
High Performance LU Factorization
for Non-dedicated Clusters

Toshio Endo
PRESTO, JST∗

endo@logos.t.u-tokyo.ac.jp

Kenji Kaneda
University of Tokyo/PRESTO, JST

kaneda@is.s.u-tokyo.ac.jp

Kenjiro Taura
University of Tokyo/PRESTO, JST

tau@logos.t.u-tokyo.ac.jp

Akinori Yonezawa
University of Tokyo

yonezawa@is.s.u-tokyo.ac.jp

Abstract

This paper describes an implementation of parallel LU
factorization. The focus is to achieve high performance
on non-dedicated clusters, where the number of avail-
able computing resources may be arbitrary and even dy-
namically changing. We accommodate joining/leaving
processes by describing the algorithm in the Phoenix
programming model. We achieve high performance in
this setting by a combination of techniques including
a latency tolerant communication and data partition-
ing that achieves both load balance and small communi-
cation volume for arbitrary and dynamically changing
number of processors. We observed 130 GFlops with
128 processes on a 70-node dual 2.4GHz Xeon cluster,
at matrix size = 46,080. This performance is compa-
rable to that of the High Performance Linpack (HPL).
When cluster nodes are loaded by background processes,
our implementation surpasses HPL.

1 Introduction

Today’s common practice in managing heavily shared
cluster resources is space sharing with batch sched-
ulers. This is especially true for traditional high per-
formance computing (HPC) applications such as ma-
trix operations and PDE solvers, because they often
need dedicated resources for predictable load-balancing
and synchronization latencies. On the other hand, so-
called “high-throughput computing” [6, 3, 8] have a
strength that they can take advantage of non-dedicated
resources such as desktops and interactively shared, un-
managed clusters.

As far as hardware performance is concerned,
powerful desktops/laptops and ever increasing local-
/campus-/wide-area bandwidths are almost “ready”
for HPC applications. Sooner or later, we will have
a pool of shared and decentralized resources connected

∗Japan Science and Technology Agency

by links powerful enough for traditional HPCs. We can-
not exploit such resources for them for free, however. A
combination of proper algorithm design, programming
model, and middleware is necessary to make it real.

This paper takes one HPC application, LU factor-
ization, and studies an algorithm that achieves robust
performance in shared environments and therefore can
take advantage of non-dedicated resources. We chose
this problem because it has been a popular benchmark
for dedicated parallel computers and there is a com-
mon basis for absolute performance comparison. Stan-
dard algorithms for LU perform static load-balancing,
static data-partitioning, extensive communication, and
frequent barrier synchronization, so we face every diffi-
culty in running it efficiently in non-dedicated environ-
ments. We tackle this problem by a combination of a
proper, latency-tolerant and adaptive algorithm design
and middleware we developed called Phoenix [11]. The
algorithm is asynchronous to combat with scheduling
skews. It also performs dynamic load balancing and
data partitioning, while carefully maintaining required
communication volume. Finally, it allows newly avail-
able processes to join the ongoing computation. On a
70-node dual Xeon 2.4GHz cluster connected via Gi-
gabit Ethernet, we achieved 130 GFlops with 128 pro-
cesses at matrix size = 46,080. This is comparable to
HPL[10] in our environment. When some nodes are
loaded, our algorithm is more robust than HPL and
surpasses it. We also confirmed it can take advantage
of dynamically joining resources; when it started with
a small number of nodes and then acquired additional
resources at runtime, it reached a similar peek speed
with the case where all nodes participate from the be-
ginning and assume processes are static.

The rest of the paper is organized as follows. Section
2 describes the Phoenix programming model briefly. In
Section 3, we mention characteristics of LU factoriza-
tion and a traditional data distribution method. We
describe our implementation of LU on the Phoenix
model in Section 4. Section 5 evaluates its performance

and compares it with that of HPL. We mention related
work in Section 6 and conclude in Section 7.

2 Phoenix Model

The Phoenix model, which we used to describe our LU
algorithm, is a small but important extension to a reg-
ular message passing model. The extension is to de-
scribe message passing algorithms using dynamic pro-
cesses. As in usual message passing models, applica-
tion processes can communicate by sending messages
to a desired destination. Unlike in traditional mod-
els, however, the name of the destination is not per-
manently bound to a physical computing resource. In-
stead, Phoenix provides another name space, called the
virtual node space. Usually, the virtual node space is
a contiguous range of integers. An application speci-
fies a virtual node as the destination of each message.
In typical applications, the number of virtual nodes is
much larger than that of processes. In our LU imple-
mentation, we associate each matrix block with a single
virtual node. Applications can specify the mapping be-
tween virtual nodes and processes arbitrarily. When
a process performs a Phoenix API call ph send(v),
where v is a virtual node name, the runtime system de-
livers the message to the process that is associated with
v at the time. The receiver process receives the mes-
sage by ph recv()(blocking) and ph try recv() (non-
blocking). Phoenix allows applications to change the
mapping between virtual nodes and processes dynami-
cally. After a process p calls ph assume(s), where s is a
set of virtual nodes, all messages whose destination are
in s are delivered to p. After p’s calling ph release(s),
messages destined for s are not delivered to p any more.
For details of the Phoenix API, see [11]. An important
note is that Phoenix is not similar to the data-parallel
or the SIMD model, where the programmer specifies
the behavior of each “virtual processor” and the sys-
tem automatically schedules multiple virtual proces-
sors mapped on a physical process. Instead, Phoenix is
still an MPI-like message passing model, where the pro-
grammer writes the behavior of each (physical) process,
and a receiving API call (i.e., ph recv()) receives all
messages destined for that physical process. The only
difference is that Phoenix programmers specify mes-
sage destinations not by physical process names, but
by virtual node names whose corresponding physical
processes are known only at runtime.

In summary, we can write most parts of parallel pro-
grams independently from the number of physical pro-
cesses. Suppose we map an element of an array A(i)
to virtual node i. When computation of A(n) depends
on the result of A(m), all a programmer needs to do is
to send the value A(m) to the virtual node n, without
knowing which process actually possesses A(n).

1: for (k = 0; k < B; k++) {
2: Ak,k = factorize(Ak,k);
3: for (i = k + 1; i < B; i++)
4: Ai,k = update L(Ai,k, Ak,k);
5: for (j = j + 1; j < B; j++)
6: Ak,j = update U(Ak,j , Ak,k);
7: for (i = k + 1; i < B; i++) {
8: for (j = j + 1; j < B; j++) {
9: Ai,j = Ai,j − Ai,k × Ak,j ;
10: } } }

Figure 1: An outline of sequential LU factorization

3 LU Factorization

Figure 1 shows an outline of sequential LU factoriza-
tion. We assume N × N dense matrix is divided into
SB × SB blocks. In the figure, Ai,j represents the
(i, j)th block rather than a single element. We let B
to be the number of blocks N/SB. The kth iteration
of the outermost loop consists of the following opera-
tions. First, we factorize the diagonal block Ak,k (line
2). Then we update the lower blocks in column k by
using the value of Ak,k (line 4). Similarly, blocks in
row k are updated (line 6). Finally, we update the
trailing sub-matrix, which contains blocks Ai,j , where
k+1 ≤ i, j < B (line 9). Block Ai,j requires the results
of Ak,j and Ai,k for its computation.

3.1 Discussion of Parallel Performance

Now, let us consider the communication cost of parallel
LU. When the computation of a block b is finished, it
should be multicast to all processes that contain blocks
of the same row or column with b. Thus the communi-
cation cost is proportional to the number of processes
that cover a single row or column. We can see it is
important to reduce the number of such processes.

We also need to take care of the load balance. As the
outermost loop is advanced, the size of the sub-matrix
to be updated shrinks. Since blocks in the right-lower
are updated more times than blocks in the upper-left,
such ‘heavy’ blocks should be scattered across many
processes to avoid load imbalance.

To achieve both low communication cost and load
balance, many traditional parallel implementations
have adopted two-dimensional block cyclic distribution.
This is also adopted in HPL, which uses LU factoriza-
tion to solve linear equations system. All P processes
conceptually construct a two-dimensional Px×Py grid.
Each block is assigned cyclically along both dimensions
of the grid. By using a cyclic assignment, we can scatter
heavy blocks on all processes. This mapping also limits
the number of processes that cover a single row or col-
umn. The total communication cost is O(N2(Px+Py)),

which gets smaller as Px and Py are closer.
The problem of this mapping is that it requires the

size of the process grid to be fixed statically. In the
next section, we describe an implementation that sup-
ports arbitrary and even dynamically changing number
of processes.

4 Our Implementation

4.1 Overview

This section presents our implementation of parallel
LU that supports dynamically changing number of pro-
cesses. Our implementation is based on the Phoenix
model. We introduce a virtual node space whose size is
fixed during the whole computation. Each virtual node
is associated with a block of the matrix, as described
in Section 4.2. At the beginning of the computation,
we start a fixed number of ‘initial processes’. The vir-
tual node space is distributed among them. Each pro-
cess invokes the computation of blocks in a data-driven
fashion, rather than computes them synchronously. We
expect this method makes our implementation be re-
silient to unexpected delays caused by background pro-
cesses. To schedule the computation of blocks, each
process maintains a prioritized task queue. The details
are shown in Section 4.4. During the computation, our
implementation allows new processes to join dynami-
cally, whenever you want to do so. A newly added pro-
cess steals some virtual nodes from existing processes
and then starts its computation.

4.2 Mapping Data onto Virtual Nodes

In our implementation, we construct a B × B two-
dimensional grid of virtual nodes regardless of the num-
ber of physical processes. Then we map a single block
to each virtual node (As described in Section 2, each
virtual node actually has a name of an integer; we use
the two dimensional name in the following discussion).
Here we focus on the load imbalance introduced by
the inequality among the blocks. In the traditional
implementation, the cyclic distribution alleviates this
imbalance. However, we cannot adopt it simply, be-
cause it uses the number of processes as the length of
the cycle. Instead, we hash the position of blocks on
the virtual node space as shown in Figure 2. We assign
block Ai,j to virtual node (h(i), h(j)), where h is a ran-
dom permutation of [0, B). The permutation h needs
to be static and agreed among all processes. By doing
this, we expect ‘heavy’ blocks are scattered on many
processes when the virtual node space is divided.

Note that blocks in a single row (or column) on the
original matrix are still settled in the same row (or col-
umn) on the virtual node space. Hence the discussion
on the communication cost in the previous section also
applies to the virtual node space. In the next section,

A22 A24 A23 A20 A25 A21

A42 A44 A43 A40 A45 A41

A32 A34 A33 A30 A35 A31

A02 A04 A03 A00 A05 A01

A52 A54 A53 A50 A55 A51

A12 A14 A13 A10 A15 A11

0 1 2 3 4 5

0

1

2

3

4

5

virtual node (2,5)

A22 A24 A23 A20 A25 A21

A42 A44 A43 A40 A45 A41

A32 A34 A33 A30 A35 A31

A02 A04 A03 A00 A05 A01

A52 A54 A53 A50 A55 A51

A12 A14 A13 A10 A15 A11

A22 A24 A23 A20 A25 A21

A42 A44 A43 A40 A45 A41

A32 A34 A33 A30 A35 A31

A02 A04 A03 A00 A05 A01

A52 A54 A53 A50 A55 A51

A12 A14 A13 A10 A15 A11

0 1 2 3 4 5

0

1

2

3

4

5

virtual node (2,5)

Figure 2: An example of mapping between blocks and
virtual nodes, when h(0) = 3, h(1) = 5, h(2) = 0,
h(3) = 2, h(4) = 1 and h(5) = 4.

we pay attention to how we divide the space in order
to reduce the communication cost.

4.3 Distributing Virtual Nodes

We describe the distribution of a two-dimensional vir-
tual node space among initial processes. We allow the
number of initial processes, say P , to be arbitrary,
while all of them must know P . Our forcus is to make
the shape of the partial space of each process be as
close to a regular square as possible. Such a division
tends to reduce the communication cost, because it re-
duces the number of processes that cover a single row
or column. This is achieved by using the recursive bi-
section technique, described by Crandall et al. [7] in
the context of heterogeneous clusters.

Figure 3 shows an example of the division among
nine processes. First, we divide P processes into
two groups, whose sizes are P1 = �P/2� and P2 =
P − �P/2�, respectively. In the figure, we divide nine
processes into four and five. Then we divide the longer
edge of the rectangle in a ratio of P1 : P2. If the rect-
angle is a regular square, the direction to be cut is
arbitrary. Next, we associate two new rectangles to
the process groups respectively and repeat the division
recursively.

4.4 Behavior of Processes

Figures 4 and 5 describe the behavior of each initial
process. The behavior of dynamically added processes
is similar except that they do not initialize local data
in the beginning, but steal data from other processes.

Each process maintains its assigned virtual node set
L and its local blocks Ai,j . For data-driven execution,
a process maintains the iteration number, named Ki,j ,
for each local block. T is a prioritized task queue that

B4
9

B5
9

B2
5

B3
5

B4
9

B4
9

B5
9

B5
9

B2
5

B2
5

B3
5

B3
5

Figure 3: Dividing a B × B virtual node space among
9 initial processes.

holds all local runnable tasks. R is an array of buffers
for received data from other processes; computation
result of Ai,j is stored at Ri,j in receiver processes.

At the beginning, initial processes set up their lo-
cal data in the function initialize. Since the task
graph of LU starts at A0,0, a process that possesses
A0,0 throws the initial task into T .

Then each process starts mainloop, where it repeat-
edly examines its task queue T and message queue by
using ph try recv API. If there is a runnable task in
T , it is executed in run task. The result of the task
is sent to processes that depend on its result in mcast
function. Our multicast method is described below.
When a process receives a result of Am,n, it is stored
at Rm,n in handle msg. Then all blocks that depend
on Am,n are examined whether they are runnable now.
If a runnable block is found, it is thrown into T . By re-
peating these tasks, all processes cooperatively proceed
in the whole computation.

multicast Here we discuss how we should multi-
cast the contents of blocks. Suppose we attempt to
send a message M to all members in a virtual node
set D. It is too expensive to send distinct messages
to each member. Instead, we use the following
method described in mcast function. The sender
chooses one virtual node d from D and sends a
pair (M, D) to d. When a process that possesses
d receives the message, it forwards (M, D \ L) to
one of D\L. This method limits the number of to-
tal messages to the number of involved processes,
rather than |D|.

garbage collection of R Although omitted from
the pseudo code, we remove elements in the receiv-
ing buffer R when they are no longer required.

task scheduling Through the experiments, we

have found that when the task queue is a sim-
ple FIFO, the algorithm does not have a desired
resiliency to background processes. To improve
this, we execute tasks that reside on the crit-
ical path earlier. For this purpose, we imple-
ment task queues as prioritized queues. We as-
sign a number Pr(t) that represents priority to
each task. The smaller Pr(t) stands for higher
priority. We let t to be the k-th updating task
of a block Ai,j . We define the priority of it as
Pr(t) = min(min(i, j), k + S), where S is a given
constant number. Our intention is to suppress
the skews of iteration among blocks. The itera-
tion numbers of blocks in a single process tends
to be within a range of S. Thus we call S ‘target
skew’. Although we can tolerate larger delay by
using larger S, the memory consumption for re-
ceiving buffer R grows. We will show the effects
of S in Section 5.

4.5 Dynamically Joining Processes

We allow new processes to join the running computa-
tion dynamically. Unlike initial processes, each new
process needs to know neither the number of running
processes, nor the number of processes to be added.
Instead, we assume it knows the size of the whole vir-
tual node space. Now let us suppose a new process t
attempts to join the running computation. As t has no
virtual node, it needs to obtain some nodes from run-
ning processes. For this purpose, t (called the thief)
sends a steal message to a randomly chosen destina-
tion in the virtual node space by using ph send. When
a process v (called the victim) receives the message, it
divides its local virtual nodes into two groups. Then
v abandons one of the two by ph release and sends
them with associated matrix data to the thief t. When
t receives them, it starts the computation. How should
v divide its virtual nodes? If the virtual nodes compose
a single rectangle, the situation is similar to the case
for initial processes; we divide the longer edge of it. If a
victim has several rectangles, we divide them into two
groups arbitrary.

Contrarily, a running process may attempt to leave
the computation. In this case, it gives all its virtual
nodes to one of other processes and then quits.

After the number of processes has been changed, the
amount of the local virtual nodes may be imbalanced
among processes. To alleviate it, we introduce dynamic
load balancing function by making a simple extension
to the steal messages. We let each running process,
say t, send a steal message to a random destination
periodically. It attaches an additional information St,
the number of t’s local virtual nodes, to the message.
The receiver or the victim v compares the number of
its local virtual nodes Sv to St. If v founds Sv is suf-
ficiently larger (currently if Sv > 2St), it attempts to

initialize() {
determine initial L;
ph assume(L);
for all (p, q) in L {

i := h−1(p); j := h−1(q);
set up Ai,j ;
Ki,j := 0;

}
for all (i, j) in [0, B) × [0, B)

Ri,j := NULL;
T := empty;
if ((h(0), h(0)) ∈ L) // if I have A0,0

enqueue(T, 〈0, 0, 0〉);
mainloop();

}

mainloop() {
while (true) {

if (T is not empty) run task(dequeue(T));
M := ph try recv();
if (M �= NULL) handle msg(M);

}}

handle msg(〈block, m, n, A, D〉) {
Rm,n := A; // store received Am,n locally
for all (p, q) in (D ∩ L) {

// for all local blocks affected by Am,n

i := h−1(p); j := h−1(q);
if (is runnable(i, j))

enqueue(T, 〈i, j, Ki,j〉);
}
mcast(〈block, m, n, A, D \ L〉); // forward msg

}

is runnable(i, j) {
k := Ki,j ;
if (i = k and j = k) return TRUE;
else if (j = k and Rk,k �= NULL)

return TRUE;
else if (i = k and Rk,k �= NULL)

return TRUE;
else if (Ri,k �= NULL and Rk,j �= NULL)

return TRUE;
return FALSE;

}

mcast(〈block, i, j, A,D〉) {
// send msg to all virtual nodes in D
if (D �= ∅) {

d := any member of D;
ph send(d, 〈block, i, j, A, D〉);

} }

Figure 4: An outline of our asynchronous parallel LU
factorization

run task(〈i, j, k〉) {
if (i = k and j = k) comp diag(k);
else if (j = k) comp L(i, k);
else if (i = k) comp U(j, k);
else comp trail(i, j, k); }

comp diag(k) {
Ak,k := factorize(Ak,k);
// send result to row k
D := {(h(k), h(j))|k + 1 ≤ ∀j < B};
mcast(〈block,k, k, Ak,k, D〉);
// send result to column k
D := {(h(i), h(k))|k + 1 ≤ ∀i < B};
mcast(〈block,k, k, Ak,k, D〉);
Kk,k := k + 1; }

comp L(i, k) {
Ai,k := update L(Ai,k, Rk,k)
// send result to row i
D := {(h(i), h(j))|k + 1 ≤ ∀j < B};
mcast(〈block,i, k, Ai,k, D〉);
Ki,k := k + 1; }

comp U is similar to comp L. omitted

comp trail(i, j, k) {
Ai,j := Ai,j − Ri,k × Rk,j ;
Ki,j := k + 1; }

Figure 5: An outline of our asynchronous parallel LU
factorization (cont.)

balance between v and t by giving (Sv − St)/2 virtual
nodes to t. We expect the amount of virtual nodes
are balanced among all processes after repeating these
transactions sufficiently many times.

5 Experimental Results

5.1 Experimental Environments

We evaluate the performance of our LU implementa-
tion. Our implementation is written in C language on
top of the Phoenix library [11].

We also show the performance of the HPL. Note that
comparing HPL and our LU may not be fair, because
HPL supports row pivoting, while our implementation
does not support. However, the computation complex-
ity is approximately common between them (Both per-
form (2/3)N3 + O(N2) floating operations), hence we
believe this comparison is useful for a rough evaluation.
We ran HPL on the mpich MPI library [2].

As a basic block for linear algebra calculation, both
programs use a BLAS library that is automatically gen-
erated by the ATLAS optimizer [1]. In the experiments,
we let the block size SB to be 240, since we have ob-
served the dgemm matrix multiply function in the gen-
erated BLAS library shows good performance on this
size.

Experiments are done on a 70-node IBM BladeCen-
ter cluster system connected via Gigabit Ethernet. The
central switch is Extreme Summit7i. Each Linux 2.4.19
node is equipped with two 2.4GHz Intel Xeon proces-
sors and 2GBytes memory.

5.2 Sequential Performance

We have run our LU and HPL on a single process at
the matrix size N = 7680. The sequential speed of ours
is 2.19 GFlops, while that of HPL is 2.85 GFlops. We
suppose this difference comes from the costs paid for
each block in ours. For example, ours apply the dgemm
function for each block independently, while HPL up-
dates several blocks by a single dgemm call because it
adopts synchronous style. We are planning to design a
method that supports both asynchronism and reducing
the costs.

5.3 Parallel Performance

Figure 6 shows the parallel performance of our LU and
HPL at N = 30720 and N = 46080. The number of
processes is fixed during each run. When we use 96 or
128 processes, we assign them to nodes in the cluster
in a round-robin style. The graphs include the speeds
with several values of target skew S: 0, 5 and ‘Inf’
(infinity).

In all cases, we can see both programs scale well.
Ours achieves 130 GFlops (N = 46080, S = 5) on 128

0

50

100

150

200

0 50 100 150
number of processes

S
pe

ed
 (

G
F

lo
ps

)

Ours(S=0) Ours(S=5)

Ours(S=Inf) HPL

0

50

100

150

200

0 50 100 150
number of processes

S
pe

ed
 (

G
F

lo
ps

)

Ours(S=0) Ours(S=5)

Ours(S=Inf) HPL

Figure 6: Speeds of our LU and HPL on 32 – 128 fixed
processes. The matrix size N is 30720 in above graph
and 46080 in below. The sizes of the process grids in
HPL are 4 × 8, 6 × 8, 8 × 8, 8 × 12 and 8 × 16.

processes. Compared with the sequential performance,
the speedup is 55.2–59.4 times. While we can improve
the speed by using larger S, it expands the memory
consumption. ‘S = Inf ’ did not work at N = 46080
because of memory shortage. ‘S = 5’ seems to be
a good compromise between speed and memory con-
sumption.

The absolute speeds of HPL surpass those of
ours(S = 5) by 12% at N = 30720 and 27% at N =
46080 on 128 processes. We consider this comes from
the difference of the sequential computation speed.

5.4 Resiliency to Background Pro-
cesses

Next, we evaluate the performance with the existence
of background processes. While our LU or HPL is run-
ning, we ran processes that consume processors on ran-
domly chosen nodes. The number of the background
processes is four per chosen node. They are moved to
other random nodes every ten seconds. Figure 7 shows
the performance of our LU and HPL with the back-
ground load. The number of computation processes is

0
20
40
60
80

100
120

no load 4 8 16
number of loaded nodes

S
p

e
e

d
 (

G
F

lo
p

s)

Ours (S=0) Ours (S=2) Ours (S=5)

Ours (S=Inf) HPL

Figure 7: The performance with the existence of back-
ground processes. The number of computation pro-
cesses is 64.

0
20
40
60
80

100
120

Fixed-16 Dynamic
(w/o DLB)

Dynamic
(w/ DLB)

Fixed-64

S
p

e
e

d
 (

G
F

lo
p

s)

Figure 8: The speed of our LU with dynamically joining
processes. The graph includes the average, best, worst
speeds among five runs. In ‘Dynamic’, 16 processes
run first and then 48 processes join. In ‘Fixed-P ’, we
always use P processes.

64 and N = 30720. We see the performance of HPL
and ‘S = 0’ heavily suffers from background processes.
When sixteen nodes are loaded, they slow down by 31%
and 29% respectively. With larger target skew S, we
can make our LU much more resilient; it slows down
only by 10% at ’S = 5’ and ‘S = Inf ’. From these
results, we can see that we need both the data-driven
execution method and a proper task scheduling for re-
siliency.

5.5 Dynamically Joining Processes

Figure 8 shows performance of our LU when new pro-
cesses are added at runtime. In the ‘Dynamic’ bars,
we start the computation with 16 initial processes and
immediately add 48 new processes. Then all 64 pro-
cesses work until the end. In ‘Dynamic (w/o DLB)’,
we turn off the dynamic load balancing described in
Section 4.5; after each new process succeeds in its first

0

50

100

150

200

0 100 200 300
time (sec.)

S
p

e
e

d
 (

G
F

lo
p

s)

Fixed-64 Dynamic (w/ DLB)

Dynamic (w/o DLB)

Figure 9: The transition of the speed with dynamically
joining processes.

stealing, no more load balancing is performed for that
process. ‘Fixed-P’ uses P fixed processes during the
whole computation. In all cases, the matrix size N is
30720. Each bar represents the average speed among
five runs, with the best and the worst speeds indicated
with error bars.

It is clear from the graph that the dynamic load
balancing is necessary to take advantage of dynami-
cally joining processes. Without it, even adding 48
processes does not raise any improvement in the worst
case. With dynamic load balancing, the speed rises to
63–69 GFlops, which is 1.73 to 1.88 times faster than
Fixed-16.

Figure 9 shows the transition of the speed during
the computation. It includes two dynamic cases and
Fixed-64. We can see that, both dynamic cases reach
a peek speed close to that of Fixed-64. This suggests
that if the problem gets larger and hence the compu-
tation time longer, completion times of Dynamic and
Fixed-64 will get closer. The difference between ‘w/o
DLB’ and ‘w/ DLB’ appears in later stages of the com-
putation. With DLB, the speed descends more rapidly
than in ‘w/o DLB’, hence the total computation time
is reduced. Because this descent gets more rapid as the
load is balanced more fairly, there seems to be room for
further improvement in ‘w/ DLB’ by introducing more
aggressive load balancing.

6 Related Work

Some researchers have been working on parallel numer-
ical algorithms that are suitable for modern cluster ar-
chitectures. Beaumont et al. [5] constructed a alge-
bra library for heterogeneous clusters. They extend a
two dimensional block-cyclic distribution so that blocks
are assigned to each process according to the processor
speed. Unlike our method, they construct a 2D process

grid. This seems inefficient when the number of pro-
cesses is prime. Our data distribution is similar to that
of Crandall et al. [7]. By recursively dividing a 2D ma-
trix, they efficiently harness all computing resources of
arbitrary numbers. They also take the processor speed
into account.

Both approaches above deal with only static environ-
ments; they assume the number and the speed of ma-
chines are constant while programs are running. Mat-
subara et al. [9] have proposed an extension to MPI
to support dynamic changing number of processes and
loads by other processes. Currently, they use only one-
dimensional distribution, which causes large commu-
nication overhead. Their framework assumes that all
processes in user programs reach ‘scheduling points’ si-
multaneously. This assumption seems to make it dif-
ficult to write programs in an asynchronous style like
ours.

7 Conclusion

This paper has described an implementation of parallel
LU factorization. Our implementation performs well in
non-dedicated clusters, since it achieves a good perfor-
mance with processes of arbitrary and even dynamic
changing number. By using the recursive bisection and
the random permutation of the two dimensional space,
we have succeeded in describing LU in a style inde-
pendent from the number of processes. By invoking
the computation of each block in a data-driven fashion
and scheduling tasks properly, our algorithm is much
more resilient to background processes than regular
synchronous algorithms. Experiments show that our
implementation achieves 130GFlops on 128 processes
at matrix size = 46,080.

According to the Top500 list[4] just announced, a
cluster of a similar hardware configuration to ours
achieved about a twice performance of ours with a sim-
ilar matrix size (210GFlops at size = 25,000 to 30,000,
which is half of their best at size = 90,000 to 130,000).
Since we do not know the details of their algorithm,
we cannot conclude what is the source of the difference
as of writing. We can hopefully incorporate any se-
quential optimization we are missing into ours, if any.
One of the common challenges in Grid and large-cluster
programming is how to build programs that “adapt
to” the environment. Ideas we used are all common
ones. Asynchrony masks skews and latencies and dy-
namic load/data partitioning relieves impact of dis-
turbing loads. A proper programming model support
made it possible to describe general message passing al-
gorithms with dynamic processes. We hope our study
shows proper combination of these ideas are effective
even for HPC applications, which traditionally aim at
squeezing performance almost solely in dedicated envi-
ronments.

References

[1] Automatically tuned linear algrbra software (ATLAS).
http://math-atlas.sourceforge.net.

[2] MPICH - a portable MPI implementation.
http://www-unix.mcs.anl.gov/mpi/mpich/.

[3] Portable batch system. http://www.openpbs.org/.

[4] TOP500 supoercomputer sites.
http://www.top500.org/.

[5] O. Beaumont, V. Boudet, A. Petitet, F. Rastello, and
Y. Robert. A proposal for a heterogeneous cluster
ScaLAPACK (dense linear solvers). IEEE Trans. on
Computers, 50(10):1052–1070, 2001.

[6] R. Buyya, D. Abramson, and J. Giddy. Nimrod/G: An
architecture for a resource management and scheduling
system in a global computational grid. In Proc. of HPC
ASIA, pages 283–289, 2000.

[7] Phyllis E. Crandall and Michael J. Quinn. Block data
decomposition for data-parallel programming on a het-
erogeneous workstation network. In Proc. of HPDC,
pages 42–49, 1993.

[8] M. Litzkow, M.Livny, and M. Mutka. Condor - a
hunter for idle workstations. In Proc. of ICDCS, pages
104–111, 1988.

[9] Masazumi Matsubara, Kazuhiro Suzuki, and Akira
Katsuno. Dynamic load balancing in HPC applica-
tions for autonomous computing. IPSJ Trans. on ACS,
44(SIG 11 (ACS 3)):89–100, 2003. (in Japanese).

[10] A. Petitet, R. C. Whaley, J. Dongarra, and
A. Cleary. HPL - a portable implementa-
tion of the high-performance linpack bench-
mark for distributed-memory computers.
http://www.netlib.org/benchmark/hpl/.

[11] Kenjiro Taura, Kenji Kaneda, Toshio Endo, and Aki-
nori Yonezawa. Phoenix: a parallel programming
model for accommodating dynamically joining/leaving
resources. In Proc. of PPoPP, pages 216–229, 2003.

