Software Technologies Coping with
Memory Hierarchy of GPGPU Clusters
for Stencil Computations

Toshio Endo, Guanghao Jin

Tokyo Institute of Technology

—ag fer—
Pursuing Excellence

Our Target: Stencil Computations

Important kernels for many simulation applications

ASUCA weather Metal crystal simulation Air flow simulation
simulation (2011 Gordon Bell)
Old time step New time step

Requisites for Developing/Improving

Stencil Applications
* High Performance

— Already achieved on GPU clusters
— High memory BW (GB/s) and Flops are keys
e Large Scale

— More precise simulations require more Bytes
finer

Currently limited by GPU device
memory capacity (=O(1)GB x #devices)

 Low programming cost

— If applications with O(1K~100K) lines of code exist, it is hard to
rewrite entirely

Our Target: Realizing extremely Fast&Big simulations of
O(100PB/s) & O(100PB) around 2020

Our Concept towards Fast&Big Stencils

Comm. avoiding
algorithms

|

System software for
memory hierarchy
management

+

Temporal

blocking technique
[Wolf 91]
improves locality

00000000
0000000
000000
C|0000
0000

leJe)e}
[eJe)
o

0

1
1

1 Our HHRT library

Oo0O000

supports memory swapping

between device memory

and host memory

HPC Architecture
with deeper
memory hierarchy

CPU
cores

GPU mem
6GB |

250GB/s

PCle
8GB/s

Host memory
54GB

2-Tier memory hierarchy
- GPU device memory:

Faster (250GB/s) and smaller (6GB)
- Host memory:

Slower (SSB/S) and larger (>50GB)

via PCle

H TSUBAME2.5 GPU Supercomputer

5.7PFlops system has
1408 compute nodes

A node has
12 Xeon cores (2.9GHz) &
3 NVIDIA K20X GPUs

TSUBAME 2.5 Node (Simplified)

K20X K20X K20X GPU

GPU
cores

1 RN Enam B

L2S
1.5MB

CPU Dev mem
cores 6GB i
i i r
Host memory
54GB or 96GB

250GB/s

PCle
8GB/s

To other nodes via 4xQDR IB
(4GB/s) x 2

Common Ways for Programming

Stencil on GPUs

e Usually, code is written with CUDA and MPI (in multi-GPU cases)
 Double buffering (one is for even t, and the other for odd t)

e Typical programmers let domain sizes smaller than GPU device
memory size

Node

GPU card

GPU
cores

L2S
1.5MB

B

CPU
cores

ol
A —4

‘] -

4

Host memory
54GB or 96GB

Double buffering

=

Using multi-GPUs & domain decomp
help, but host memory size is even larger!
On TSUBAME?2.5,

* Total GPU memory: 24TB

Other nodes

N\
* Total host memory: 82TB

Motivating Example:
What if domain sizes exceed GPU memory? (1)

e A naive method is:
— Put domain data on host memory
— We divide the domain into small sub-domains

— Repeat
* Copy a “sub-domain” into GPU
* Compute
* Copy back results

Host memory

GPU
cores

Motivating Example:

What if domain sizes exceed GPU memory? (2)
3D 7point stencil on a TSUBAME node
A K20X GPU (6GB GPU mem) is used

Faster Dev mem
140 capacity
A I —-Typical
120 fvﬁ VI
? =-Naive ~25x slower
g 100 I
i 80 : due to large PCle cost!!
- 60 I
Q I . . .
9 40 : This ratio is close to
? 50 i 8GB/s : 250GB/s
O | [= [-
Problem size (GB 58

There is tradeoff between speed and size
Keys for improvement are “Communication
avoiding” algorithms = Change access patterns

Temporal Blocking (TB) for Comm. Avoiding
e TB was originally proposed for better cache locality [Wolf 91]
[Wonnacott 00] —=> We apply it for GPU computing

 When we pick up a sub-domain, we perform multiple (k-step)
updates on GPU at once, and then proceed to the next one
— k: temporal block size

Pros&Cons of TB on GPU

* Pros
— PCle communication is reduced to ~1/k !!

e Cons

— Due to wider halo region, we suffer from
redundant computation

— Code gets much more complex

Effects of Temporal Blocking

3D 7point stencil on a TSUBAME 96GB node
A K20X GPU (6GB GPU mem) is used

Dev mem
140 € i
120 ==-Hand-TB-Opt
Faster —a—Naive
=100
A Qo « \E\
O
i 80 3
e Effects of
B0 T timization Temporal block size k
&a0 — has been optimized
20 : Effects of TB for each plot
O MI T‘ T r | ‘ 1 (k= 10 ” 90)
0 20 40 60 80 100
Problem Size (GB .
> Bigger

For the optimized version, please refer to

G.Jin, T.Endo, S. Matsuoka: A Parallel Optimization Method for Stencil Computation on
the Domain that is Bigger than Memory Capacity of GPUs, Cluster 2013

But How about Programming Cost?

Hand-coding TB

Naive version

: “Big but slow” " Outer Temporal)
Typical code loop (Nt(k times)
“Small” / N\ s \
Temporal loop - Loop over _
[Sub-domains
Copy domain 4 Loop over _ _ I :
Host = Device Sub-domains Copy sub-dorriam
Host - Device
/ \ Copy sub-domain / : N
Inner Temporal Y}

TemporalLoop [~
|

Host = Device
|
Compute
Points in sub-dom

I
Copy sub-domain

loop (k times)

Compute
Points in sub-dom
|

()

Compute
Grid points

|
MPI comm. of

—— o o o = = omm o)

bou?dary Device ? Host Copy sut;-domain
L | J‘ - MPI comm. of i very slow Device I% Host
Copy domain bounldary : idue to MPI comm. of
Device 2 Host L } - frequent k boulndary
C] 7 PCl -e C
|

Considering Programming Cost

* Differences between “typical” and “hand-coding TB”
— “Sub-domain” loop is introduced
— Temporal loop is divided into “inner” and “outer”
— PCle and MPI comm is done out of “inner” loop

 We were happy if we could automatically convert
“typical” to “TB” code, but it is hard

Instead, our approach is:

* Reducing programming cost by using system software,
named HHRT (Hybrid Hierarchical Runtime) , which is
aware of memory hierarchy

The HHRT Library

* HHRT supports applications written in CUDA and MPI
— HHRT works as a wrapper library of CUDA/MPI

w/o HHRT With HHRT
App App
CUDA MP
OS/HW
OS/HW

Functions:
 HHRT supports overprovisioning of MPI processes on each GPU

* HHRT executes memory swapping between device memory and
host memory

— Not “page-wise” swapping, but “process-wise” swapping

Execution model of HHRT

w/o HHRT (typically)

CLU

Pri

Node Device memory
|daMemdpyI |
/ ______
Proces§s'/data Host memory
With HHRT
Node Device memory

)cess’s\data Host memory

m MPI processes share a single GPU

In this case, m=6

Processes on HHRT

Running processes
e
\ | memory

4_|_|’ Sleeping processes

Node
Process’s ,

data :
\ \

- [r=————n ==

NLE 1

[| [|

Host mem

* We suppose

s < Device-memory-capacity<ms

s: Size of data that each process allocates on device memory

m: The number of processes sharing a GPU

- We can support larger data size than device memory in total

* But we cannot keep all of m processes running

- HHRT makes some processes “sleep” forcibly and implicitly

State Transition of Each Process

A process is blocked f
due to MPI operation |
(MPI_Recv, MPI_Wait.)

Running]

Swapping finished

All data on device

3 : All data are
(cudaMalloc’ed) [Swapping Swapping rostored from
are evacuated to out in host to device
host memory
Swapping finished There is enough space
on device memory
Sleeping Sleeping
(Blocked) (Runnable)

MPI operation is
now unblocked
(cf. message arrived)

Implementing Temporal Blocking on HHRT (1)

How do we divide larger domain into smaller sub-
domains?
— w/o HHRT: 1GPU € 1 process €< m sub-domains
— With HHRT: 1GPU €< m processes € m domains
Each process maintains only one domain
We don’t need additional sub-domain loop

How is domain data moved?
— w/o HHRT: PCle comm is done explicitly
— With HHRT: Implicitly within MPl comm

On the other hand, doubly nested temporal loops
should be written in hand

Implementing Temporal Blocking on HHRT (2)

hand-coding TB

” Outer Temporal N

loop (Nt/k times)
/

Loop over
Sub-domains

N

Copy sub-domain
Host = Device

1
4 Inner Temporal N

loop (k times)

Compute
Points in sub-dom

(;

|

Copy sub-domain

Device - Host
|

MPI comm. of

k boundary

Typical code

k-times update is done

w/o intervention

N
Temporal Loop [~

Compute
Grid points

MPI comm. of
boundary

——— o o = o mm mm = = o= o)

!),

™~ Swapping (PCle comm)

is done implicitly here

TB on HHRT

Copy grid

Host = Device
|

4 Outer Temporal N

loop (Nt{_k times)

oS N mm mm - .y
4 Inner Temporal
loop (kltime_s)

\:\

Compute

Grid points

1
MPI comm. of

k boundary

)/

-
—— o]

|
Copy grid
Device - Host

1
L

Current Results with HHRT

3D 7point stencil on a TSUBAME 96GB node SLES Linux 11SP1
A K20X GPU (6GB GPU mem) is used * CUDAS5S.5
Dev mem * OpenMPI1.6.3
it Current Limitation .
120 SBPACILY J gcc4.3.4
Faster120
2100 -
9 rgeo Achieving fast&(fairly) big
T 60 execution with moderate
& 40 programming cost
20

Problem Size (GB)

—o=Hand-TB ===Hand-TB-Opt
——Naive HHRT-TB

—=-HHRT-TB-Hint >La rger

Current Limitations

* Memory pressure

— HHRT itself consumes host memory for swap buffers 2
Applications cannot use the entire host memory

* Programmers can provide “hints” on livingness of each buffer >
memory pressure is reduced and performance is improved

e Refer to Section IV-B of our paper

e Performance

— Optimizations done in Hand-coding version have not
integrated

— Communication of halo region is heavy

* cudaMemcpy(D2H) — MPI_Send/Recv — cudaMemcpy(H2D) are
required even within a single GPU

— Scheduling algorithm of HHRT is to be improved

Scalability with HHRT

* 3D 7point stencil on multiple TSUBAME2.5 54GB nodes
 1GPU per node is used

Weak scalability

9.5TFlops with
6TB Problem

Showing good scalability

0 50 100 150 200
The number of GPUs

4.8GB =16GB 21GB —-31GB

\ }
|

Problem sizes per GPU

Summary

Fast&Big&Easy (Stencil) Simulations are

Comm. Avoiding
Algorithms

becoming ready

+ System +

Software

Deeper Memory
Hierarchy

Future Work

Harnessing memory hierarchy with 3-tier or more
— Device memory + Host memory + Flash/burst buffer

— Towards O(1TB)/node scale
Improving performance

— Removing redundant computation
— Supporting GPU-direct by HHRT
— Improving scheduling methods of HHRT

HHRT for Xeon Phi

Defining next-gen memory architecture
— HMC/HBM, ReRAM, PCM, STT-RAM...
— Which should be included? Capacity balance?

