience,
Special Issue: Euro-Par 2009, 23 pp. 187–198 (2011).

[14] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, J.
Dongarra: PaRSEC: Exploiting Heterogeneity to Enhance Scalability.
IEEE Computing in Science and Engineering, Vol. 15, No. 6, 36-45
(2013).

[15] PULSAR: Parallel Ultra Light Systolic Array Runtime.
http://icl.cs.utk.edu/pulsar/

[16] C. Huang, O. Lawlor, L. V. Kale: Adaptive MPI, Languages and
Compilers for Parallel Computing, Lecture Notes in Computer Science
Volume 2958, pp 306-322 (2004).

[17] L. V. Kale, S. Krishnan: CHARM++: A Portable Concurrent Object
Oriented System Based On C++, ACM Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA), pp. 91-
108 (1993).

[18] Naoya Maruyama, Tatsuo Nomura, Kento Sato, and Satoshi Matsuoka:
Physis: An Implicitly Parallel Programming Model for Stencil Compu-
tations on Large-Scale GPU-Accelerated Supercomputers, IEEE/ACM
Supercomputing (SC11), pp. 1-12, Seattle (2011).

[19] Fusion-io ioDrive2,
http://www.fusionio.com/products/iodrive2

